Journal articles on the topic 'SARS-CoV-2 Main Protease'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SARS-CoV-2 Main Protease.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Silva Andrade, Bruno, Preetam Ghosh, Debmalya Barh, et al. "Computational screening for potential drug candidates against the SARS-CoV-2 main protease." F1000Research 9 (June 4, 2020): 514. http://dx.doi.org/10.12688/f1000research.23829.1.
Full textSilva Andrade, Bruno, Preetam Ghosh, Debmalya Barh, et al. "Computational screening for potential drug candidates against the SARS-CoV-2 main protease." F1000Research 9 (December 21, 2020): 514. http://dx.doi.org/10.12688/f1000research.23829.2.
Full textLockbaum, Gordon J., Archie C. Reyes, Jeong Min Lee, et al. "Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188." Viruses 13, no. 2 (2021): 174. http://dx.doi.org/10.3390/v13020174.
Full textAngourani, Hossein Rabbi, Armin Zarei, Maryam Manafi Moghadam, Ali Ramazani, and Andrea Mastinu. "Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease." Life 13, no. 2 (2023): 378. http://dx.doi.org/10.3390/life13020378.
Full textVinson, Valda. "Targeting the SARS-CoV-2 main protease." Science 371, no. 6536 (2021): 1328.5–1329. http://dx.doi.org/10.1126/science.371.6536.1328-e.
Full textAgost-Beltrán, Laura, Sergio de la Hoz-Rodríguez, Lledó Bou-Iserte, Santiago Rodríguez, Adrián Fernández-de-la-Pradilla, and Florenci V. González. "Advances in the Development of SARS-CoV-2 Mpro Inhibitors." Molecules 27, no. 8 (2022): 2523. http://dx.doi.org/10.3390/molecules27082523.
Full textMeewan, Ittipat, Jacob Kattoula, Julius Y. Kattoula, et al. "Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L." Pharmaceuticals 15, no. 6 (2022): 744. http://dx.doi.org/10.3390/ph15060744.
Full textEleftheriou, Phaedra, Dionysia Amanatidou, Anthi Petrou, and Athina Geronikaki. "In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus." Molecules 25, no. 11 (2020): 2529. http://dx.doi.org/10.3390/molecules25112529.
Full textEberle, Raphael Josef, Mônika Aparecida Coronado, Ian Gering, et al. "Tau protein aggregation associated with SARS-CoV-2 main protease." PLOS ONE 18, no. 8 (2023): e0288138. http://dx.doi.org/10.1371/journal.pone.0288138.
Full textAzouz, Nurit P., Andrea Klingler, Victoria Callahan, et al. "Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2–Priming Protease TMPRSS2." Pathogens and Immunity 6, no. 1 (2021): 55–74. http://dx.doi.org/10.20411/pai.v6i1.408.
Full textBerinyuy, Eustace, Jonathan Ibrahim, and Blessing Alozieuwa. "Azadirachtin-A a bioactive compound from Azadiracta indica is a potential inhibitor of SARS-CoV-2 main protease." AROC in Pharmaceutical and Biotechnology 01, no. 01 (2021): 01–08. http://dx.doi.org/10.53858/arocpb01010108.
Full textFrausto-Parada, Francisco, Ismael Várgas-Rodríguez, Itzel Mercado-Sánchez, et al. "Grammatical evolution-based design of SARS-CoV-2 main protease inhibitors." Physical Chemistry Chemical Physics 24, no. 8 (2022): 5233–45. http://dx.doi.org/10.1039/d1cp04159b.
Full textGao, Kaifu, Rui Wang, Jiahui Chen, Jetze J. Tepe, Faqing Huang, and Guo-Wei Wei. "Perspectives on SARS-CoV-2 Main Protease Inhibitors." Journal of Medicinal Chemistry 64, no. 23 (2021): 16922–55. http://dx.doi.org/10.1021/acs.jmedchem.1c00409.
Full textVinson, Valda. "Targeting the main protease of SARS-CoV-2." Science 373, no. 6557 (2021): 866.14–868. http://dx.doi.org/10.1126/science.373.6557.866-n.
Full textEstrada, Ernesto. "Topological analysis of SARS CoV-2 main protease." Chaos: An Interdisciplinary Journal of Nonlinear Science 30, no. 6 (2020): 061102. http://dx.doi.org/10.1063/5.0013029.
Full textRebetez, Thierry. "SARS-CoV-2 Main Protease: A Kinetic Approach." Journal of Physical Chemistry & Biophysics 12, no. 3 (2022): 11. https://doi.org/10.5281/zenodo.14604335.
Full textBaev, Dmitry S., Mikhail E. Blokhin, Varvara Yu Chirkova, et al. "Triterpenic Acid Amides as Potential Inhibitors of the SARS-CoV-2 Main Protease." Molecules 28, no. 1 (2022): 303. http://dx.doi.org/10.3390/molecules28010303.
Full textMukusheva, G. K., N. N. Toigambekova, N. G. Bazarnova, et al. "SYNTHESIS AND INVESTIGATION OF THE DERIVATIVES OF QUININE ALKALOID AS POTENTIAL INHIBITORS OF THE MAIN PROTEASE SARS-COV-2 Mpro." Chemical Journal of Kazakhstan, no. 1 (March 30, 2023): 5–14. http://dx.doi.org/10.51580/2023-1.2710-1185.01.
Full textKomissarov, Alexey, Maria Karaseva, Marina Roschina, Sergey Kostrov, and Ilya Demidyuk. "The SARS-CoV-2 main protease doesn’t induce cell death in human cells in vitro." PLOS ONE 17, no. 5 (2022): e0266015. http://dx.doi.org/10.1371/journal.pone.0266015.
Full textHuang, Sheng-Teng, Yeh Chen, Wei-Chao Chang, et al. "Scutellaria barbata D. Don Inhibits the Main Proteases (Mpro and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection." Viruses 13, no. 5 (2021): 826. http://dx.doi.org/10.3390/v13050826.
Full textSilva-Lopez, Raquel Elisa. "The main protease of SARS-CoV-2 as therapeutic target to development specific drugs to treat COVID-19." Journal of Applied Biotechnology & Bioengineering 7, no. 5 (2020): 185–89. http://dx.doi.org/10.15406/jabb.2020.07.00232.
Full textSekiou, O., W. Kherfane, M. Boumendjel, H. Cheniti, A. Benselhoub, and S. Bellucci. "Cathepsin inhibitors as potent inhibitors against SARS-CoV-2 main protease. In silico molecular screening and toxicity prediction." Ukrainian Biochemical Journal 95, no. 1 (2023): 90–102. http://dx.doi.org/10.15407/ubj95.01.090.
Full textSoulère, Laurent, Thibaut Barbier, and Yves Queneau. "In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Main Protease among a PubChem Database of Avian Infectious Bronchitis Virus 3CLPro Inhibitors." Biomolecules 13, no. 6 (2023): 956. http://dx.doi.org/10.3390/biom13060956.
Full textNuman, Muhammad Numan, Amar Ajmal, Iqra Akbar Iqra, Syed Mubassir Shah Mubassir Shah, and Arif Ali. "Computational Identification of New Inhibitors for 3C-Like Protease: A Potential Drug Target in Coronavirus." Inkwell Innovations in Life Sciences 1, no. 1 (2024): 13–26. https://doi.org/10.63079/iils.01.01.033.
Full textSencanski, Milan, Vladimir Perovic, Snezana B. Pajovic, Miroslav Adzic, Slobodan Paessler, and Sanja Glisic. "Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel In Silico Method." Molecules 25, no. 17 (2020): 3830. http://dx.doi.org/10.3390/molecules25173830.
Full textKarpiński, Tomasz M., Marek Kwaśniewski, Marcin Ożarowski, and Rahat Alam. "In silico studies of selected xanthophylls as potential candidates against SARS-CoV-2 targeting main protease (Mpro) and papain-like protease (PLpro)." Herba Polonica 67, no. 2 (2021): 1–8. http://dx.doi.org/10.2478/hepo-2021-0009.
Full textAhmad, Fawad, Saima Ikram, Jamshaid Ahmad, et al. "Molecular Docking Unveils Prospective Inhibitors for the SARS-COV-2 Main Protease." Sains Malaysiana 50, no. 5 (2021): 1473–83. http://dx.doi.org/10.17576/jsm-2021-5005-26.
Full textMiczi, Márió, Mária Golda, Balázs Kunkli, Tibor Nagy, József Tőzsér, and János András Mótyán. "Identification of Host Cellular Protein Substrates of SARS-COV-2 Main Protease." International Journal of Molecular Sciences 21, no. 24 (2020): 9523. http://dx.doi.org/10.3390/ijms21249523.
Full textPHAM, Quan Minh, Thuy Huong Thi LE, Toan Quoc TRAN, et al. "Initial study on SARS-CoV-2 main protease inhibition mechanism of some potential drugs using molecular docking simulation." Vietnam Journal of Science and Technology 58, no. 6 (2020): 665. http://dx.doi.org/10.15625/2525-2518/58/5/14914.
Full textLi, Qingxin, and CongBao Kang. "Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease." Microorganisms 8, no. 8 (2020): 1250. http://dx.doi.org/10.3390/microorganisms8081250.
Full textHo, Chien-Yi, Jia-Xin Yu, Yu-Chuan Wang, et al. "A Structural Comparison of SARS-CoV-2 Main Protease and Animal Coronaviral Main Protease Reveals Species-Specific Ligand Binding and Dimerization Mechanism." International Journal of Molecular Sciences 23, no. 10 (2022): 5669. http://dx.doi.org/10.3390/ijms23105669.
Full textYu, Wei, Xiaomin Wu, Yizhen Zhao, et al. "Computational Simulation of HIV Protease Inhibitors to the Main Protease (Mpro) of SARS-CoV-2: Implications for COVID-19 Drugs Design." Molecules 26, no. 23 (2021): 7385. http://dx.doi.org/10.3390/molecules26237385.
Full textSeitz, Christian, Vedran Markota, Terra Sztain-Pedone, et al. "Developing inhibitors of the SARS-CoV-2 main protease." Biophysical Journal 121, no. 3 (2022): 192a. http://dx.doi.org/10.1016/j.bpj.2021.11.1796.
Full textLiu, Yang, and KeWu Zeng. "Targeting SARS-CoV-2 main protease for drug discovery." Infectious Diseases Research 1, no. 2 (2020): 5. http://dx.doi.org/10.53388/idr20200802005.
Full textCoelho, Camila, Gloria Gallo, Claudia B. Campos, Leon Hardy, and Martin Würtele. "Biochemical screening for SARS-CoV-2 main protease inhibitors." PLOS ONE 15, no. 10 (2020): e0240079. http://dx.doi.org/10.1371/journal.pone.0240079.
Full textSuárez, Dimas, and Natalia Díaz. "SARS-CoV-2 Main Protease: A Molecular Dynamics Study." Journal of Chemical Information and Modeling 60, no. 12 (2020): 5815–31. http://dx.doi.org/10.1021/acs.jcim.0c00575.
Full textUllrich, Sven, and Christoph Nitsche. "The SARS-CoV-2 main protease as drug target." Bioorganic & Medicinal Chemistry Letters 30, no. 17 (2020): 127377. http://dx.doi.org/10.1016/j.bmcl.2020.127377.
Full textYantih, Novi, Uthami Syabillawati, Esti Mulatsari, and Wahono Sumaryono. "In silico SCREENING OF Ziziphus spina-christi (L.) Desf. AND Strychnos ligustrine COMPOUNDS AS A PROTEASE INHIBITOR OF SARS-COV-2." Journal of Experimental Biology and Agricultural Sciences 9, Spl-2-ICOPMES_2020 (2021): S208—S214. http://dx.doi.org/10.18006/2021.9(spl-2-icopmes_2020).s208.s214.
Full textShanmugam, Anusuya, Nisha Muralidharan, and M. Michael Gromiha. "Targeting SARS-CoV-2 Spike and Main protease with phytochemicals from Herbs and spices: Molecular Docking and dynamics simulation studies." Journal of Physics: Conference Series 2801, no. 1 (2024): 012013. http://dx.doi.org/10.1088/1742-6596/2801/1/012013.
Full textSavita, Mahendra Kumar, Neha Bora, Ruby Singh, and Prachi Srivastava. "Screening of camphene as a potential inhibitor targeting SARS-CoV-2 various structural and functional mutants: Through reverse docking approach." Environmental Health Engineering and Management 10, no. 2 (2023): 123–29. http://dx.doi.org/10.34172/ehem.2023.14.
Full textvan de Sand, Lukas, Maren Bormann, Mira Alt, et al. "Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease." Viruses 13, no. 4 (2021): 609. http://dx.doi.org/10.3390/v13040609.
Full textBaker, Jeremy D., Rikki L. Uhrich, Gerald C. Kraemer, Jason E. Love, and Brian C. Kraemer. "A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease." PLOS ONE 16, no. 2 (2021): e0245962. http://dx.doi.org/10.1371/journal.pone.0245962.
Full textRazali, Rafida, Vijay Kumar Subbiah, and Cahyo Budiman. "Technical Data of Heterologous Expression and Purification of SARS-CoV-2 Proteases Using Escherichia coli System." Data 6, no. 9 (2021): 99. http://dx.doi.org/10.3390/data6090099.
Full textFarkaš, Barbara, Marco Minneci, Matas Misevicius, and Isabel Rozas. "A Tale of Two Proteases: MPro and TMPRSS2 as Targets for COVID-19 Therapies." Pharmaceuticals 16, no. 6 (2023): 834. http://dx.doi.org/10.3390/ph16060834.
Full textMótyán, János András, Mohamed Mahdi, Gyula Hoffka, and József Tőzsér. "Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease." International Journal of Molecular Sciences 23, no. 7 (2022): 3507. http://dx.doi.org/10.3390/ijms23073507.
Full textSulimov, A. V., Kh S. Shikhaliev, O. V. Pyankov, et al. "Development of antiviral drugs based on inhibitors of the SARS-COV-2 main protease." Biomeditsinskaya Khimiya 67, no. 3 (2021): 259–67. http://dx.doi.org/10.18097/pbmc20216703259.
Full textAugustin, Teresa L., Roxanna Hajbabaie, Matthew T. Harper, and Taufiq Rahman. "Novel Small-Molecule Scaffolds as Candidates against the SARS Coronavirus 2 Main Protease: A Fragment-Guided in Silico Approach." Molecules 25, no. 23 (2020): 5501. http://dx.doi.org/10.3390/molecules25235501.
Full textSur, Vishma Pratap, Madhab Kumar Sen, and Katerina Komrskova. "In Silico Identification and Validation of Organic Triazole Based Ligands as Potential Inhibitory Drug Compounds of SARS-CoV-2 Main Protease." Molecules 26, no. 20 (2021): 6199. http://dx.doi.org/10.3390/molecules26206199.
Full textSarfraz, Muhammad, Abdul Rauf, Paul Keller, and Ashfaq Mahmood Qureshi. "N,N′-dialkyl-2-thiobarbituric acid based sulfonamides as potential SARS-CoV-2 main protease inhibitors." Canadian Journal of Chemistry 99, no. 3 (2021): 330–45. http://dx.doi.org/10.1139/cjc-2020-0332.
Full textJairajpuri, Mohamad Aman, and Shoyab Ansari. "Using serpins cysteine protease cross-specificity to possibly trap SARS-CoV-2 Mpro with reactive center loop chimera." Clinical Science 134, no. 17 (2020): 2235–41. http://dx.doi.org/10.1042/cs20200767.
Full text