Journal articles on the topic 'SARS-CoV-2 genomes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SARS-CoV-2 genomes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mavzyutov, A. R., R. R. Garafutdinov, E. Yu Khalikova, et al. "The enigmas of the new coronavirus SARS-CoV-2." Biomics 13, no. 1 (2021): 75–99. http://dx.doi.org/10.31301/2221-6197.bmcs.2021-7.
Full textKhattak, Saadullah, Mohd Ahmar Rauf, Qamar Zaman, et al. "Genome-Wide Analysis of Codon Usage Patterns of SARS-CoV-2 Virus Reveals Global Heterogeneity of COVID-19." Biomolecules 11, no. 6 (2021): 912. http://dx.doi.org/10.3390/biom11060912.
Full textVasilarou, Maria, Nikolaos Alachiotis, Joanna Garefalaki, Apostolos Beloukas, and Pavlos Pavlidis. "Population Genomics Insights into the First Wave of COVID-19." Life 11, no. 2 (2021): 129. http://dx.doi.org/10.3390/life11020129.
Full textGültekin, Visam, and Jens Allmer. "Novel perspectives for SARS-CoV-2 genome browsing." Journal of Integrative Bioinformatics 18, no. 1 (2021): 19–26. http://dx.doi.org/10.1515/jib-2021-0001.
Full textRouchka, Eric C., Julia H. Chariker, and Donghoon Chung. "Variant analysis of 1,040 SARS-CoV-2 genomes." PLOS ONE 15, no. 11 (2020): e0241535. http://dx.doi.org/10.1371/journal.pone.0241535.
Full textGunadi, Hendra Wibawa, Marcellus, et al. "Full-length genome characterization and phylogenetic analysis of SARS-CoV-2 virus strains from Yogyakarta and Central Java, Indonesia." PeerJ 8 (December 21, 2020): e10575. http://dx.doi.org/10.7717/peerj.10575.
Full textParlikar, Arohi, Kishan Kalia, Shruti Sinha, et al. "Understanding genomic diversity, pan-genome, and evolution of SARS-CoV-2." PeerJ 8 (July 17, 2020): e9576. http://dx.doi.org/10.7717/peerj.9576.
Full textŞAHİNGİL, Mehmet Cihan, and Yakup OZKAZANC. "Comparison of SARS-CoV-2 Virus Variant Genomes Detected in China and the USA." Genetics & Applications 4, no. 2 (2020): 10. http://dx.doi.org/10.31383/ga.vol4iss2pp10-26.
Full textShrestha, R., N. Katuwal, N. Adhikari, et al. "Whole Genome Sequence Analysis to Identify SARS-CoV-2 Variant in Nepal." Kathmandu University Medical Journal 19, no. 2 (2021): 237–42. http://dx.doi.org/10.3126/kumj.v19i2.49653.
Full textXia, Xuhua. "Dating the Common Ancestor from an NCBI Tree of 83688 High-Quality and Full-Length SARS-CoV-2 Genomes." Viruses 13, no. 9 (2021): 1790. http://dx.doi.org/10.3390/v13091790.
Full textHandrick, Susann, Malena Bestehorn-Willmann, Simone Eckstein, et al. "Whole genome sequencing and phylogenetic classification of Tunisian SARS-CoV-2 strains from patients of the Military Hospital in Tunis." Virus Genes 56, no. 6 (2020): 767–71. http://dx.doi.org/10.1007/s11262-020-01795-9.
Full textYuen, K. Y., S. K. P. Lau, and P. C. Y. Woo. "Wild animal surveillance for coronavirus HKU1 and potential variants of other coronaviruses." Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi 18 Suppl 2 (June 12, 2012): 25–26. https://doi.org/10.5281/zenodo.13532165.
Full textYuen, K. Y., S. K. P. Lau, and P. C. Y. Woo. "Wild animal surveillance for coronavirus HKU1 and potential variants of other coronaviruses." Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi 18 Suppl 2 (June 7, 2012): 25–26. https://doi.org/10.5281/zenodo.13532165.
Full textTang, Tao, and Jinyan Li. "Comparative studies on the high-performance compression of SARS-CoV-2 genome collections." Briefings in Functional Genomics 21, no. 2 (2021): 103–12. http://dx.doi.org/10.1093/bfgp/elab041.
Full textWei, Yulong, Jordan R. Silke, Parisa Aris, and Xuhua Xia. "Coronavirus genomes carry the signatures of their habitats." PLOS ONE 15, no. 12 (2020): e0244025. http://dx.doi.org/10.1371/journal.pone.0244025.
Full textAlisoltani, Arghavan, Lukasz Jaroszewski, Adam Godzik, et al. "ViralVar: A Web Tool for Multilevel Visualization of SARS-CoV-2 Genomes." Viruses 14, no. 12 (2022): 2714. http://dx.doi.org/10.3390/v14122714.
Full textMohanta, Tapan Kumar. "Corona virus (CoVid19) genome: genomic and biochemical analysis revealed its possible synthetic origin." Journal of Applied Biotechnology & Bioengineering 7, no. 5 (2020): 200–213. http://dx.doi.org/10.15406/jabb.2020.07.00235.
Full textAzgari, Cem, Zeynep Kilinc, Berk Turhan, Defne Circi, and Ogun Adebali. "The Mutation Profile of SARS-CoV-2 Is Primarily Shaped by the Host Antiviral Defense." Viruses 13, no. 3 (2021): 394. http://dx.doi.org/10.3390/v13030394.
Full textLau, Susanna K. P., Patrick C. Y. Woo, Kenneth S. M. Li, et al. "Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats." Proceedings of the National Academy of Sciences 102, no. 39 (2005): 14040——14045. https://doi.org/10.1073/pnas.0506735102.
Full textColson, Philippe, and Didier Raoult. "Global Discrepancies between Numbers of Available SARS-CoV-2 Genomes and Human Development Indexes at Country Scales." Viruses 13, no. 5 (2021): 775. http://dx.doi.org/10.3390/v13050775.
Full textLau, Susanna K. P., Patrick C. Y. Woo, Kenneth S. M. Li, et al. "Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats." Proceedings of the National Academy of Sciences of the United States of America 102, no. 39 (2005): 14040–45. https://doi.org/10.5281/zenodo.13504940.
Full textLau, Susanna K. P., Patrick C. Y. Woo, Kenneth S. M. Li, et al. "Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats." Proceedings of the National Academy of Sciences of the United States of America 102, no. 39 (2005): 14040–45. https://doi.org/10.5281/zenodo.13504940.
Full textLau, Susanna K. P., Patrick C. Y. Woo, Kenneth S. M. Li, et al. "Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats." Proceedings of the National Academy of Sciences of the United States of America 102, no. 39 (2005): 14040–45. https://doi.org/10.5281/zenodo.13504940.
Full textLau, Susanna K. P., Patrick C. Y. Woo, Kenneth S. M. Li, et al. "Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats." Proceedings of the National Academy of Sciences of the United States of America 102, no. 39 (2005): 14040–45. https://doi.org/10.5281/zenodo.13504940.
Full textWeber, Stefanie, Christina M. Ramirez, and Walter Doerfler. "Ubiquitous Micro-Modular Homologies among Genomes from Viruses to Bacteria to Human Mitochondrial DNA: Platforms for Recombination during Evolution?" Viruses 14, no. 5 (2022): 885. http://dx.doi.org/10.3390/v14050885.
Full textWeber, Stefanie, Christina M. Ramirez, and Walter Doerfler. "Ubiquitous Micro-Modular Homologies among Genomes from Viruses to Bacteria to Human Mitochondrial DNA: Platforms for Recombination during Evolution?" Viruses 14, no. 5 (2022): 885. http://dx.doi.org/10.3390/v14050885.
Full textKoyama, Takahiko, Daniel Platt, and Laxmi Parida. "Variant analysis of SARS-CoV-2 genomes." Bulletin of the World Health Organization 98, no. 7 (2020): 495–504. http://dx.doi.org/10.2471/blt.20.253591.
Full textGand, Mathieu, Kevin Vanneste, Isabelle Thomas, et al. "Use of Whole Genome Sequencing Data for a First in Silico Specificity Evaluation of the RT-qPCR Assays Used for SARS-CoV-2 Detection." International Journal of Molecular Sciences 21, no. 15 (2020): 5585. http://dx.doi.org/10.3390/ijms21155585.
Full textKhalid, Mohammad, Anas Alshishani, and Yousef Al-ebini. "Genome Similarities between Human-Derived and Mink-Derived SARS-CoV-2 Make Mink a Potential Reservoir of the Virus." Vaccines 10, no. 8 (2022): 1352. http://dx.doi.org/10.3390/vaccines10081352.
Full textMatyášek, Roman, and Aleš Kovařík. "Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased Towards C>U Transitions, Indicating Rapid Evolution in Their Hosts." Genes 11, no. 7 (2020): 761. http://dx.doi.org/10.3390/genes11070761.
Full textHakmaoui, Abdelmalek, Faisal Khan, Abdelhamid Liacini, et al. "Relevant SARS-CoV-2 Genome Variation through Six Months of Worldwide Monitoring." BioMed Research International 2021 (June 29, 2021): 1–10. http://dx.doi.org/10.1155/2021/5553173.
Full textPan, Bohu, Zuowei Ji, Sugunadevi Sakkiah, et al. "Identification of Epidemiological Traits by Analysis of SARS−CoV−2 Sequences." Viruses 13, no. 5 (2021): 764. http://dx.doi.org/10.3390/v13050764.
Full textBedford, Trevor, Alexander L. Greninger, Pavitra Roychoudhury, et al. "Cryptic transmission of SARS-CoV-2 in Washington state." Science 370, no. 6516 (2020): 571–75. http://dx.doi.org/10.1126/science.abc0523.
Full textRyder, Rahil, Emily Smith, Deva Borthwick, et al. "Emergence of Recombinant SARS-CoV-2 Variants in California from 2020 to 2022." Viruses 16, no. 8 (2024): 1209. http://dx.doi.org/10.3390/v16081209.
Full textLiu, Boxiang, Kaibo Liu, He Zhang, Liang Zhang, Yuchen Bian, and Liang Huang. "CoV-Seq, a New Tool for SARS-CoV-2 Genome Analysis and Visualization: Development and Usability Study." Journal of Medical Internet Research 22, no. 10 (2020): e22299. http://dx.doi.org/10.2196/22299.
Full textWarren, René L., and Inanc Birol. "Interactive SARS-CoV-2 mutation timemaps." F1000Research 10 (February 3, 2021): 68. http://dx.doi.org/10.12688/f1000research.50857.1.
Full textWarren, René L., and Inanc Birol. "Interactive SARS-CoV-2 mutation timemaps." F1000Research 10 (June 3, 2021): 68. http://dx.doi.org/10.12688/f1000research.50857.2.
Full textBader, Wahiba, Jeremy Delerce, Sarah Aherfi, Bernard La Scola, and Philippe Colson. "Quasispecies Analysis of SARS-CoV-2 of 15 Different Lineages during the First Year of the Pandemic Prompts Scratching under the Surface of Consensus Genome Sequences." International Journal of Molecular Sciences 23, no. 24 (2022): 15658. http://dx.doi.org/10.3390/ijms232415658.
Full textCampos, João H. C., Juliana T. Maricato, Carla T. Braconi, Fernando Antoneli, Luiz Mario R. Janini, and Marcelo R. S. Briones. "Direct RNA Sequencing Reveals SARS-CoV-2 m6A Sites and Possible Differential DRACH Motif Methylation among Variants." Viruses 13, no. 11 (2021): 2108. http://dx.doi.org/10.3390/v13112108.
Full textPanchin, Alexander Y., and Yuri V. Panchin. "Excessive G–U transversions in novel allele variants in SARS-CoV-2 genomes." PeerJ 8 (July 28, 2020): e9648. http://dx.doi.org/10.7717/peerj.9648.
Full textMiroshnichenko, L. A., V. D. Gusev, and Yu P. Dzhioev. "Comparison of genomes of different species of coronaviruses using spectra of periodicities." Journal of Physics: Conference Series 2099, no. 1 (2021): 012038. http://dx.doi.org/10.1088/1742-6596/2099/1/012038.
Full textAgarwal, Akshay, Kristen L. Beck, Sara Capponi, et al. "Predicting Epitope Candidates for SARS-CoV-2." Viruses 14, no. 8 (2022): 1837. http://dx.doi.org/10.3390/v14081837.
Full textXia, Xuhua. "Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense." Molecular Biology and Evolution 37, no. 9 (2020): 2699–705. http://dx.doi.org/10.1093/molbev/msaa094.
Full textForster, Peter, Lucy Forster, Colin Renfrew, and Michael Forster. "Phylogenetic network analysis of SARS-CoV-2 genomes." Proceedings of the National Academy of Sciences 117, no. 17 (2020): 9241–43. http://dx.doi.org/10.1073/pnas.2004999117.
Full textSaavedra Camacho, Johnny Leandro, Sebastian Iglesias-Osores, Miguel Alcántara-Mimbela, and Lizbeth M. Córdova-Rojas. "Analysis Of SARS-CoV-2 Genomes Of Samples From Peru." Revista de la Facultad de Medicina Humana 21, no. 3 (2021): 475–85. http://dx.doi.org/10.25176/rfmh.v21i3.3712.
Full textA. Pater, Adrian, Michael S. Bosmeny, Adam A. White, et al. "High throughput nanopore sequencing of SARS-CoV-2 viral genomes from patient samples." Journal of Biological Methods 8, no. 4 (2021): 1. http://dx.doi.org/10.14440/jbm.2021.360.
Full textJian, Ming-Jr, Hsing-Yi Chung, Chih-Kai Chang, et al. "Genomic analysis of early transmissibility assessment of the D614G mutant strain of SARS-CoV-2 in travelers returning to Taiwan from the United States of America." PeerJ 9 (September 2, 2021): e11991. http://dx.doi.org/10.7717/peerj.11991.
Full textQian, Zhaohui, Pei Li, Xiaolu Tang, and Jian Lu. "Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes." Medical Review 2, no. 1 (2022): 3–22. http://dx.doi.org/10.1515/mr-2021-0035.
Full textBartoszewski, Rafal, Michal Dabrowski, Bogdan Jakiela, et al. "SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs." American Journal of Physiology-Lung Cellular and Molecular Physiology 319, no. 3 (2020): L444—L455. http://dx.doi.org/10.1152/ajplung.00252.2020.
Full textO'Murchu, Eamon, Sinead O'Neill, Paula Byrne, et al. "Comparative genomic analysis demonstrates that true reinfection following SARS-CoV-2 infection is possible." Journal of Clinical Virology Plus 1, no. 1 (2021): 100015. https://doi.org/10.1016/j.jcvp.2021.100015.
Full text