To see the other types of publications on this topic, follow the link: SARS-CoV-2.

Journal articles on the topic 'SARS-CoV-2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'SARS-CoV-2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Steinbauer, M., and D. Böckler. "SARS-CoV-2." Gefässchirurgie 25, no. 6 (October 2020): 387–88. http://dx.doi.org/10.1007/s00772-020-00705-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fang, Meng. "Comparison between SARS-CoV and SARS-CoV 2." E3S Web of Conferences 271 (2021): 03022. http://dx.doi.org/10.1051/e3sconf/202127103022.

Full text
Abstract:
COVID-19, which is officially called SARS-CoV-2, is a newly emerging viral respiratory illness leading to a global epidemic, which causes concerns among the global community in November 2019. SARS-CoV-2 is considered as the third global coronavirus epidemic in the past 20 years after SARS-CoV in 2002 and MERS in 2012. SARS is a viral respiratory illness caused by coronavirus SARS-CoV which was first reported in Guangdong, China in 2002. SARS-CoV-2 and SARS-CoV share similar and different biological features, clinical manifestations, region distribution, transmission mechanisms, and clinical treatments. In this paper, differences and similarities between SARS-CoV-2 and SARS-CoV are analyzed to provide valuable information for further research. Through analysis, we found SARS-CoV-2 and SARSCoV share a lot of similarities, but also have differences in clinical manifestations, pathogenicity, transmission rate and treatments.
APA, Harvard, Vancouver, ISO, and other styles
3

Huamán Saavedra, Juan Jorge. "SARS-COV-2 variants." Revista Médica de Trujillo 16, no. 1 (March 16, 2021): 1–2. http://dx.doi.org/10.17268/rmt.2020.v16i01.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Marilia Rosa, Fabiano Pereira Rocha da Costa, Lindemberg Barbosa Júnior, Stephanie Moreira, Rayssa Gonçalves Galvão, and André Valério da Silva. "Complicações Neurológicas do SARS-CoV-2 / SARS-CoV-2 Neurological Complications." Brazilian Journal of Health Review 3, no. 5 (2020): 14810–29. http://dx.doi.org/10.34119/bjhrv3n5-274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ezhilan, Madeshwari, Indhu Suresh, and Noel Nesakumar. "SARS-CoV, MERS-CoV and SARS-CoV-2: A Diagnostic Challenge." Measurement 168 (January 2021): 108335. http://dx.doi.org/10.1016/j.measurement.2020.108335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ÇAKAL, Bülent. "Origin of SARS-CoV-2." Turkiye Klinikleri Journal of Medical Ethics-Law and History 28, no. 3 (2020): 499–507. http://dx.doi.org/10.5336/mdethic.2020-76286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Popadić, Dušan. "Testing for SARS-CoV-2." Medicinski podmladak 72, no. 3 (2021): 12–19. http://dx.doi.org/10.5937/mp72-33002.

Full text
Abstract:
This review article describes the principles and implications of certain tests for diagnosing SARS-CoV-2 infections. The advantages and disadvantages of certain tests, both those in routine diagnostic application and those that have primarily research significance, are discussed. Also, a review of the practice of reporting results is given, as well as recommendations for its improvement.
APA, Harvard, Vancouver, ISO, and other styles
8

Ordorica-Mellado, Manuel. "Demografía y SARS-CoV-2." Papeles de Población 27, no. 107 (March 31, 2021): 19–39. http://dx.doi.org/10.22185/24487147.2021.107.03.

Full text
Abstract:
El objetivo de este artículo es presentar un breve recuento histórico de cómo los seres humanos han ido descubriendo el camino para enfrentar a los microorganismos. Mostrar como el naci-miento de la demografía está ligado a las pandemias y a las muertes que ocurrían en Inglaterra en el siglo XVII con los trabajos de John Graunt. Además, intenta mostrar la dificultad que tenemos las personas para entender el crecimiento exponencial. Asimismo, se presenta un análisis gráfico de la evolución de los contagios de las defunciones por Covid-19 y del Índice básico de repro-ducción para el caso de México, desde que inicio la pandemia hasta finales del 2020, para luego terminar con un conjunto de conclusiones.
APA, Harvard, Vancouver, ISO, and other styles
9

陈, 超. "The Comparison of SARS-CoV-2 and SARS-CoV." Advances in Clinical Medicine 10, no. 11 (2020): 2439–43. http://dx.doi.org/10.12677/acm.2020.1011368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Creech, C. Buddy, Shannon C. Walker, and Robert J. Samuels. "SARS-CoV-2 Vaccines." JAMA 325, no. 13 (April 6, 2021): 1318. http://dx.doi.org/10.1001/jama.2021.3199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Baker, Terrance L., Jack V. Greiner, and Modesta Vesonder. "SARS-CoV-2 safety." Nursing 51, no. 3 (March 2021): 32–42. http://dx.doi.org/10.1097/01.nurse.0000733932.88107.44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lamers, Mart M., and Bart L. Haagmans. "SARS-CoV-2 pathogenesis." Nature Reviews Microbiology 20, no. 5 (March 30, 2022): 270–84. http://dx.doi.org/10.1038/s41579-022-00713-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Domingues, Vera. "SARS-CoV-2 roots." Nature Ecology & Evolution 6, no. 1 (December 6, 2021): 10. http://dx.doi.org/10.1038/s41559-021-01612-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Geršak, MD, PhD, Ksenija. "Koronavirus SARS-CoV-2." Slovenian Medical Journal 89, no. 3-4 (April 20, 2020): 121–22. http://dx.doi.org/10.6016/zdravvestn.3062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Walker, Karrie. "SARS-CoV-2 Vaccine." Global Reproductive Health 5, no. 3 (2020): e42-e42. http://dx.doi.org/10.1097/grh.0000000000000042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dempsey, Laurie A. "SARS-CoV-2 neuroinvasion." Nature Immunology 22, no. 1 (December 17, 2020): 7. http://dx.doi.org/10.1038/s41590-020-00854-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Babiker, Ahmed, Charlie W. Myers, Charles E. Hill, and Jeannette Guarner. "SARS-CoV-2 Testing." American Journal of Clinical Pathology 153, no. 6 (March 30, 2020): 706–8. http://dx.doi.org/10.1093/ajcp/aqaa052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bretón I, Andrea, and Alejandro Afani S. "Vacunas SARS-CoV-2." Revista Hospital Clínico Universidad de Chile 32, no. 2 (December 13, 2021): 168–76. http://dx.doi.org/10.5354/2735-7996.2021.69660.

Full text
Abstract:
Vaccines are biological products that stimulate the immune system to generate specific responses and immune memory. Faced with the magnitude of the problem caused by the Covid-19 pandemic, there is an urgent need to find an effective and safe preventive intervention. The race to find the ideal vaccine against this new coronavirus has required optimizing research times on this topic. Currently, more than 200 SARS-CoV-2 vaccine candidates are in development, 177 in preclinical evaluation, 63 in clinical evaluation and 16 of them in phase 3 of clinical trials. In our country, 3 SARS-CoV-2 vaccines are already authorized for administration, which have demonstrated safety and efficacy in clinical trials.
APA, Harvard, Vancouver, ISO, and other styles
19

Bertholom, Chantal. "QuantiFERON Sars-CoV-2." Option/Bio 34, no. 675-676 (September 2023): 17. http://dx.doi.org/10.1016/s0992-5945(23)00280-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gilemzyanova, L. I., and A. E. Babushkin. "Ocular manifestations of SARS-CoV-2." POINT OF VIEW. EAST – WEST, no. 3 (November 7, 2022): 38–44. http://dx.doi.org/10.25276/2410-1257-2022-3-38-44.

Full text
Abstract:
Purpose. To present the various manifestations of COVID-19 on the part of the organ of vision. Material and methods. Literature searches were performed in the PubMed, Google Scholar and eLibrary databases. For the analysis studies were taken that were published between January 1, 2020 and January 1, 2022. Results. SARS-CoV-2 can enter the human body through the surface of the eye and cause COVID-19. Ocukar manifestations of infection can occur in the form of various diseases of the eye: conjunctivitis, keratoconjunctivitis, episcleritis, orbital cellulitis, uveitis, panuveitis, vascular diseases of the retina. The article also presents the neuro-ophthalmological manifestations of COVID-19. Conclusion. The coronavirus disease 2019 pandemic continues to evolve and new ocular manifestations of COVID-19 may emerge. Ophthalmologists should be aware of the possible ocular signs of SARS-CoV-2 in order to prevent the development of severe complications of COVID-19. Keywords: Coronaviridae, SARS-CoV-2, COVID-19, COVID-19 and eye, ocular manifestations, conjunctivitis in COVID-19, ophthalmology
APA, Harvard, Vancouver, ISO, and other styles
21

Aherfi, Sarah, Bruno Pradines, Christian Devaux, Stéphane Honore, Philippe Colson, Bernard La Scola, and Didier Raoult. "Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV." Future Microbiology 16, no. 17 (November 2021): 1341–70. http://dx.doi.org/10.2217/fmb-2021-0019.

Full text
Abstract:
Since the beginning of the COVID-19 pandemic, large in silico screening studies and numerous in vitro studies have assessed the antiviral activity of various drugs on SARS-CoV-2. In the context of health emergency, drug repurposing represents the most relevant strategy because of the reduced time for approval by international medicines agencies, the low cost of development and the well-known toxicity profile of such drugs. Herein, we aim to review drugs with in vitro antiviral activity against SARS-CoV-2, combined with molecular docking data and results from preliminary clinical studies. Finally, when considering all these previous findings, as well as the possibility of oral administration, 11 molecules consisting of nelfinavir, favipiravir, azithromycin, clofoctol, clofazimine, ivermectin, nitazoxanide, amodiaquine, heparin, chloroquine and hydroxychloroquine, show an interesting antiviral activity that could be exploited as possible drug candidates for COVID-19 treatment.
APA, Harvard, Vancouver, ISO, and other styles
22

Aleebrahim-Dehkordi, Elahe, Faezeh Soveyzi, Niloofar Deravi, Zahra Rabbani, Amene Saghazadeh, and Nima Rezaei. "Human coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 in children." Journal of Pediatric Nursing 56 (January 2021): 70–79. http://dx.doi.org/10.1016/j.pedn.2020.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zandi, Milad, AzadehHaghi Navand, Saber Soltani, Mona Moghadami, Parastoo Hosseini, and Sepideh Nasimzadeh. "Diabetes and coronavirus infections (SARS-CoV, MERS-CoV, and SARS-CoV-2)." Journal of Acute Disease 9, no. 6 (2020): 244. http://dx.doi.org/10.4103/2221-6189.299178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Petersen, Eskild, Marion Koopmans, Unyeong Go, Davidson H. Hamer, Nicola Petrosillo, Francesco Castelli, Merete Storgaard, Sulien Al Khalili, and Lone Simonsen. "Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics." Lancet Infectious Diseases 20, no. 9 (September 2020): e238-e244. http://dx.doi.org/10.1016/s1473-3099(20)30484-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cемак, Г. Р., И. Ю. Жерко, and С. К. Клецкий. "SARS-CoV-2 and Ocular Surface." Офтальмология. Восточная Европа, no. 2 (July 17, 2020): 240–47. http://dx.doi.org/10.34883/pi.2020.10.2.022.

Full text
Abstract:
Эпидемия SARS-CoV-2 представляет глобальную угрозу для общественного здоровья. Известно, что SARS-CoV-2 способен вызывать у зараженных угрожающую жизни дыхательную недостаточность. Существуют данные о способности коронавирусов поражать орган зрения и проникать в организм через конъюнктиву.Мы провели систематический обзор всех доступных публикаций, найденных по запросу (SARS-CoV-2 OR COVID19) AND Ophthalmology в базе данных PubMed. Были проанализированы 42 публикации, включавшие клинические исследования, описания клинических случаев, обзоры и статьи, описывающие организацию офтальмологической помощи в условиях эпидемии.Опубликованные данные говорят о возможности развития конъюнктивита, ассоциированного с SARS-CoV-2. Несмотря на то, что данное проявление COVID-19 наблюдается относительно редко, конъюнктивит сам по себе – явление частое. Поэтому офтальмологи могут быть первыми врачами, контактирующими с пациентами с COVID-19. При этом необходимо помнить, что вирус может содержаться в слезе и конъюнктивальном отделяемом, заставляя принимать меры предосторожности.Риск трансконъюнктивальной передачи SARS-CoV-2 увеличивается при длительном контакте с зараженными. В соответствии с рекомендациями американского общества офтальмологов, медицинским работникам в период эпидемии SARS-CoV-2 необходимо, кроме всего прочего, носить защитные очки. Офтальмологам рекомендуется применять защитные экраны для щелевой лампы.Здоровая глазная поверхность – защита от SARS-CoV-2, поэтому профилактические меры должны включать инстилляции слезозамещающих растворов и при необходимости проведение инъекционных курсов низкомолекулярного натрия гиалуроната. The SARS-CoV-2 epidemic poses a global threat to public health. SARS-CoV-2 is known to cause life- threatening respiratory failure in infected individuals. There is evidence of the ability of coronaviruses to infect the organ of vision and enter the body through the conjunctiva. However, researchers have not yet agreed on whether SARS-CoV-2 uses this strategy.We conducted a systematic review of all available publications found by query (SARS-CoV-2 OR COVID19) AND Ophthalmology in the PubMed database. 42 publications were an alyzed, including clinical trials, clinical case descriptions, reviews, and articles describing the organization of ophthalmic care in an epidemic time.Published data suggest the possibility of conjunctivitis associated with SARS-CoV-2. Although this manifestation of COVID-19 is relatively rare, conjunctivitis itself is a common occurrence. Therefore, ophthalmologists may be the first physicians in contact with patients with COVID-19. It should be remembered that the virus can be contained in the tear and conjunctival discharge and take precautions.The risk of transconjunctival transmission of SARS-CoV-2 increases with prolonged exposure to virus. In accordance with the recommendations of the American Society of Ophthalmologists, medical personnel during the SARS-CoV-2 epidemic need to, among other things, wear safety glasses. Ophthalmologists are advised to use protective screens for a slit lamp.
APA, Harvard, Vancouver, ISO, and other styles
26

Maroto Vela, María del Carmen. "SARS-CoV-2: Problems and uncertainties." ANALES RANM 137, no. 137(02) (September 30, 2020): 98–103. http://dx.doi.org/10.32440/ar.2020.137.02.rev01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ticărău, Adriana, Mihaela Adela Iancu, and Dumitru Matei. "SARS-CoV-2 and fetal transmission." Romanian Medical Journal 67, no. 2 (June 30, 2020): 140–42. http://dx.doi.org/10.37897/rmj.2020.2.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Cerqueira, João. "SARS-CoV-2 e Esclerose Múltipla." Sinapse 20, no. 2 (July 13, 2020): 37–38. http://dx.doi.org/10.46531/sinapse/ap/covid19/cerqueiraj/2020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Гальцова, О. А., and А. Г. Захаренко. "Myocarditis Associated with SARS-CoV-2." Рецепт, no. 5 (November 18, 2021): 646–53. http://dx.doi.org/10.34883/pi.2021.24.5.004.

Full text
Abstract:
Новая коронавирусная инфекция в настоящей действительности является тем заболеванием, которое уносит миллионы жизней. Вопросы патогенеза и терапии коронавирусной инфекции являются приоритетным направлением. При COVID-19 может наблюдаться фульминантное повреждение миокарда с развитием миокардита. Вирус SARS-CoV-2 следует рассматривать как источник и предиктор повреждения миокарда. В представленной статье собраны данные по обзору информации, касающейся диагностики и терапии фульминантного миокардита, опосредованного SARS-CoV-2. New coronavirus infection is really a disease that takes millions of lives. The issues of pathogenesis and therapy of coronаvirus infection are a priority. Fulminant myocardial damage with the development of myocarditis is relevant in COVID-19. SARS-CoV-2 virus should be considered as the source and predictor of myocardial damage. In this article, there are collected the data from a review of information related to diagnostics and therapy of fulminant myocarditis mediated by SARS-CoV-2.
APA, Harvard, Vancouver, ISO, and other styles
30

W, Syed. "Sars-Cov-2- Infection in Pregnancy." Virology & Immunology Journal 5, no. 3 (August 2, 2021): 1–2. http://dx.doi.org/10.23880/vij-16000283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Italo, Giuffre. "Sars-Cov-2 Virus and Eye." Open Access Journal of Ophthalmology 7, no. 1 (January 31, 2022): 1–2. http://dx.doi.org/10.23880/oajo-16000238.

Full text
Abstract:
It is a minireview about the impact of SARS COVID-19 pandemia on Ophthalmology. Since 1990’s this virus was studied and some researchers showed its retinotropism. Nowadays, according to the World Health Organization guidelines, we explain how Italian ophthalmologist and nurses faced the effect of this pandemia on our daily work.
APA, Harvard, Vancouver, ISO, and other styles
32

Dort, Jiří, Alice Mocková, and Magdalena Daumová. "SARS-CoV-2 infection and newborns." Pediatrie pro praxi 24, no. 5 (October 13, 2023): 321–24. http://dx.doi.org/10.36290/ped.2023.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kodati, Dr Sarangam, Dr M. Dhasaratham, Veldandi Srikanth, and K. Meenendranath Reddy. "Classification of SARS Cov-2 and Non-SARS Cov-2 Pneumonia Using CNN." Journal of Prevention, Diagnosis and Management of Human Diseases, no. 36 (November 23, 2023): 32–40. http://dx.doi.org/10.55529/jpdmhd.36.32.40.

Full text
Abstract:
Both patients and medical professionals will benefit from precise identification of the Covid responsible for the COVID-19 outbreak this year, which is the extreme intense respiratory condition CoV-2 (SARS CoV-2). In countries where diagnostic tools are not easily accessible, knowledge of the disease's impact on the lungs is of utmost importance. The goal of this research was to demonstrate that high-resolution chest X-ray images could be used in conjunction with extensive training data to reliably differentiate COVID-19. The evaluation included the training of deep learning and AI classifiers using publicly available X-beam images (1092 sound, 1345 pneumonia, and 3616 affirmed Covid). There were 38 tests driven using Convolutional Brain Organizations, 10 examinations utilizing 5 simulated intelligence models, and 14 tests utilizing top tier pre-arranged models for move learning. In the first stages, the presentation of the models was surveyed using an eightfold cross-approval system that disentangled visuals and data analysis. Area under the curve for collector performance is a typical 96.51%, with 93.84% responsiveness, 98.18% particularity, 98.50% accuracy, and 93.84% responsiveness. COVID-19 may be detected in a small number of skewed chest X-beam pictures using a convolutional frontal cortex network with not many layers and no pre -taking care of.
APA, Harvard, Vancouver, ISO, and other styles
34

Chiang, Chia-Jung, Wei-Lun Hsu, Mei-Tsz Su, Wen-Chien Ko, Keng-Fu Hsu, and Pei-Yin Tsai. "Impact of Antenatal SARS-CoV-2 Exposure on SARS-CoV-2 Neutralization Potency." Vaccines 12, no. 2 (February 5, 2024): 164. http://dx.doi.org/10.3390/vaccines12020164.

Full text
Abstract:
A pregnancy booster dose significantly reduces the risk and severity of COVID-19, and it is widely recommended. A prospective cohort study was conducted to compare the transplacental passage of maternal antibodies from vaccination or infection during three trimesters against both the vaccine-targeted Wuhan strain and the Omicron strain of SARS-CoV-2. Maternal–infant dyads from vaccinated mothers were collected between 6 June 2022 and 20 September 2022. We analyzed 38 maternal–infant dyads from mothers who had been infected with COVID-19 and 37 from mothers without any previous infection. Pregnant women who received their last COVID-19 vaccine dose in the third trimester exhibited the highest anti-spike protein antibody levels and neutralizing potency against both the Wuhan strain and Omicron BA.2 variant in their maternal and cord plasma. Both second- and third-trimester vaccination could lead to a higher level of neutralization against the Wuhan and Omicron strains. COVID-19 infection had a negative effect on the transplacental transfer ratio of SARS-CoV-2 antibodies. A booster dose during the second or third trimester is encouraged for the maximum transplacental transfer of humoral protection against COVID-19 for infants.
APA, Harvard, Vancouver, ISO, and other styles
35

Franquet, Tomas, Yeon Joo Jeong, Hiu Yin Sonia Lam, Ho Yuen Frank Wong, Yeun-Chung Chang, Myung Jin Chung, and Kyung Soo Lee. "Imaging findings in coronavirus infections: SARS-CoV, MERS-CoV, and SARS-CoV-2." British Journal of Radiology 93, no. 1112 (August 2020): 20200515. http://dx.doi.org/10.1259/bjr.20200515.

Full text
Abstract:
During the first two decades of the 21st century, there have been three coronavirus infection outbreaks raising global health concerns by severe acute respiratory syndrome coronavirus (SARS-CoV), the Middle East respiratory syndrome coronavirus (MERS-CoV), and the SARS-CoV-2. Although the reported imaging findings of coronavirus infection are variable and non-specific, the most common initial chest radiograph (CXR) and CT findings are ground-glass opacities and consolidation with peripheral predominance and eventually spread to involve both lungs as the disease progresses. These findings can be explained by the immune pathogenesis of coronavirus infection causing diffuse alveolar damage. Although it is insensitive in mild or early coronavirus infection, the CXR remains as the first-line and the most commonly used imaging modality. That is because it is rapid and easily accessible and helpful for monitoring patient progress during treatment. CT is more sensitive to detect early parenchymal lung abnormalities and disease progression, and can provide an alternative diagnosis. In this pictorial review, various coronavirus infection cases are presented to provide imaging spectrums of coronavirus infection and present differences in imaging among them or from other viral infections, and to discuss the role of imaging in viral infection outbreaks.
APA, Harvard, Vancouver, ISO, and other styles
36

Sheibak, V. M., and M. V. Haretskaya. "DEVELOPMENT OF VACCINES FOR SARS-COV-2." Journal of the Grodno State Medical University 20, no. 1 (March 1, 2022): 5–12. http://dx.doi.org/10.25298/2221-8785-2022-20-1-5-12.

Full text
Abstract:
Background. Currently, an active search for effective vaccines against the SARS-CoV-2 coronavirus continues. Purpose. To analyze the literature and assess the status of active vaccine development against SARS-CoV-2. Material and methods. We analyzed Russian and English language literature sources on the problem of finding an effective vaccine against SARS-CoV-2. Results. Structural proteins of the coronavirus have been analyzed as basic compounds for the development of vaccines. It was found that protein S is an ideal structure for creating vaccines that effectively induce the synthesis of neutralizing antibodies and provide the formation of immunity. Information about current trends in vaccine development has been obtained. Conclusions. The SARS-CoV-2 virus continues to mutate, which leads to the emergence of new highly contagious strains such as Delta, Omicron. In this regard, more research and clinical trials are needed to confirm the effectiveness of the current SARS-CoV-2 vaccines, or to continue developing the new ones.
APA, Harvard, Vancouver, ISO, and other styles
37

Acharya, Atanu, Diane L. Lynch, Anna Pavlova, Yui Tik Pang, and James C. Gumbart. "ACE2 glycans preferentially interact with SARS-CoV-2 over SARS-CoV." Chemical Communications 57, no. 48 (2021): 5949–52. http://dx.doi.org/10.1039/d1cc02305e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Padlilah, Rahmi, Ika Yulianti, and Agus Purnamasari. "KOMPLIKASI SARS-COV, MERS, SARS-COV-2, DALAM KEHAMILAN: A REVIEW." Jurnal Kebidanan Indonesia 11, no. 2 (August 12, 2020): 55. http://dx.doi.org/10.36419/jkebin.v11i2.373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zandi, Milad. "ORF8/ORF8a: a difference between SARS-CoV-2 and SARS-CoV." European Respiratory Journal 59, no. 2 (December 9, 2021): 2102818. http://dx.doi.org/10.1183/13993003.02818-2021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dong, Yetian, Tong Dai, Jun Liu, Long Zhang, and Fangfang Zhou. "Coronavirus in Continuous Flux: From SARS‐CoV to SARS‐CoV‐2." Advanced Science 7, no. 20 (August 16, 2020): 2001474. http://dx.doi.org/10.1002/advs.202001474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bouayad, Abdellatif. "Innate immune evasion by SARS‐CoV ‐2: Comparison with SARS‐CoV." Reviews in Medical Virology 30, no. 6 (July 30, 2020): 1–9. http://dx.doi.org/10.1002/rmv.2135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gavor, Edem, Yeu Khai Choong, Shi Yin Er, Hariharan Sivaraman, and J. Sivaraman. "Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions." Trends in Immunology 41, no. 11 (November 2020): 1006–22. http://dx.doi.org/10.1016/j.it.2020.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mavzyutov, A. R., R. R. Garafutdinov, E. Yu Khalikova, R. R. Gazizov, An Kh Baymiev, Yu M. Nikonorov, I. V. Maksimov, B. R. Kuluev, Al Kh Baymiev, and A. V. Chemeris. "The enigmas of the new coronavirus SARS-CoV-2." Biomics 13, no. 1 (2021): 75–99. http://dx.doi.org/10.31301/2221-6197.bmcs.2021-7.

Full text
Abstract:
The emergence of the new SARS-CoV-2 coronavirus has given rise to many enigmas, to which there are no answers yet. However, the degree of threat to humanity, due to the fact that by the beginning of February 2021, more than 100 million people were ill in the world, of which 2 million died, led to the fact that the efforts of many researchers were aimed at combating this disease, including massive sequencing of the complete genomes of SARS-CoV-2, as this is necessary for diagnostics and prediction of the epidemiological situation, including in the long term. Currently, a fairly high level of conservativeness of the SARS-CoV-2 genome is shown, but there is also a significant variability of intra-host viral RNA, confirming the concept of the existence of quasispecies for RNA-containing viruses. As of February 2021, the complete genomes of almost half a million coronavirus isolates have been sequenced worldwide, and a number of nomenclatures have been proposed to streamline their analysis, including the convenient dynamic nomenclature Pango lineage. Variations of SARS-CoV-2 genomes in the form of consensus SNPs (Single Nucleotide Polymorphism) and intra-host iSNVs (intra-host Single Nucleotide Variant) were demonstrated. Taking into account iSNV and minor mutations, about 85% of the 29.9 thousand nucleotides viral genome were changed at least once, but only a very few of them turned into major mutations due to certain features that ensure the predominant distribution of such strains. The example of the S-protein gene, taking into account iSNV, minor and major mutations, shows its significant variability, which is detected when sequencing hundreds of thousands of SARS-CoV-2 genomes. On the basis of the analysis of 400 complete SARS-CoV-2 genomes isolated on the territory of the Russian Federation during 2020, the dynamics of the circulation of individual strains with acquired major mutations, the representation of which is slightly different from the changes in the SARS-CoV-2 genome in the rest world, is estimated. The possibility of long-term persistence of the new coronavirus in the human body is note, while the reservoirs for the latent existence of SARS-CoV-2, in contrast, for example, to the herpes simple virus, remain unknown. There is no consensus on the possibility of reactivation of SARS-CoV-2 or reinfection. The latter is theoretically possible in cases where SARS-CoV-2 strains belonging to other genetic lineages and clades are found in the body of the "re-infected". This, however, does not exclude the possibility of mutating the virus within a single host. Despite significant progress in monitoring the spread of SARS-CoV-2, many questions remain, but as knowledge of the biology of the new coronavirus accumulates, they will also be answered.
APA, Harvard, Vancouver, ISO, and other styles
44

Кофман, В. Я. "Coronavirus SARS-CoV-2 in wastewater." Vodosnabzhenie i sanitarnaia tehnika, no. 3 (March 15, 2021): 45–55. http://dx.doi.org/10.35776/vst.2021.03.08.

Full text
Abstract:
Пандемия СOVID-19, объявленная ВОЗ чрезвычайной ситуацией в области здравоохранения, вызвана новым коронавирусом SARS-CoV-2. По сообщениям из Евросоюза, США и Австралии, потенциальная выживаемость коронавируса SARS-CoV-2 в фекалиях и сточных водах в течение достаточно длительного времени создает реальную возможность его поступления с канализационными стоками на очистные сооружения или непосредственно в поверхностные воды при сбросе неочищенных стоков. Это свидетельствует о существовании потенциальной возможности передачи SARS-CoV-2 через воду. В этой связи особую актуальность приобретает разработка эффективных способов удаления и инактивации вирусов на очистных сооружениях. Наличие коронавирусной инфекции в сточных водах может представлять серьезную опасность для здоровья контактирующих с ними людей. К ним относится персонал очистных сооружений, а также население в целом, которое может подвергаться непосредственному воздействию необработанных или недостаточно обработанных сточных вод через неисправные водопроводные или канализационные коммуникации. Во многих странах для получения своевременной достоверной информации о распространении коронавирусной инфекции используют методы эпидемиологии сточных вод. Возможность выявления РНК вируса в сточных водах даже при низкой распространенности СOVID-19 и корреляция между концентрацией РНК SARS-CoV-2 в сточных водах и официальной информацией указывают на то, что наблюдение за сточными водами может стать чувствительным инструментом мониторинга циркуляции вируса в популяции. The COVID-19 pandemic, declared by WHO as a health emergency, is caused by a novel SARS-CoV-2 coronavirus. According to reports from the European Union, the United States and Australia, the potential survival of the SARS-CoV-2 coronavirus in feces and wastewater for a sufficiently long time creates a real threat of its entry with wastewater into treatment facilities or directly into surface water while raw wastewater is discharged. This indicates the potential for the transfer of SARS-CoV-2 by water. In this regard, the development of effective methods for the removal and inactivation of viruses at the treatment facilities is of special actuality. The presence of coronavirus infection in wastewater can pose a serious health hazard to people in contact with it. These include the personnel at the wastewater treatment facilities, as well as the general population, who may be directly exposed to raw or inadequately treated wastewater through defective water or sewer systems. In many countries wastewater epidemiology methods are used to obtain timely reliable information on the spread of coronavirus infection. Possible detection of RNA virus in wastewater even with a low prevalence rate of COVID-19 and the correlation between the concentration of SARS-CoV-2 RNA in wastewater and official information indicate that monitoring wastewater can become a sensitive tool for monitoring the circulation of the virus in the population.
APA, Harvard, Vancouver, ISO, and other styles
45

Franchi Prato, Luis Miguel. "Infección por SARS-CoV-2 en Niños." Revista de Investigaciones de la Universidad Le Cordon Bleu 7, no. 1 (June 29, 2020): 47–53. http://dx.doi.org/10.36955/riulcb.2020v7n1.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Middlemiss, Christine, Sheila Voas, Christianne Glossop, and Robert Huey. "SARS‐CoV‐2 in ferrets." Veterinary Record 188, no. 2 (January 2021): 76. http://dx.doi.org/10.1002/vetr.104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Finsterer, Josef, Fulvio A. Scorza, Carla A. Scorza, and Ana C. Fiorini. "SARS‐CoV‐2 and myasthenia." Journal of Medical Virology 93, no. 7 (January 28, 2021): 4133–35. http://dx.doi.org/10.1002/jmv.26501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Garcia Cox, Geovanny Gabriel, Sheyla Tamara Luna Martillo, Diego Alejandro Vaca Jácome, and Jenniffer Katherine Molina Peñaherrera. "Miocardiopatía por SARS-CoV-2." RECIAMUC 5, no. 1 (January 30, 2021): 101–9. http://dx.doi.org/10.26820/reciamuc/5.(1).ene.2021.101-109.

Full text
Abstract:
La Miocardiopatía es un conjunto heterogéneo de enfermedades del miocardio que causan una mala función del mismo, la cual en medio de la pandemia por la COVID-19 se ha hecho presente en muchos casos reportados, confirmando que esta enfermedad causada por el SARS-CoV-2, no sólo puede producir neumonía grave, sino que también puede ocasionar un fallo multiorgánico. Actualmente existen algunas hipótesis que explican el daño al musculo cardíaco durante el curso de la enfermedad, y por lo cual también se sospecha del desarrollo de Miocardiopatías por este nuevo coronavirus, pero aún falta evidencia concreta que así lo demuestre. En el presente contenido se muestra la información actualizada sobre el tema en cuestión, con el objetivo de alertar sobre la necesidad de comprensión del comportamiento epidemiológico de los efectos cardiovasculares del SARS-CoV-2.
APA, Harvard, Vancouver, ISO, and other styles
49

Romera, I., K. Núñez, M. Calizaya, I. Baeza, R. Molina, and J. Morillas. "Reinfección por SARS-CoV-2." Medicina Intensiva 45, no. 6 (August 2021): 375–76. http://dx.doi.org/10.1016/j.medin.2021.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Papenburg, Jesse, Cedric P. Yansouni, Chelsea Caya,, and Matthew P. Cheng. "Serodiagnostics for SARS-CoV-2." Annals of Internal Medicine 174, no. 2 (February 2021): 287–88. http://dx.doi.org/10.7326/l20-1396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography