Academic literature on the topic 'Satellite docking'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Satellite docking.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Satellite docking"

1

Bai, Bingtao, Lurui Xia, and Sen Li. "Design and dynamics simulation of axial radial double locking satellite docking mechanism." Journal of Physics: Conference Series 2569, no. 1 (2023): 012020. http://dx.doi.org/10.1088/1742-6596/2569/1/012020.

Full text
Abstract:
Abstract Aiming at the docking requirements of small satellites in orbit service, an axial, radial double-locking satellite docking mechanism was designed to realize the docking and separation of small satellites. Capture docking using the butt bar and the groove. The mechanism possesses multiple advantages, such as simple structure and fast response. A dynamic model considering contact, collision, buffering, and friction was established, and ADAMS software simulated the docking process. Apart from that, the dynamics and motion data of the mechanism were obtained. As revealed by the results, u
APA, Harvard, Vancouver, ISO, and other styles
2

Jianbin, Huang, Li Zhi, Huang Longfei, Meng Bo, Han Xu, and Pang Yujia. "Docking mechanism design and dynamic analysis for the GEO tumbling satellite." Assembly Automation 39, no. 3 (2019): 432–44. http://dx.doi.org/10.1108/aa-12-2017-191.

Full text
Abstract:
Purpose According to the requirements of servicing and deorbiting the failure satellites, especially the tumbling ones on geosynchronous orbit, this paper aims to design a docking mechanism to capture these tumbling satellites in orbit, to analyze the dynamics of the docking system and to develop a new collision force-limited control method in various docking speeds. Design/methodology/approach The mechanism includes a cone-rod mechanism which captures the apogee engine with a full consideration of despinning and damping characteristics and a locking and releasing mechanism which rigidly conne
APA, Harvard, Vancouver, ISO, and other styles
3

Seweryn, Karol, and Jurek Z. Sasiadek. "Satellite angular motion classification for active on-orbit debris removal using robots." Aircraft Engineering and Aerospace Technology 91, no. 2 (2019): 317–32. http://dx.doi.org/10.1108/aeat-01-2018-0049.

Full text
Abstract:
PurposeThis paper aims to present a novel method for identification and classification of rotational motion for uncontrolled satellites. These processes are shown in context of close proximity orbital operations. In particular, it includes a manipulator arm mounted on chaser satellite and used to capture target satellites. In such situations, a precise extrapolation of the target’s docking port position is needed to determine the manipulator arm motion. The outcome of this analysis might be used in future debris removal or servicing space missions.Design/methodology/approachNonlinear, and in s
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Feng, Yi Zhao, and Yanhua Zhang. "Pose Determination for Malfunctioned Satellites Based on Depth Information." International Journal of Aerospace Engineering 2019 (June 11, 2019): 1–15. http://dx.doi.org/10.1155/2019/6895628.

Full text
Abstract:
Autonomous on-orbit servicing is the future space activity which can be utilized to extend the satellite life. Relative pose estimation for a malfunctioned satellite is one of the key technologies to achieve robotic on-orbit servicing. In this paper, a relative pose determination method by using point cloud is presented for the final phase of the rendezvous and docking of malfunctioned satellites. The method consists of three parts: (1) planes are extracted from point cloud by utilizing the random sample consensus algorithm. (2) The eigenvector matrix and the diagonal eigenvalue matrix are cal
APA, Harvard, Vancouver, ISO, and other styles
5

TAKEBAYASHI, Shinichi, and Satoshi TAKEZAWA. "Synchronous Position Control Method for Satellite Docking System." Proceedings of the JSME annual meeting 2000.2 (2000): 553–54. http://dx.doi.org/10.1299/jsmemecjo.2000.2.0_553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liang, Jianxun, and Ou Ma. "Angular velocity tracking for satellite rendezvous and docking." Acta Astronautica 69, no. 11-12 (2011): 1019–28. http://dx.doi.org/10.1016/j.actaastro.2011.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Yuan, Ying Ying Wang, Yan Song, and Li Li Zhou. "Kinematics Analysis and Simulation of Small Satellite Docking Mechanism End Executor." Applied Mechanics and Materials 487 (January 2014): 460–64. http://dx.doi.org/10.4028/www.scientific.net/amm.487.460.

Full text
Abstract:
In order to save space mission cost, prolonging the working life of the spacecraft and improving the flexibility and capable of performing various tasks should get more attention on orbit servicing technology. For the docking process of a new type of two independent service in-orbit spacecraft, this paper finished the kinematics analysis, for the whole docking capture process, two groups of different initial conditions and control function of the simulation analysis were finished by the ADAMS software. The results prove that the docking mechanism performance is very good, and reliable connecti
APA, Harvard, Vancouver, ISO, and other styles
8

YongZhi, Wen, Zhang ZeJian, and Wu Jie. "High-Precision Navigation Approach of High-Orbit Spacecraft Based on Retransmission Communication Satellites." Journal of Navigation 65, no. 2 (2012): 351–62. http://dx.doi.org/10.1017/s0373463311000671.

Full text
Abstract:
Many countries have presented new requirements for in-orbit space services. Space autonomous rendezvous and docking technology could speed up the development of in-orbit spacecraft and reduce the threat of increasing amounts of space debris. The purpose of this paper is to provide real-time high-precision navigation data for high-orbit spacecraft, thus reducing the cost of ground monitoring for high-orbit spacecraft autonomous rendezvous operations, and to provide technical support for high-orbit spacecraft in-orbit services. This paper proposes a new high-orbit spacecraft autonomous navigatio
APA, Harvard, Vancouver, ISO, and other styles
9

Ui, Kyoichi, Saburo Matunaga, Shin Satori, and Tomohiro Ishikawa. "Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase." Microgravity - Science and Technology 17, no. 3 (2005): 56–63. http://dx.doi.org/10.1007/bf02872088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Somov, Ye I., S. A. Butyrin, S. Ye Somov, and T. Ye Somova. "DYNAMICS OF MOORING AND DOCKING OF A SPACE ROBOT-MANIPULATOR WITH A GEOSTATIOONARY SATELLITE." Izvestiya of Samara Scientific Center of the Russian Academy of Sciences 24, no. 4 (2022): 155–60. http://dx.doi.org/10.37313/1990-5378-2022-24-4-155-160.

Full text
Abstract:
The control problems of a space robot-manipulator in the process of mooring and docking with a geostationary satellite are considered when docking mechanism of the “rod-cone” class. A dynamic analysis is carried out with changing mooring conditions and the results of computer simulation are presented.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!