Academic literature on the topic 'SARS-CoV-2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SARS-CoV-2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "SARS-CoV-2"

1

Steinbauer, M., and D. Böckler. "SARS-CoV-2." Gefässchirurgie 25, no. 6 (October 2020): 387–88. http://dx.doi.org/10.1007/s00772-020-00705-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fang, Meng. "Comparison between SARS-CoV and SARS-CoV 2." E3S Web of Conferences 271 (2021): 03022. http://dx.doi.org/10.1051/e3sconf/202127103022.

Full text
Abstract:
COVID-19, which is officially called SARS-CoV-2, is a newly emerging viral respiratory illness leading to a global epidemic, which causes concerns among the global community in November 2019. SARS-CoV-2 is considered as the third global coronavirus epidemic in the past 20 years after SARS-CoV in 2002 and MERS in 2012. SARS is a viral respiratory illness caused by coronavirus SARS-CoV which was first reported in Guangdong, China in 2002. SARS-CoV-2 and SARS-CoV share similar and different biological features, clinical manifestations, region distribution, transmission mechanisms, and clinical treatments. In this paper, differences and similarities between SARS-CoV-2 and SARS-CoV are analyzed to provide valuable information for further research. Through analysis, we found SARS-CoV-2 and SARSCoV share a lot of similarities, but also have differences in clinical manifestations, pathogenicity, transmission rate and treatments.
APA, Harvard, Vancouver, ISO, and other styles
3

Huamán Saavedra, Juan Jorge. "SARS-COV-2 variants." Revista Médica de Trujillo 16, no. 1 (March 16, 2021): 1–2. http://dx.doi.org/10.17268/rmt.2020.v16i01.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Marilia Rosa, Fabiano Pereira Rocha da Costa, Lindemberg Barbosa Júnior, Stephanie Moreira, Rayssa Gonçalves Galvão, and André Valério da Silva. "Complicações Neurológicas do SARS-CoV-2 / SARS-CoV-2 Neurological Complications." Brazilian Journal of Health Review 3, no. 5 (2020): 14810–29. http://dx.doi.org/10.34119/bjhrv3n5-274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ezhilan, Madeshwari, Indhu Suresh, and Noel Nesakumar. "SARS-CoV, MERS-CoV and SARS-CoV-2: A Diagnostic Challenge." Measurement 168 (January 2021): 108335. http://dx.doi.org/10.1016/j.measurement.2020.108335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ÇAKAL, Bülent. "Origin of SARS-CoV-2." Turkiye Klinikleri Journal of Medical Ethics-Law and History 28, no. 3 (2020): 499–507. http://dx.doi.org/10.5336/mdethic.2020-76286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Popadić, Dušan. "Testing for SARS-CoV-2." Medicinski podmladak 72, no. 3 (2021): 12–19. http://dx.doi.org/10.5937/mp72-33002.

Full text
Abstract:
This review article describes the principles and implications of certain tests for diagnosing SARS-CoV-2 infections. The advantages and disadvantages of certain tests, both those in routine diagnostic application and those that have primarily research significance, are discussed. Also, a review of the practice of reporting results is given, as well as recommendations for its improvement.
APA, Harvard, Vancouver, ISO, and other styles
8

Ordorica-Mellado, Manuel. "Demografía y SARS-CoV-2." Papeles de Población 27, no. 107 (March 31, 2021): 19–39. http://dx.doi.org/10.22185/24487147.2021.107.03.

Full text
Abstract:
El objetivo de este artículo es presentar un breve recuento histórico de cómo los seres humanos han ido descubriendo el camino para enfrentar a los microorganismos. Mostrar como el naci-miento de la demografía está ligado a las pandemias y a las muertes que ocurrían en Inglaterra en el siglo XVII con los trabajos de John Graunt. Además, intenta mostrar la dificultad que tenemos las personas para entender el crecimiento exponencial. Asimismo, se presenta un análisis gráfico de la evolución de los contagios de las defunciones por Covid-19 y del Índice básico de repro-ducción para el caso de México, desde que inicio la pandemia hasta finales del 2020, para luego terminar con un conjunto de conclusiones.
APA, Harvard, Vancouver, ISO, and other styles
9

陈, 超. "The Comparison of SARS-CoV-2 and SARS-CoV." Advances in Clinical Medicine 10, no. 11 (2020): 2439–43. http://dx.doi.org/10.12677/acm.2020.1011368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Creech, C. Buddy, Shannon C. Walker, and Robert J. Samuels. "SARS-CoV-2 Vaccines." JAMA 325, no. 13 (April 6, 2021): 1318. http://dx.doi.org/10.1001/jama.2021.3199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "SARS-CoV-2"

1

Daff, Kaitlyn M. "Nutritional Implications in SARS-CoV-2." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1596622611336371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Condé, Lionel. "Contrôle traductionnel du SARS-CoV-2." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0010.

Full text
Abstract:
Endant l’infection virale, la régulation de l’expression des gènes est au cœur des interactions complexes entre l'hôte et le pathogène. Les virus exploitent la machinerie cellulaire de l'hôte pour assurer la synthèse de leurs protéines nécessaires pour la réplication et la propagation de l'infection. C'est notamment le cas lors de l'infection par le SARS-CoV-2, qui induit rapidement une inhibition globale de la traduction cellulaire grâce à l'action de facteurs viraux tels que la protéine Nsp1. Pour produire efficacement ses protéines, le virus doit alors mettre en place des stratégies pour contourner cette inhibition. Le génome du SARS-CoV-2 s'exprime à partir de 10 ARN, l'ARN génomique (ARNg) et 9 ARN sous-génomiques qui possèdent une région leader commune mais des régions 5'UTR uniques pour chacun des transcrits. Mon travail s'est concentré sur les éléments structuraux qui régulent la traduction des différents ARN du SARS-CoV-2.À travers un ensemble d’expériences in vitro (lysat de réticulocytes) et en cellules, nous avons découvert que l’efficacité de traduction variait significativement entre les différents ARN viraux. En particulier, l'ARN génomique, malgré sa structure complexe, se distingue par une efficacité de traduction particulièrement élevée. Nous avons aussi déterminé que la structure tige-boucle SL1, présente dans l’ensemble des transcrits viraux, était un déterminant majeur pour l'expression des ARN et qu'elle jouait également un rôle crucial pour contrer l'inhibition induite par la protéine virale Nsp1. Nous avons établi que l'initiation de la traduction se déroulait par un mécanisme dépendant de la coiffe et nécessitait le complexe eIF4F. Enfin notre étude a également permis de caractériser le rôle de deux courtes phases de lecture ouvertes (uORF) retrouvées dans certaines régions 5'UTR des ARN du SARS-CoV-2; ces uORFs ont des impacts variables selon leur position
During viral infection, the regulation of gene expression is central to the complex interactions between the host and the pathogen. Viruses exploit the host's cellular machinery to ensure the synthesis of their proteins, which are necessary for replication and the spread of the infection. This is particularly the case with SARS-CoV-2 infection, which rapidly induces a global inhibition of cellular translation through the action of viral factors such as the Nsp1 protein. To efficiently produce its proteins, the virus must implement strategies to bypass this inhibition. The SARS-CoV-2 genome is expressed from 10 RNAs, the genomic RNA (gRNA) and 9 subgenomic RNAs that possess a common leader region but unique 5'UTR regions for each of the transcripts. My work focused on the structural elements that regulate the translation of the different SARS-CoV-2 RNAs.Through a series of in vitro (reticulocyte lysate) and in-cell experiments, we discovered that the translation efficiency varied significantly among the different viral RNAs. In particular, the genomic RNA, despite its complex structure, distinguishes itself by its remarkably high translation efficiency. We also determined that the SL1 stem-loop structure, present in all viral transcripts, was a major determinant for RNA expression and also played a crucial role in countering the inhibition induced by the Nsp1 viral protein. We established that translation initiation occurred through a cap-dependent mechanism and required the eIF4F complex. Finally, our study also characterized the role of two short upstream open reading frames (uORFs) found in certain 5'UTR regions of SARS-CoV-2 RNAs; these uORFs have variable impacts depending on their position
APA, Harvard, Vancouver, ISO, and other styles
3

Dafalla, Israa Yahia Al Hag Ibrahim. "Improving SARS-CoV-2 analyses from wastewater." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20237.

Full text
Abstract:
Wastewater-based epidemiology (WBE) analyzes wastewater for the presence of biological and chemical substances to make public health conclusions. COVID-19 disease is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that infected individuals shed also in their feces, making WBE an alternative way to track SARS-CoV-2 in populations. There are many limitations to the detection and quantification of SARS-CoV-2 from wastewater, such as sample quality, storage conditions or viral concentration. This thesis aims to determine the extent of these limitations and the factors that contribute to them. Other viruses can help the measurements for example Bovine coronavirus (BCoV) can be spiked as a process surrogate, while Pepper mild mottle virus (PMMoV), a fecal biomarker is used to estimate the prevalence of SARS-CoV-2 infection. This study involved two distinct wastewater samples. For method comparison both samples were processed with two methods: virus concentration by electronegative (EN) filtration or direct RNA extraction method. From the RNA extracts RT-qPCR assays were performed to identify and quantify SARS-CoV-2, BCoV, and PMMoV. Based on the obtained cycle threshold (Ct) values, viral gene copy numbers and virus concentration of the original wastewater samples were calculated. Statistical tests were conducted to assess suggested hypothesizes and variations within the data. Results revealed differences in viral contents due to different sample qualities and as a result of freezing and thawing. Furthermore, different sample processing methods led to differences in quantification. In conclusion, improving analysis of SARS-CoV-2 in wastewater using methodologies with better detection efficiency leads to more reliable results.
APA, Harvard, Vancouver, ISO, and other styles
4

Vareschi, Rodolfo Dimitrius. "Cloud computing adoption during SARS-COV-2 pamdemic." Master's thesis, Instituto Superior de Economia e Gestão, 2021. http://hdl.handle.net/10400.5/21746.

Full text
Abstract:
Mestrado em Gestão de Sistemas de Informação
Due to the rapid global spread of the pandemic caused by the new coronavirus, companies and institutions were forced to take precautionary measures to reduce the risk of contagion, such as asking employees to work remotely from their homes. In this scenario, cloud computing technology has proven to be a great ally of companies to overcome the crisis caused by the pandemic.The adoption of Cloud Computing technology has accelerated in recent years and, according to a forecast made by the International Data Corporation (IDC), investment in cloud services will exceed US $ 1.0 trillion in 2024, which represents a rate of annual growth of 15.7% (Villars et al., 2020).In an attempt to help organizations plan their strategies for adopting cloud computing, the present study intends to contribute to the existing literature on the subject, aiming to identify the main factors that influence the adoption of such technology during the Covid-19 pandemic crises.For this purpose, 18 factors identified during the literature review and were presented to 11 experts in the field of cloud computing technology, in order to seek a consensus regarding the order of importance of these factors.Through the Delphi method, divided into two phases and with two rounds, a list was obtained, ordered according to the degree of importance of the main factors that influence the adoption of cloud computing. After analyzing the data, the results obtained show that the six most important factors are: (1) Adoption, Migration and Acquisition Cost; (2) Availability and Accessibility; (3) Scalability; (4) Cost of Data Confidentiality and Availability Loss; (5) Security and (6) Customization.
Devido à rápida disseminação global da pandemia causada pelo novo coronavírus, empresas e instituições foram forçadas a tomar medidas de precaução para reduzir o risco de contágio, como pedir aos funcionários que trabalhassem remotamente das suas casas. Nesse cenário, a tecnologia de computação em nuvem tem se mostrado uma grande aliada das empresas para superar a crise provocada pela pandemia.A adoção de Computação em Nuvem tem se acelerado nos últimos anos e, segundo previsão da International Data Corporation (IDC), os investimentos em serviços em nuvem ultrapassarão US $ 1,0 milhão de bilhões em 2024, o que representa uma taxa de crescimento anual de 15,7% (Villars et al., 2020).Na tentativa de auxiliar as organizações no planeamento das suas estratégias de adoção da computação em nuvem, o presente estudo pretende contribuir com a literatura existente sobre o assunto, e tem como objetivo de identificar os principais fatores que influenciam a adoção dessa tecnologia durante a crise pandêmicas de Covid-19.Nesse sentido, 18 fatores identificados durante a revisão da literatura foram apresentados a 11 especialistas na área de tecnologia de computação em nuvem, a fim de encontrar um consenso quanto à ordem de importância desses fatores.Através do método Delphi, dividido em duas fases e com duas rondas, foi obtida uma lista ordenada de acordo com o grau de importância dos principais fatores que influenciam a adoção da computação em nuvem. Após a análise dos dados, os resultados obtidos mostram que os seis fatores mais importantes são: (1) Custo de Adoção, Migração e Aquisição; (2) Disponibilidade e acessibilidade; (3) Escalabilidade; (4) Custo de perda de confidencialidade e disponibilidade de dados; (5) Segurança e (6) Personalização.
info:eu-repo/semantics/publishedVersion
APA, Harvard, Vancouver, ISO, and other styles
5

Колюбакіна, Л. В., О. В. Власова, and Н. М. Крецу. "Kлініко-параклінічні особливості SARS-Cov-2 у новонароджених." Thesis, БДМУ, 2021. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/18391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elfström, Mia. "Synthesis of SARS-CoV-2 Main Protease Inhibitors." Thesis, Uppsala universitet, Läkemedelsdesign och läkemedelsutveckling, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449953.

Full text
Abstract:
Coronaviruses have been responsible for several global disease outbreaks over the last 20 years, including the “Severe Acute Respiratory Syndrome” in 2002/2003, the “Middle East Respiratory Syndrome” in 2012, and the “Coronavirus Disease of 2019 (COVID19)”. These viruses are highly contagious and can cause multiple medical disorders upon contraction, such as common cold or lower respiratory infections. SARS-CoV-2, the newly emerged coronavirus variant of 2019, has been confirmed as the cause of the ongoing COVID19 pandemic, which infected over 167 million people worldwide and, by the end of May 2021, has a death toll of over 3 million people. Even though several SARS-CoV-2 vaccines have made it to the market, no proven options have yet been discovered for treating COVID19 infections. The aim of this project is, therefore, to improve the potency of two active SARS-CoV-2 main protease (Mpro) inhibitors (ML188 and X77) by performing a structure-activity-relationship study where two specific sites of the inhibitors are altered. The inhibition activity of these compounds is then tested on isolated SARS-CoV-2 Mpro. The four-component Ugi reaction was utilized to synthesize the ML188 and X77 analogs, which were purified by column chromatography before testing. During this project, six pure analogs were successfully synthesized and will be sent shortly for testing. Inhibitors with good activity against SARS-CoV-2 Mpro will be further tested for their antiviral activity in cell-based infection assays. The results obtained from this study will later be used to perform a second structure-activity-relationship study to further improve the potency of the two inhibitors by developing a 2nd generation library.
APA, Harvard, Vancouver, ISO, and other styles
7

Bălan, Mirela. "Integrative bioinformatic analysis of SARs-CoV-2 data." Thesis, Uppsala universitet, Institutionen för cell- och molekylärbiologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-450821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bui, Xuan Klaudia. "Biosensori FET per il rilevamento del SARS-CoV-2." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
Nel 2020 la presenza del SARS-CoV-2 ha indotto alla produzione e miglioramento dei metodi per la rilevazione del virus. Negli ospedali di Wuhan vari campionatori d'aria sono stati utilizzati per verificare la presenza e la diffusione del virus. Il campione così raccolto viene analizzato tramite la reazione a catena della polimerasi (PCR). Lo svantaggio principale di questa reazione è il tempo richiesto per la diagnosi che è di tre ore. Per questo motivo sono stati effettuati vari studi di ricerca per trovare un metodo più rapido ma sempre efficace. Quindi vengono proposte le ultime scoperte convalidate per la determinazione del SARS-CoV-2. In particolare, i candidati migliori vengono rappresentati dai biosensori, dispositivi veloci e altamente sensibili che usano i biorecettori per creare il legame con la cellula bersaglio. Il documento presenta una dettagliata analisi del funzionamento del transistor ad effetto campo rivestito di un film di grafene su cui vengono posizionati gli anticorpi del virus. Come mostrato nell'elaborato, questo è un ottimo dispositivo per un rapido rilevamento del virus in quanto in tempo reale fornisce l'esito, positivo o negativo, dei tamponi nasofaringei.
APA, Harvard, Vancouver, ISO, and other styles
9

Flygare, Agnes. "The synthesis of main protease inhibitorsagainst SARS-CoV-2." Thesis, Uppsala universitet, Preparativ läkemedelskemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fignani, Daniela. "Bidirectional relationship between SARS-CoV-2 and Diabetes Mellitus." Doctoral thesis, Università di Siena, 2023. https://hdl.handle.net/11365/1224916.

Full text
Abstract:
Several studies demonstrated that COVID-19 has a more severe outcome in patients with diabetes; in addition, in normoglycemic patients, the infection can alter glycometabolic control increasing the risk to develop Type 2 Diabetes (T2D) or dysglycaemia. Thus, a bidirectional relationship between COVID-19 and diabetes can be hypothesized but a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing β-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. Moreover, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, increase ACE2 expression in the β-cell line EndoC-βH1 and in primary human pancreatic islets. Finally, we demonstrated that ACE2 expression is increased in pancreatic islets of T2D donors in comparison to non-diabetic controls alongside with a higher colocalization rate between ACE2 and insulin using both anti-ACE2 antibodies. Of note, a higher frequency of peri-islets macrophages was detected in T2D donors respect to non-diabetic. Upregulation of ACE2 was demonstrated in pancreatic islet β-cells of T2D donors. Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 disease in T2D patients, thus exacerbating glycometabolic outcomes and worsening the severity of the disease. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "SARS-CoV-2"

1

Legach, Fr archpriest Evgeny I., and Konstantin S. Sharov, eds. SARS-CoV-2 and Coronacrisis. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2605-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goswami, Srijan, and Chiranjeeb Dey. COVID-19 and SARS-CoV-2. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shelton-Davenport, Marilee, Julie Pavlin, Jennifer Saunders, and Amanda Staudt, eds. Airborne Transmission of SARS-CoV-2. Washington, D.C.: National Academies Press, 2020. http://dx.doi.org/10.17226/25958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Jen-Tsung. Bioactive Compounds Against SARS-CoV-2. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003323884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Focosi, Daniele. SARS-CoV-2 Spike Protein Convergent Evolution. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87324-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Jen-Tsung. Anti-SARS-CoV-2 Activity of Flavonoids. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003433200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iketani, Sho. Combatting a continuously evolving pathogen, SARS-CoV-2. [New York, N.Y.?]: [publisher not identified], 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chavda, Vivek P., and Vladimir N. Uversky. SARS-CoV-2 Variants and Global Population Vulnerability. New York: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003467939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mueller, Siguna. Challenges and Opportunities of mRNA Vaccines Against SARS-CoV-2. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18903-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prabha, S., P. Karthikeyan, K. Kamalanand, and N. Selvaganesan. Computational Modelling and Imaging for SARS-CoV-2 and COVID-19. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003142584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "SARS-CoV-2"

1

Nowak-Far, Artur. "SARS-CoV-2 pandemic." In Contemporary States and the Pandemic, 69–87. London: Routledge India, 2022. http://dx.doi.org/10.4324/9781003353805-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Focosi, Daniele. "SARS-CoV-2 Variants." In SpringerBriefs in Microbiology, 55–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87324-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

İnandıklıoğlu, Nihal, and Tunc Akkoc. "Immune Responses to SARS-CoV, MERS-CoV and SARS-CoV-2." In Advances in Experimental Medicine and Biology, 5–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/5584_2020_549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yadav, Tushar, and Shailendra K. Saxena. "Transmission Cycle of SARS-CoV and SARS-CoV-2." In Medical Virology: From Pathogenesis to Disease Control, 33–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4814-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cui, Tingyi. "Comparison of SARS-CoV (2003) and SARS-CoV-2 (2019)." In Proceedings of the 2022 6th International Seminar on Education, Management and Social Sciences (ISEMSS 2022), 59–65. Paris: Atlantis Press SARL, 2022. http://dx.doi.org/10.2991/978-2-494069-31-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shreeya, Tejal, Tabish Qidwai, and Bhartendu Nath Mishra. "Pathophysiology of SARS-CoV-2." In Interaction of Coronavirus Disease 2019 with other Infectious and Systemic Diseases, 3–11. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003324911-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Myers, Michael T. "The SARS-CoV-2 Virus." In COVID-ology, 7–28. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003310525-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elamir, Yasmine M., and Michael A. Via. "Endocrinopathies of SARS-CoV-2." In A Case-Based Guide to Clinical Endocrinology, 529–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84367-0_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Franklin, Alan B. "SARS-CoV-2 in Wildlife." In Social Work in Health Emergencies, 337–46. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003111214-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Russo, Edda, Lavinia Curini, Alessio Fabbrizzi, and Amedeo Amedei. "SARS-CoV-2 and Microbiota." In Microbiome in Inflammatory Lung Diseases, 241–80. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8957-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "SARS-CoV-2"

1

Su, Yi, Zhen Cui, Pavlos Savvidis, Guoguang Rong, and Mohamad Sawan. "Microcavity based Biosensor for Detection of SARS-CoV-2." In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–4. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10782828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spalluto, C. M., M. V. Humbert, M. T. T. Dalbay, G. Ponzio, M. Fierville, J. Butler, M. Crispin, et al. "The role of SARS-CoV-2 receptor ACE-2 isoforms in SARS-CoV-2 infection in the airway epithelium." In ERS Lung Science Conference 2023 abstracts. European Respiratory Society, 2023. http://dx.doi.org/10.1183/23120541.lsc-2023.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lazarus, Theophilus. "SARS-CoV-2 infection and neuropsychological outcomes." In 2nd International Neuropsychological Summer School named after A. R. Luria “The World After the Pandemic: Challenges and Prospects for Neuroscience”. Ural University Press, 2020. http://dx.doi.org/10.15826/b978-5-7996-3073-7.10.

Full text
Abstract:
The entire world is currently confronted with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS.CoV.2), a novel betacoronavirus causing the deadly pandemic of coronavirus disease 2019 (COVID.19). Since there is now increasing reports of neurological and cognitive problems, the impact of COVID.19 on neuropsychological functioning is unknown but is likely to leave residual problems.
APA, Harvard, Vancouver, ISO, and other styles
4

"APPLICATIONS OF SARS-COV-2 SEQUENCING DATA." In 14th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing. IADIS Press, 2020. http://dx.doi.org/10.33965/bigdaci2020_202011c034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rivas Rodríguez, MD, RM Medina Comas, C. Redondo Galán, M. Ferris Villanueva, D. González Vaquero, and JF Rangel Mayoral. "4CPS-388 Telepharmacy during SARS-CoV-2." In 25th Anniversary EAHP Congress, Hospital Pharmacy 5.0 – the future of patient care, 23–28 March 2021. British Medical Journal Publishing Group, 2021. http://dx.doi.org/10.1136/ejhpharm-2021-eahpconf.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hatzipanagiotou, Maria, Miriam Fernandez, Rahel Deborah Huber, Olaf Ortmann, and Ute Germer. "Maternofetale Transmission bei Sars-CoV-2 Virusinfektion." In Interdisziplinärer Kongress | Ultraschall 2022. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0042-1749557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ferreira, Caíque Levir da Silva, Bárbara Guimarães Silqueira, Vanessa Giovanini Gasparoto, Ana Laura de Souza Campiello Talarico, and Ana Caroline Vendrame Cazeloto. "MANIFESTAÇÕES NEUROLÓGICAS CAUSADAS PELO SARS-COV-2." In III Congresso Online de Neurocirurgia e Neurologia. Congresse.me, 2022. http://dx.doi.org/10.54265/cnlc1334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ay, Emrah, and Nizami Duran. "Resistance of SARS CoV-2 to Seawater." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.iii.2.

Full text
Abstract:
SARS CoV-2, which is the cause of Covid-19 disease, has become the only and most important agenda of the world due to its mortality and morbidity that globally affects the whole world. The virus has profoundly affected life all over the world. The lifestyles of people have changed due to the virus. This study is planned to understand how important sea water is in SARS-CoV-2 transmission. The study aimed to determine whether there is a risk of sea water in SARS-CoV-2 transmission. The effectiveness of seawater on SARS CoV-2 viability has been investigated in different dilutions of seawater in different time periods. Experiments were carried out in three different titrations of SARS CoV-2 in Vero cell lines. Viral replication has been investigated by detecting morphological changes occurring in cells, cell viability, and the RT-PCR method. Seawater has been found to be highly potent inhibitory on SARS CoV-2 about time and dose. Especially within 300 seconds, seawater has been found to inhibit viral replication up to 1/32 dilution. These results show that viral transmission through seawater is quite difficult for people swimming in the sea during the pandemic. Seawater-mediated spread of SARS-CoV-2 is out of the question. However, these results should not be interpreted as the prophylactic activity of saline against viruses, which are obligate intracellular parasites.
APA, Harvard, Vancouver, ISO, and other styles
9

Perkit, N. R., H. Shanmugavel Geetha, M. G. Suresh, and I. Daniel. "SARS-CoV-2: Playing by the Ear." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a3847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Zhitong. "Cold Plasma for SARS-CoV-2 Inactivation." In 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588571.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "SARS-CoV-2"

1

Bymark, Jeff. SARS-CoV-2 Vaccine Development. Ames (Iowa): Iowa State University, January 2021. http://dx.doi.org/10.31274/cc-20240624-1255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Urbatsch, Dana. Monitoring SARS-CoV-2 in wastewater. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1878019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Urbatsch, Dana. Monitoring SARS-CoV-2 in wastewater. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1881788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elabd, Dina. SARS- CoV-2 and Acute Demyelinating Encephalitis. Ames (Iowa): Iowa State University, May 2022. http://dx.doi.org/10.31274/cc-20240624-1254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paul, Satashree. Crosstalk Between Lung Cancer and SARS-CoV-2. Edited by Nature Library. Nature Library, September 2020. http://dx.doi.org/10.47496/nl.blog.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gleasner, Cheryl, Kimberly Mcmurry, Julia Kelliher, and Andrew Hatch. Illumina Sequencing for SARS-CoV-2 Training [Slides]. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jüni, Peter, Antonina Maltsev, Pavlos Bobos, Upton Allen, Yoojin Choi, James P. Connell, Gerald A. Evans, et al. The Role of Children in SARS-CoV-2 Transmission. Ontario COVID-19 Science Advisory Table, August 2020. http://dx.doi.org/10.47326/ocsat.2020.01.03.1.0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sola, Isabel. Estrategias para controlar al nuevo coronavirus SARS-Cov-2. Sociedad Española de Bioquímica y Biología Molecular, March 2020. http://dx.doi.org/10.18567/sebbmdiv_actu.2020.03.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Negrete, Oscar, Steven Bradfute, Steven Larson, Anupama Sinha, Kenneth Coombes, Ronald Goeke, Lisa Keenan, et al. Photocatalytic Material Surfaces for SARS-CoV-2 Virus Inactivation. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1669200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chan, Wanyu. SARS-CoV-2 Transmission Control in California Correctional Facilities. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1891334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography