To see the other types of publications on this topic, follow the link: Savonius wind turbina.

Journal articles on the topic 'Savonius wind turbina'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Savonius wind turbina.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rech, Charles, Andre Francisco Caldeira, Cristiano Frandalozo Maidana, Carlos Eduardo de Souza, Greice Scherer Ritter, Pericles Nicolau Balafa, and Simone Ferigolo Venturini. "FREIO DE FOUCAULT APLICADO À MEDIÇÃO DE POTÊNCIA EM TURBINA EÓLICA SAVONIUS / EDDY BRAKE APPLIED TO POWER MEASUREMENT IN WIND TURBINE SAVONIUS." Brazilian Journal of Development 7, no. 2 (2021): 12818–33. http://dx.doi.org/10.34117/bjdv7n2-074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Basuki, Mohammad Munib Rosadi, Retno Eka Pramitasari, and Fajar Satriya Hadi. "ANALISIS PERFORMA KINERJA TURBIN ANGIN SAVONIUS 2 SUDU." Discovery : Jurnal Ilmu Pengetahuan 5, no. 2 (October 18, 2020): 58–63. http://dx.doi.org/10.33752/discovery.v5i2.995.

Full text
Abstract:
Abstract: Renewable energy sources are energy sources that can replace the use and use of fossil energy sources where they are very abundant and have not been widely used for their existence. Therefore, to bring up new ideas in terms of creating or changing renewable energy, there needs to be a match between the education curriculum and market needs. So to arouse the enthusiasm and motivation of students in the teaching and learning process, especially in the energy conversion machine course for mechanical engineering students, it needs media and learning methods. The purpose of this research is to know how to design a savonius wind turbine props, and the working principle, and analyze the performance of the wind turbine. The sequence of the process of making savonius wind turbines comprises of making: (1) frameworks and machine tables, (2) chimneys, (3) duct, (4) installation of fans, (5) turbine holder (6) two blades savonius turbines and servo motor holder. The working principle of a wind turbine is a turbine rotation caused by the wind being transmitted to the generator rotor, where the generator has a copper coil that functions as a stator which will produce an electric voltage. From this research produced a savonius wind turbine tool which is used as a learning medium in the Mechanical Engineering Study Program. From the results of savonius type wind turbine test equipment produced the following data: maximum voltage of 10 volts, wind speed of 8.5 m / s, rotor generator rotation of 2734 rpm and power of 340 watts. Keywords: Energy, Turbine, Wind, Savonius Abstrak: Sumber energi terbarukan adalah sumber energi yang dapat menggantikan pemanfaatan dan penggunaan sumber energi fosil dimana keberadaannya sangat melimpah dan belum banyak digunakan akan keberadaannya. Oleh karena itu untuk memunculkan ide ide baru dalam hal menciptakan atau mengubah energi terbarukan ini perlu adanya kesesuaian antara kurikulum pendidikan dengan kebutuhan pasar. Maka untuk membangkitkan semangat dan motivasi mahasiswa dalam proses belajar mengajar khususnya dalam mata kuliah Mesin Konversi Energi bagi mahasiswa teknik mesin maka perlu media dan metode pembelajaran. Tujuan dari penelitian ini adalah mengetahui cara mendesain sebuah alat peraga turbin angin savonius, mengetahui prinsip kerja, dan menganalisa dari performa kinerja dari turbin angin tersebut. Urutan proses pembuatan turbin angin savonius adalah (1) pembuatan kerangka dan meja mesin, (2) pembuatan cerobong angin, (3) pembuatan duct, (4) pemasangan kipas angin, (5) pembuatan dudukan turbin, (6) pembuatan turbin savonius 2 sudu dan pembuatan dudukan motor servo. Prinsip kerja turbin angin adalah putaran turbin yang disebabkan oleh angin diteruskan ke rotor generator, dimana generator memiliki lilitan tembaga yang berfungsi sebagai stator yang akan menghasilkan tegangan listrik. Dari penelitian tersebut dihasilkan sebuah alat turbin angin savonius yang digunakan sebagai media pembelajaran di Program Studi Teknik Mesin. Dari hasil pengujian alat turbin angin tipe savonius menghasilkan data sebagai berikut: tegangan maksimal sebesar 10 volt, kecepatan angin 8.5 m/s, putaran rotor generator 2734 rpm dan daya sebesar 340 watt. Kata kunci: Energi, Turbin, Angin, Savonius
APA, Harvard, Vancouver, ISO, and other styles
3

Awg. Osman, Dygku Asmanissa, Norzanah Rosmin, Aede Hatib Mustaamal, Siti Maherah Hussin, and Md Pauzi Abdullah. "Performance of a Small-sized Savonious Blade with Wind Concentrator." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 3 (June 1, 2018): 1227. http://dx.doi.org/10.11591/ijeecs.v10.i3.pp1227-1233.

Full text
Abstract:
<span>This paper presents the performance of a fabricated small-sized Savonious wind turbine with two blades. The design of Savonius vertical axis wind turbine (VAWT) was based on Malaysia wind speed condition. Meanwhile, the design of wind concentrator was based on the dimensions and the constant airflow of an air compressor. From the experimental testing in a laboratory, it was found that the proposed Savonious turbine has best performance when tested using wind concentrator. To conclude, airflow from air compressor can be increased when the proposed wind concentrator is used and hence increasing the proposed VAWT performance in terms of its angular speed (ω), tip speed ratio (TSR) and the generated electrical power (PE).</span>
APA, Harvard, Vancouver, ISO, and other styles
4

Yohana, Eflita, MSK Tony Suryo U, Binawan Luhung, Mohamad Julian Reza, and M. Badruz Zaman. "Experimental Study of Wind Booster Addition for Savonius Vertical Wind Turbine of Two Blades Variations Using Low Wind Speed." E3S Web of Conferences 125 (2019): 14003. http://dx.doi.org/10.1051/e3sconf/201912514003.

Full text
Abstract:
The Wind turbine is a tool used in Wind Energy Conversion System (WECS). The wind turbine produces electricity by converting wind energy into kinetic energy and spinning to produce electricity. Vertical Axis Wind Turbine (VAWT) is designed to produce electricity from winds at low speeds. Vertical wind turbines have 2 types, they are wind turbine Savonius and Darrieus. This research is to know the effect of addition wind booster to Savonius vertical wind turbine with the variation 2 blades and 3 blades. Calculation the power generated by wind turbine using energy analysis method using the concept of the first law of thermodynamics. The result obtained is the highest value of blade power in Savonius wind turbine without wind booster (16.5 ± 1.9) W at wind speed 7 m/s with a tip speed ratio of 1.00 ± 0.01. While wind turbine Savonius with wind booster has the highest power (26.3 ± 1.6) W when the wind speed of 7 m/s with a tip speed ratio of 1.26 ± 0.01. The average value of vertical wind turbine power increases Savonius after wind booster use of 56%.
APA, Harvard, Vancouver, ISO, and other styles
5

Ali, Nawfal M., Dr A. K. Abdul Hassan, and Dr Sattar Aljabair. "Effect of Conventional Multistage Savonius wind Turbines on the Performance of the Turbine at Low Wind Velocity." Journal of Advanced Research in Dynamical and Control Systems 11, no. 11 (November 20, 2019): 229–39. http://dx.doi.org/10.5373/jardcs/v11i11/20193192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wicaksono, Yoga Arob. "Studi Komputasi: Pengaruh Desain Guide Vane Terhadap Performa dan Pola Aliran di Sekitar Turbin Angin Savonius." Jurnal Pendidikan Teknik Mesin Undiksha 8, no. 2 (August 1, 2020): 43. http://dx.doi.org/10.23887/jptm.v8i2.26856.

Full text
Abstract:
Turbin angin adalah salah satu alternatif untuk mengurangi beban listrik di wilayah perkotaan. Di wilayah perkotaan terdapat gedung bertingkat dengan jumlah yang cukup banyak. Sehingga menjadi lokasi yang tepat untuk aplikasi turbin angin sekaligus mengurangi beban listrik. Tipe turbin yang tepat untuk aplikasi gedung bertingkat adalah turbin angin sumbu vertikal (VAWT). Salah satu jenis VAWT adalah turbin Savonius. Turbin angin Savonius konvensional memiliki kinerja yang rendah seperti koefisien daya dan torsi yang rendah dibandingkan dengan turbin angin jenis lain. Ini terjadi karena aliran angin dapat menyebabkan tekanan negatif pada salah satu sisi sudu. Untuk mengatasi masalah ini, turbin angin Savonius konvensional dikombinasikan dengan guide vane. Tujuan dari penelitian ini adalah untuk mempelajari pengaruh guide vane terhadap performa dan karakteristik pola aliran sekitar turbin angin Savonius. Model numerik dihitung menggunakan persamaan Navier-Stokes dengan model turbulen k-ε standar. Analisa menggunakan software ANSYS-Fluent R15. Simulasi dilakukan pada arah angin yang berbeda, antara lain: 0o, 30o, 60o pada kecepatan angin 2 m/s. Hasil penelitian menunjukkan bahwa guide vane mampu menambah laju aliran udara yang menuju sudu turbin dan meningkatkan performa turbin angin Savonius sebesar 22,2%. Kata kunci: CFD, guide vane, performa, pola aliran, turbin angin SavoniusDaftar RujukanAkwa, J. V., Alves, G., & Petry, A. P. (2012). Discussion on the veri fi cation of the overlap ratio in fl uence on performance coef fi cients of a Savonius wind rotor using computational fl uid dynamics. 38, 141–149. https://doi.org/10.1016/j.renene.2011.07.013Akwa, J. V., Vielmo, H. A., & Petry, A. P. (2012). A review on the performance of Savonius wind turbines. Renewable and Sustainable Energy Reviews, 16(5), 3054–3064. https://doi.org/10.1016/j.rser.2012.02.056Alessandro, V. D., Montelpare, S., Ricci, R., & Secchiaroli, A. (2010). Unsteady Aerodynamics of a Savonius wind rotor : a new computational approach for the simulation of energy performance. Energy, 35(8), 3349–3363. https://doi.org/10.1016/j.energy.2010.04.021Chong, W. T., Fazlizan, A., Poh, S. C., Pan, K. C., Hew, W. P., & Hsiao, F. B. (2013). The design , simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane q. APPLIED ENERGY, 5–8. https://doi.org/10.1016/j.apenergy.2012.12.064Chong, W. T., Poh, S. C., Abdullah, N., Naghavi, M. S., & Pan, K. C. (2010). Vertical Axis Wind Turbine with Power-Augmentation-Guide-Vane for Urban High Rise Application 3 . Building integrated wind-solar hybrid energy generation system and rain water collector. (September), 1–6.Damak, a., Driss, Z., & Abid, M. S. (2013). Experimental investigation of helical Savonius rotor with a twist of 180?? Renewable Energy, 52, 136–142. https://doi.org/10.1016/j.renene.2012.10.043Hasan, M. H., Muzammil, W. K., Mahlia, T. M. I., Jannifar, A., & Hasanuddin, I. (2012). A review on the pattern of electricity generation and emission in Indonesia from 1987 to 2009. Renewable and Sustainable Energy Reviews, 16(5), 3206–3219. https://doi.org/10.1016/j.rser.2012.01.075Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2010). Optimization of Savonius turbines using an obstacle shielding the returning blade. Renewable Energy, 35(11), 2618–2626. https://doi.org/10.1016/j.renene.2010.04.007Nobile, R., Vahdati, M., & Barlow, J. F. (2013). Unsteady flow simulation of a vertical axis wind turbine : a two-dimensional study. (July), 1–10.Pope, K., Rodrigues, V., Doyle, R., Tsopelas, a., Gravelsins, R., Naterer, G. F., & Tsang, E. (2010). Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine. Renewable Energy, 35(5), 1043–1051. https://doi.org/10.1016/j.renene.2009.10.012Ricci, R., Romagnoli, R., Montelpare, S., & Vitali, D. (2016). Experimental study on a Savonius wind rotor for street lighting systems q. Applied Energy, 161, 143–152. https://doi.org/10.1016/j.apenergy.2015.10.012Roy, S., & Saha, U. K. (2015). Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy, 137, 117–125. https://doi.org/10.1016/j.apenergy.2014.10.022Soo, K., Ik, J., Pan, J., & Ryu, K. (2015). Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renewable Energy, 79, 167–176. https://doi.org/10.1016/j.renene.2014.11.035Tartuferi, M., D’Alessandro, V., Montelpare, S., & Ricci, R. (2015). Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems. Energy, 79, 371–384. https://doi.org/10.1016/j.energy.2014.11.023Walker, S. L. (2011). Building mounted wind turbines and their suitability for the urban scale — A review of methods of estimating urban wind resource. Energy & Buildings, 43(8), 1852–1862. https://doi.org/10.1016/j.enbuild.2011.03.032
APA, Harvard, Vancouver, ISO, and other styles
7

Rudianto, Daniel. "RANCANG BANGUN TURBIN ANGIN SAVONIUS 200 WATT." Conference SENATIK STT Adisutjipto Yogyakarta 2 (November 15, 2016): 71. http://dx.doi.org/10.28989/senatik.v2i0.35.

Full text
Abstract:
This study aimed to establish the type of Savonius wind turbines that capable of generating electric power of 200 Watts. This objective relates to Bantul District Government program which plans to build wind turbin generating electrical power (Pembangkit Listrik Tenaga Bayu, PLTB) 200 Watt as a backup power source for powering cooling fish caught by fishermen in the southern coast. Savonius Turbine chosen with consideration that it has simple construction so that the cost is not expensive, not depending on the direction of the wind, and is suitable for small power plants.Design of Savonius turbine blade has been completed, the turbine blade height 168 cm and a diameter of 55 cm. Blade turbine mounted on an arm along 55 cm from the turbine shaft and separate 120º. The turbine is supported by a 3-foot-tall turbines framework 2,5 m iron box 4 cm x 4 cm. The test simulated to determine the turbine rotation has been performed at varying wind speeds, i.e. 2 m /s, 4 m /s and 6 m /s.Based on test results, the turbine is capable of rotating an average of 54,2 rpm at a wind speed of 2 m /s; 86,8 rpm at a wind speed of 4 m /s; and 124,2 rpm at a wind speed of 6 m /s. These test results indicate that the Savonius turbines can be used to drive a generator producing the need of electrical energy
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Chao Yuan, and Xiao Qing Wei. "The Innovative Design and Simulation Analysis of Small Savonius Wind Turbine." Advanced Materials Research 591-593 (November 2012): 832–36. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.832.

Full text
Abstract:
Savonius rotor is a typical style of vertical-axis wind turbine (VAWT). A new innovative design of two Savonius rotors coaxially in the opposite direction is presented in the paper which is different from the traditional design. The traditional generator has only a pair of stator and rotor and matched with trational Savonius rotor. Enlarging the relative speed between the magnetic pole and the coil pole by making the two pole rotate in the opposite direction in the innovative Savonius wind turbine. In this way, it can enhance the power generation efficiency of the Savonius wind turbine. The fluid-solid coupling analysis for the Savonius wind turbine is used to calculate the power characteristics and efficiency of the wind turbine.
APA, Harvard, Vancouver, ISO, and other styles
9

Alaimo, Andrea, Alberto Milazzo, Flavio Trentacosti, and Antonio Esposito. "On the Effect of Slotted Blades on Savonius Wind Generator Performances by CFD Analysis." Advanced Materials Research 512-515 (May 2012): 747–53. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.747.

Full text
Abstract:
In this paper a new bucket configuration for Savonius wind generator is proposed. With the aim to increase the effect of the overlap ratio RS on the wind turbine performances and to increase the amount of lift force able to produce torque and power, slotted blades are investigated by means of the Computational Fluid Dynamics analysis. The numerical analyses are performed by Comsol Multiphysics® and the results obtained for a Savonius wind turbine with overlap only are compared to numerical and experimental benchmarks. Parametric analyses are performed, for fixed overlap ratio, by varying the slot angle β and the results show that for low angle β the Savonius rotor exploits improved performance at low tip speed ratio λ, evidencing a better starting torque. This circumstance is confirmed by the static analyses performed on the slotted blades in order to investigate the starting characteristic of the proposed Savonius wing generator configuration.
APA, Harvard, Vancouver, ISO, and other styles
10

Puspitasari, Dewi, and Kaprawi Sahim. "Effect of Savonius blade height on the performance of a hybrid Darrieus-Savonius wind turbine." Journal of Mechanical Engineering and Sciences 13, no. 4 (December 30, 2019): 5832–47. http://dx.doi.org/10.15282/jmes.13.4.2019.09.0465.

Full text
Abstract:
A vertical hybrid turbine commonly consists of a Darrieus and Savonius rotor where the Savonius is inside Darrieus turbine. This paper describes the experimental study of hybrid Darrieus-Savonius wind turbines by variation in Savonius blade height. In this case, the effect of the blade height of the Savonius blade was studied experimentally in a subsonic wind tunnel. The effect of the height of a Savonius blade relative to that of Darrieus called blade height ratios δ was investigated to know the hybrid turbine performance. The performance is represented by power and torque coefficient. The result shows that the hybrid turbine with height ratio greater than unity δ = 1.4 gives the highest power CP = 0.20 and torque coefficient CT = 0.129. It is investigated that the torque and the power coefficient have a higher value than that of Darrieus turbine, in which the increase in power and torque coefficient are 48% and 29%, respectively. This hybrid wind turbine with a blade height ratio greater than unity can be considered as an important variable in the wind turbine construction.
APA, Harvard, Vancouver, ISO, and other styles
11

Tang, Zhi Peng, Ying Xue Yao, Liang Zhou, and Bo Wen Yu. "A Review on the New Structure of Savonius Wind Turbines." Advanced Materials Research 608-609 (December 2012): 467–78. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.467.

Full text
Abstract:
This paper summarizes the research results of the structural parameters which have effects on the performance of Savonius wind turbine. Savonius wind turbine being used in wind power and tidal power belongs to vertical axis wind turbine (VAWT). Recently, more and more research have placed on it for its advantages such as: being able to accept wind from any direction, long fatigue life of the blades, high starting torque, wide working wind speed range, easy to install, manufacture and maintain and low noise etc. The performance of Savonius wind turbine is affected by many factors. Different structural parameters can bring huge differences in turbine performance. Especially the differences in the maximum wind energy utilization (Cp-max) can be more than 30% with different structure. Many new turbines get higher Cp-max by improving the structural parameters. In this paper, the structural improvement information of Savonius wind turbine is summarized in order to provide useful knowledge for the researchers in the structural design and improvement.
APA, Harvard, Vancouver, ISO, and other styles
12

Hakim, Luthfi, Achmad Rijano, and Mochamad Muzaki. "Analisis Regresi Kecepatan Angin Terhadap Daya Turbin Angin Jenis VAWT Tipe Darrieus-Savonius." Jurnal Energi dan Teknologi Manufaktur (JETM) 1, no. 02 (December 31, 2018): 15–20. http://dx.doi.org/10.33795/jetm.v1i02.16.

Full text
Abstract:
The Darrieus-Savonius (DS) wind turbine has been widely developed with the aim of improving turbine performance that has been designed. DS wind turbine is a combination of two type of wind turbines, that is Darrieus and Savonius turbine, both turbines are intentionally developed In order to get self-starting on turbine Savonius with low wind speed and able to extract the speed of engine into energy well at high wind speed through Cherrie Darrieus. This study was conducted to analyze the performance of the DS turbine in the wind speed to be energized through the turbine rotation and power to be generated. The DS wind turbine is designed to start rotating at a speed of 8 m/s in velocity of wind, meanwhile the maximum power generated by turbine is 48,23 Watts.
APA, Harvard, Vancouver, ISO, and other styles
13

Sukrurkdee, Nantasak, Punyawee Bumroongrads, Peerapol Sangsawat, and Chawannat Jaroenkhasemmeesuk. "Designing and Developing of Savonius Wind Turbine for Efficiency Improvement in Low-Speed Wind Sources." Journal of Clean Energy Technologies 7, no. 6 (November 2019): 77–80. http://dx.doi.org/10.18178/jocet.2019.7.6.513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sudargana, Sudargana, Bambang Yunianto, Abiseka M., and Teguh Priyo Utomo. "TEST CHARACTERISTICS OF THE TURBINE SAVONIUS 4 LEVELS SECTIONAL, PARTITIONED, 0.25 DIAMETER OVERLAP AND 45o SLIDING ANGLE WITH COMPARABLE STANDARD TURBINE." ROTASI 16, no. 2 (April 1, 2014): 14. http://dx.doi.org/10.14710/rotasi.16.2.14-17.

Full text
Abstract:
The energy and environmental crisis where CO2 causes global warming and climate change. This condition encourage the world community take advantage of new renewable energy non-CO2 as wind, water currents, geothermal, solar, etc. Savonius Turbine has a simple construction can be made by the public so they can be used for wind power or hydro countryside. In this study aims to improve the efficiency and reduce the amplitude of vibrations to the modification of the 4-storey Savonius turbine, partitioned, sliding angle 45 degree and 0.25 diameter blade overlap. The location of research is Cokro Tulung Channel Klaten and Parangrucuk Baron Beach Gunungkidul. Measurements such as water current and wind speed, turbine rotational speed, torque of the turbine shaft and power. The turbines analysis are torque, power and efficiency characteristics and comparing by the turbine Savonius standard (one pair of blades). Results as hydro turbine at low velocity 0.3166 m/s Savonius 4 level had better revolution and efficient (0.0826) than 1 level (0.024), but as wind turbine at 3.056 m/s velocity the Savonius 4 level had worse efficiency (0.039) than 1 level (0.025) because the inertia load
APA, Harvard, Vancouver, ISO, and other styles
15

Sahim, Kaprawi, Dyos Santoso, and Dewi Puspitasari. "Investigations on the Effect of Radius Rotor in Combined Darrieus-Savonius Wind Turbine." International Journal of Rotating Machinery 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/3568542.

Full text
Abstract:
Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed.
APA, Harvard, Vancouver, ISO, and other styles
16

Youssef, Khaled M., Ahmed M. El Kholy, Ashraf M. Hamed, Nabil A. Mahmoud, Ahmed M. El Baz, and Tamer A. Mohamed. "An innovative augmentation technique of savonius wind turbine performance." Wind Engineering 44, no. 1 (May 29, 2019): 93–112. http://dx.doi.org/10.1177/0309524x19849860.

Full text
Abstract:
This work presents an innovative technique to enhance the performance of the Savonius wind turbine. The new technique is based on introducing an upstream deflector and downstream baffle. The shape and location of both devices are optimized using a genetic algorithm. The performance of the turbine with the optimized devices is compared with the single Savonius turbine performance. The study employs the finite volume solver (ANSYS-FLUENT) to solve unsteady Reynolds Averaged Navier–Stokes equations and turbulence model equations. The optimized configuration results in much higher power coefficient than the Savonius turbine. The average peak power coefficient using both deflector and baffle is 0.47 compared to 0.24 of the Savonius turbine. The peak power coefficient of the turbine corresponds to a speed ratio close to unity. This improved performance is attributed to the favorable aerodynamic interaction between the turbine and the downstream baffle which accelerates the flow around the rotor and generates larger turning torque. The baffle generates a jet effect on the advancing bucket and accelerates the flow behind the bucket creating a large zone of negative pressure and thereby increases the driving torque. Furthermore, the upstream deflector (also called shield or curtain) produces a shield for the returning bucket of the turbine which diminishes the adverse effect associated with the returning bucket on the aerodynamic torque of the turbine. This remarkable improvement of turbine performance will encourage the future application of the Savonius wind turbine in small power applications of wind energy.
APA, Harvard, Vancouver, ISO, and other styles
17

Micha Premkumar, T., T. Mohan, Sivamani Seralathan, and A. Sudheer Kumar. "Design and Performance Prediction of Low Cost Vertical Axis Wind Turbine." Applied Mechanics and Materials 813-814 (November 2015): 1070–74. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.1070.

Full text
Abstract:
The capacity of wind power generation has increased across India due to various activities encouraged by government. Moreover, onshore potential in India is in the order of 100GW. However, the plant load factor is often very low in wind power production. In most of the place, low-rated wind speed is available. Effective utilization of the wind to produce small power will reduces the grid load. There is in need to effectively utilize the available potential to meet the energy demand. The low cost vertical axis wind turbine designed for low rated wind regime has the hybrid of simple Savonius and helical Savonius. Various experimental parameters are measured to check the suitability of the vertical axis wind turbine in the low rated wind speed regions. Numerical simulation are carried out for three dimensional steady flow around the combined Savonius and helical Savonius vertical axis wind turbine blades using ANSYS Fluent(C). Numerical investigation are conducted to study the effect of hybrid combination on performance of the rotor in terms of coefficient of torque, coefficient of power, etc. Self-starting behaviour of the vertical axis wind turbine is improved by using this hybrid vertical axis wind turbine.
APA, Harvard, Vancouver, ISO, and other styles
18

Barlin, Barlin, Chandra Octavian Pratama, and Krerkiat Sasiwimonrit. "THE EFFECT OF BLADE CURVATURE ANGLE OF SAVONIUS WIND TURBINE L-TYPE ON THE PERFORMANCE." Indonesian Journal of Engineering and Science 2, no. 1 (March 6, 2021): 033–38. http://dx.doi.org/10.51630/ijes.v2i1.13.

Full text
Abstract:
The wind is a renewable energy source (alternative energy) as a substitute for the dwindling fossil fuel. L-type Savonius wind turbine is a technology that is widely used to convert wind energy into mechanical because its construction is simple and cheap. The disadvantage of this turbine is having a lower efficiency than other types of wind turbines. Modification of the curvature of the L-type Savonius wind turbine blade is assumed can improve its performance because it affects the direction and magnitude of wind and wheel velocity, consequence impact to power. Thus, the blade angle is interesting to review. There are three angles of blade studied: 30º, 45º, and 60º. Based on results, the blade angle influences the performance of the L-type Savonius wind turbine, where the 45º blade angle produced better performance than 30º and 60º.
APA, Harvard, Vancouver, ISO, and other styles
19

Wicaksono, Hangga, Sugeng Hadi Susilo, Bayu Pranoto, and Muhammad Fakhruddin. "Initial Rotation Characteristic Investigation of a Hybrid Savonius - Darrieus Wind Turbine using 6 DOF Computational Fluid Dynamics." Mekanika: Majalah Ilmiah Mekanika 20, no. 1 (March 31, 2021): 9. http://dx.doi.org/10.20961/mekanika.v20i1.47577.

Full text
Abstract:
The inconsistency of the wind flow considered as one of the factors which tend to decrease the performance of the wind turbine. This paper proposes a further analysis of the initial rotation characteristic of a hybrid Savonius - Darrieus wind turbine. The addition of the Darrieus blade intends to increase the aerodynamic stability of the overlapping Savonius turbine. This study implements 2D CFD transient analysis using the 6DOF methods in 0<sup>0</sup>, 30<sup>0</sup>, 60<sup>0</sup>, and 90<sup>0</sup> Darrieus blade position along with 2 m/s, 4 m/s, and 6 m/s wind speed variations. The results of the aerodynamic analysis show that the location of the Darrieus 30<sup>0</sup> turbine provides the greatest initial repulsion, especially when the turbine rotation is above 90<sup>0</sup>, the position of the Darrieus blade can provide additional impulse force when the Savonius turbine tends to be passive. This effect occurs more significant at higher wind speeds. Savonius with 3-blade modification has a more stable level of force distribution than the 2-blade modification, although the value is smaller. This shows that the 3-blade Savonius provide a higher stability of angular velocity development.
APA, Harvard, Vancouver, ISO, and other styles
20

Harsanto, Tedy, Haryo Dwi Prananto, Esmar Budi, and Hadi Nasbey. "Design and Contruction of Vertical Axis Wind Turbine Triple-Stage Savonius Type as the Alternative Wind Power Plant." KnE Energy 2, no. 2 (December 1, 2015): 172. http://dx.doi.org/10.18502/ken.v2i2.373.

Full text
Abstract:
<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>
APA, Harvard, Vancouver, ISO, and other styles
21

Awg. Osman, Dygku Asmanissa, Norzanah Rosmin, Nor Shahida Hasan, Baharruddin Ishak, Aede Hatib Mustaamal@Jamal, and Mariyati Marzuki. "Savonius Wind Turbine Performances on Wind Concentrator." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 1 (March 1, 2017): 376. http://dx.doi.org/10.11591/ijpeds.v8.i1.pp376-383.

Full text
Abstract:
The air streams from the outlet of an air compressor can be used to generate electricity. For instance, if a micro-sized Vertical-Axis Wind-Turbine (VAWT) is installed towards the airflow, some amount of electricity can be generated before being stored in a battery bank. The research’s objectives are to design, fabricate and analyze the performance of Helical Savonius VAWT blade rotors, which is tested with and without using a wind concentrator. The Helical Savonius VAWT is tested at 0 cm without the concentrator, whereas the blade rotor is tested at concave-blade position when using the concentrator. The blade and the wind concentrator designs were based on the dimensions and the constant airflow of the air compressor. The findings suggested that the blade produced its best performance when tested using wind concentrator at concave-blade position in terms of angular speed (<em>ω</em>), tip speed ratio (<em>TSR</em>) and the generated electrical power (<em>P</em><em><sub>E</sub></em>). The findings concluded that the addition of wind concentrator increases the airflow which then provided better performances on the blades.
APA, Harvard, Vancouver, ISO, and other styles
22

Mohan Kumar, Palanisamy, M. Mohan Ram Surya, Srikanth Narasimalu, and Teik-Cheng Lim. "Experimental and numerical investigation of novel Savonius wind turbine." Wind Engineering 43, no. 3 (June 6, 2018): 247–62. http://dx.doi.org/10.1177/0309524x18780392.

Full text
Abstract:
Savonius wind turbines have distinct advantages in terms of simplicity, low noise, and ease of manufacturing, yet they are not preferred for large-scale power generation due to their lower aerodynamic performance and high wind loads. This study is aimed at reducing the thrust load with retractable type telescopic blades. This novel telescopic Savonius turbine is tested in an open jet wind tunnel to assess the performance in terms of torque, power, and thrust on the rotor. The dynamic and static characteristics are obtained for both extended and retracted configuration after correcting the experimental data for wind tunnel blockage. A preliminary numerical study is carried out in an effort to determine the variation of the drag coefficient in relation to the bucket thickness. The proposed telescopic turbine demonstrates a reduction in thrust load of 72.4% with a maximum power coefficient of 0.14 at the tip speed ratio of 0.7 compared to an extended operating configuration, similar to a conventional Savonius turbine. Thus, the telescopic Savonius turbine can be scaled up to higher kilowatt capacity with the cost comparable to other high-speed rotors such as Darrieus or horizontal axis wind turbines.
APA, Harvard, Vancouver, ISO, and other styles
23

Mohan Kumar, Palanisamy, Mohan Ram Surya, Krishnamoorthi Sivalingam, Teik-Cheng Lim, Seeram Ramakrishna, and He Wei. "Computational Optimization of Adaptive Hybrid Darrieus Turbine: Part 1." Fluids 4, no. 2 (May 17, 2019): 90. http://dx.doi.org/10.3390/fluids4020090.

Full text
Abstract:
Darrieus-type Vertical Axis Wind Turbines (VAWT) are promising for small scale decentralized power generation because of their unique advantages such as simple design, insensitive to wind direction, reliability, and ease of maintenance. Despite these positive aspects, poor self-starting capability and low efficiency in weak and unsteady winds deteriorate further development. Adaptive Hybrid Darrieus Turbine (AHDT) was proposed by the author in the past study as a potential solution to enhance low wind speed characteristics. The objective of the current research is to optimize the parameters of AHDT. AHDT integrates a dynamically varying Savonius rotor with a Darrieus rotor. A fully detailed 2D numerical study employing Reynold-Averaged Navier Stokes (RANS) is carried out to investigate the impact of the Darrieus rotor diameter (DR) on the Savonius rotor (DT) with regard to hybrid turbine performance. The power coefficient of the Darrieus rotor is evaluated when the Savonius rotor is in the closed condition (cylinder) of various diameters. The influence of Reynolds number (Re) on the torque coefficient is examined. Power loss of 58.3% and 25% is reported for DR/DT ratio of 1.5 and 2 respectively for AHDT with solidity 0.5 at 9 m/s. The flow interaction between the Savonius rotor in closed configuration reveals the formation of von Karman vortices that interact with Darrieus blades resulting in flow detachment. An optimum diametrical ratio (DR/DT) of 3 is found to yield the maximum power coefficient of the Darrieus rotor.
APA, Harvard, Vancouver, ISO, and other styles
24

Blanco, Javier, Juan de Dios Rodriguez, Antonio Couce, and Maria Isabel Lamas. "Proposal of a Nature-Inspired Shape for a Vertical Axis Wind Turbine and Comparison of Its Performance with a Semicircular Blade Profile." Applied Sciences 11, no. 13 (July 4, 2021): 6198. http://dx.doi.org/10.3390/app11136198.

Full text
Abstract:
In order to improve the efficiency of the Savonius type vertical axis wind turbine, the present work analyzes an improvement based on an innovative rotor geometry. The rotor blades are inspired on an organic shape mathematically analyzed, the Fibonacci’s spiral, presented in many nature systems as well as in art. This rotor was analyzed in a wind tunnel and through a CFD model. The power coefficients at different tip speed ratios (TSR) were characterized and compared for the Savonius turbine and two versions using the Fibonacci’s spiral. One of the proposed geometries improves the performance of the Savonius type. Particularly, the optimal configuration lead to an improvement in maximum power coefficient of 14.5% in the numerical model respect to a conventional Savonius turbine and 17.6% in the experimental model.
APA, Harvard, Vancouver, ISO, and other styles
25

Doerffer, Piotr, Krzysztof Doerffer, Tomasz Ochrymiuk, and Janusz Telega. "Variable Size Twin-Rotor Wind Turbine." Energies 12, no. 13 (July 2, 2019): 2543. http://dx.doi.org/10.3390/en12132543.

Full text
Abstract:
The paper presents a new concept of a vertical axis wind turbine. The idea is focused on small wind turbines, and therefore, the dominating quality is safety. Another important necessary feature is efficient operation at small winds. This implies an application of the drag driven solution such as the Savonius rotor. The presented concept is aimed at reducing the rotor size and the cost of implementation. A new wind turbine solution, its efficiency, and functionality are described. The results of numerical simulations being a proof of the concept are reported. The simulations were followed by wind tunnel tests. Finally several prototypes were built and investigated for a longer period of time. The new wind turbine concept has undergone various testing and implementation efforts, making this idea matured, well proven and documented. A new feature, namely, the wind turbine size reduction at strong winds, or in other words, an increase in the wind turbine size at low winds is the reason why it is difficult to compare this turbine with other turbines on the market. The power output depends not only on the turbine efficiency but also on its varying size.
APA, Harvard, Vancouver, ISO, and other styles
26

Purwoko, Purwoko. "PENGARUH JUMLAH DAN SUDUT PEMASANGAN SUDU TERHADAP DAYA TURBIN SAVONIUS." INFO-TEKNIK 21, no. 2 (January 25, 2021): 125. http://dx.doi.org/10.20527/infotek.v21i2.10036.

Full text
Abstract:
The problem in Energy conservation is finding new opportunities for high-efficiency energy generation including wind power generating machines. Aims of this study to determine the effects of blade number and curv angle of blade mounting on the output power of a Savonius type wind turbine. This low speed wind turbine is intended to get energy at the top of a multi-storey building in an urban area. Tests were carried out on a laboratory scale, using savonius wind turbines with 400 mm diameter and 500 mm height. The driving wind speed of the turbine is set between 1.5 to 8.5 m / s. While the number of blades used is 2 types, namely rotor with three blades and rotor with 4 blades, each of which is tested on 3 different types of curv angle blade. The investigation results are expected to show that the wind tubing from each experiment will give different characteristics. This investigation results that there was increasing in efficiency in the savonius turbine with blades. The highest rotation and power occur when the turbine uses 2 blades and -50 curv angle of blade mounting
APA, Harvard, Vancouver, ISO, and other styles
27

Purwoko, Santoso, and Nurchajat. "PENGARUH JUMLAH DAN SUDUT PEMASANGAN SUDU TERHADAP DAYA TURBIN ANGIN SAVONIUS." Jurnal Teknik Ilmu Dan Aplikasi 9, no. 2 (April 28, 2021): 17–21. http://dx.doi.org/10.33795/jtia.v9i2.27.

Full text
Abstract:
The problem in Energy conservation is finding new opportunities for high-efficiency energy generation including wind power generating machines. This study aims to determine the effect of the number and curv angle of blade mounting on the output power of a Savonius type wind turbine. This low speed wind turbine is intended to get energy at the top of a multi-storey building in an urban area. Tests were carried out on a laboratory scale, using savonius wind turbines with a diameter of 400 mm and a height of 500 mm. The driving wind speed of the turbine is set between 1.5 to 8.5 m / s. While the number of blades used is 2 types, namely rotor with three blades and rotor with 4 blades, each of which is tested on 3 different types of curv angle blade. The investigation results are expected to show that the wind tubing from each experiment will give different characteristics. The results showed that there was an increase in efficiency in the savonius turbine with blades. The highest rotation and power occur when the turbine uses 2 blades and -50 curv angle of blade mounting
APA, Harvard, Vancouver, ISO, and other styles
28

Abdel-Fattah Mahrous. "Computational Fluid Dynamics Study of a Modified Savonius Rotor Blade by Universal Consideration of Blade Shape Factor Concept." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 85, no. 1 (July 29, 2021): 22–39. http://dx.doi.org/10.37934/arfmts.85.1.2239.

Full text
Abstract:
This work aims to investigate computationally the performance of Savonius vertical axis wind turbine having a new design feature for its blade geometry. The proposed design is based on a universal consideration of blade shape factor concept for the Savonius rotor blade. A blade shape factor ranges from zero to infinity, or vice versa, is considered in a single blade of the modified Savonius rotor. This means that each point in the two-dimensional blade profile of the suggested blade design has a single value of blade shape factor that is defined based on the dimensions of conventional semi-circular blade. The computational results of the proposed blade shape design, having blade shape factor varying from infinity to zero, showed an improvement in turbine performance as compared to conventional blade shape design. Moreover, increasing the operating range of Savonius wind turbine is expected.
APA, Harvard, Vancouver, ISO, and other styles
29

Jamal, Jamal, A. M. Shiddiq Yunus, and Lewi Lewi. "Pengaruh Kelengkungan Sudu Terhadap Kinerja Turbin Angin Savonius." INTEK: Jurnal Penelitian 6, no. 2 (November 12, 2019): 139. http://dx.doi.org/10.31963/intek.v6i2.1578.

Full text
Abstract:
Savonius wind turbine is one of the wind turbines that is more widely used for low energy needs, with more energy needs, this turbine type is very feasible to be developed. This research aims to improve the performance of Savonius wind turbines with variations in turbine blade curvature and variations in wind speed. The research method is a laboratory experiment on the fan test, the blade curvature test variation is 1R; 1.5R and 2R, another variation is the wind speed which are 4.0; 5.5; 7.0 and 8.5 m/s. The experiement results shows that the greater the wind speed, the input power, air mass flow velocity, power output, and efficiency will be even greater; the greater the load force on the turbine shaft, the torque on the turbine shaft will also be greater; the relationship of force loads to power output and turbine efficiency is to construct a parabolic curve; for the same wind speed, the 2R turbine has the lowest rotation, power output and efficiency compared to the 1R and 1.5R turbines; at the same wind speed the 1R turbine produces a higher rotation but requires lower torque than the 1.5R turbine; at low wind speeds (4 m / s) the 1.5R turbine has better efficiency than the 1R turbine, whereas at the high wind speed (8.5 m/s) the 1R turbine has a better efficiency than the 1.5R turbine; The maximum efficiency is obtained at 89.56% in the 1R curvature turbine with a wind speed of 8.5 m / s.
APA, Harvard, Vancouver, ISO, and other styles
30

Ueno, Hiroyuki, Takayuki Yaginuma, Masahiro Mino, and Norihisa Takada. "Savonius wind turbine : Effect of support." Proceedings of Conference of Kyushu Branch 2003 (2003): 227–28. http://dx.doi.org/10.1299/jsmekyushu.2003.227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Saputra, Mohammad Rizqi, Nur Kholis, and Mohammad Munib Rosadi. "Pengaruh diameter dan jumlah sudu turbin angin savonius tipe L terhadap unjuk kerja yang dihasilkan." ARMATUR : Artikel Teknik Mesin & Manufaktur 1, no. 2 (September 18, 2020): 61–67. http://dx.doi.org/10.24127/armatur.v1i2.333.

Full text
Abstract:
Abstract Wind is a renewable mechanical energy source that can be used as an energy source because the energy from the wind can be used to drive wind turbines. Savonius wind turbine type L is a tool to convert wind energy into electricity with a simple construction and can work with low wind speeds. The purpose of this study was to determine the effect of differences in diameter and number of blades on the power produced. The method used is a simulation method with an artificial wind source. With a wind speed of 8 m/s. The data analysis technique used is 2-way ANOVA using the SPSS application. Variations used are 20 cm and 40 cm in diameter and the number of blades 2 and 4 . The result is a wind turbine with a variation of 40 cm and 4 blades capable of producing the best output which produces 350.98 RPM voltage of 11.64 volts current of 0.144 amperes and power of 1,676 watts. As for BHP, torque, and turbine efficiency with a variation of 40 cm and 4 blades capable of producing the best output where the generated BHP is 3.352 watts, torque 0.091 N / m efficiency 2.17. For the results of calculations with SPSS wind turbines with a diameter variation of 40 cm and 4 blades, the biggest power is 1,744 watts and for BHP produces 3.3520 watts and the efficiency reaches 2.17%. Keyword : Diameter, number of blade, Performance Abstrak Angin adalah sumber energi mekanik yang bisa diperbaharui sehingga dapat dimanfaatkan sebagai sumber energi karena dapat digunakan untuk menggerakkan turbin angin. Turbin angin savonius tipe L merupakan alat untuk mengubah energi angin menjadi listrik dengan konstruksi yang sederhana dan dapat bekerja dengan kecepatan angin yang rendah. Tujuan penelitian ini untuk mengetahui pengaruh perbedaan diameter dan jumlah sudu terhadap unjuk kerja yang dihasilkan. Metode yang digunakan adalah metode simulasi dengan sumber angin buatan. Dengan kecepatan angin 8 m/s. Teknik analisis data yang digunakan adalah ANOVA 2 arah dengan menggunakan aplikasi SPSS. Variasi yang digunakan adalah diameter 20 cm dan 40 cm serta jumlah sudu 2 dan 4. Hasilnya turbin angin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output terbaik yang dimana menghasilkan RPM 350,98 tegangan 11,64 volt arus 0,144 ampere dan daya 1,676 watt. Sedangkan untuk BHP, torsi, dan efisensi turbin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output yang terbaik dimana BHP yang dihasilkan adalah 3,352 watt, torsi 0,091 N/m efisisensi 2,17. Untuk hasil perhitungan dengan SPSS turbin angin dengan variasi diameter 40 cm dan 4 sudu menghasilkan daya terbesar yakni 1,744 watt dan untuk BHP menghasilkan 3,3520 watt dan efisiensinya mencapai 2,17 % untuk torsi tertinggi dicapai turbin variasi 40 cm 2 sudu dengan torsi 0,116. Kata kunci : diameter, jumlah sudu, unjuk kerja
APA, Harvard, Vancouver, ISO, and other styles
32

TANZAWA, Yoshiaki. "ICOPE-15-1029 Development of an aeration system driven by a Savonius wind turbine." Proceedings of the International Conference on Power Engineering (ICOPE) 2015.12 (2015): _ICOPE—15——_ICOPE—15—. http://dx.doi.org/10.1299/jsmeicope.2015.12._icope-15-_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mao, Zhaoyong, Guangyong Yang, Tianqi Zhang, and Wenlong Tian. "Aerodynamic Performance Analysis of a Building-Integrated Savonius Turbine." Energies 13, no. 10 (May 21, 2020): 2636. http://dx.doi.org/10.3390/en13102636.

Full text
Abstract:
The building-integrated wind turbine is a new technology for the utilization of wind energy in cities. Previous studies mainly focused on the wind turbines mounted on the roofs of buildings. This paper discusses the performance of Savonius wind turbines which are mounted on the edges of a high-rise building. A transient CFD method is used to investigate the performance of the turbine and the interaction flows between the turbine and the building. The influence of three main parameters, including the turbine gap, wind angle, and adjacent turbines, are considered. The variations of the turbine torque and power under different operating conditions are evaluated and explained in depth. It is found that the edge-mounted Savonius turbine has a higher coefficient of power than that operating in uniform flows; the average Cp of the turbine under 360-degree wind angles is 92.5% higher than the turbine operating in uniform flows. It is also found that the flow around the building has a great impact on turbine performance, especially when the turbine is located downwind of the building.
APA, Harvard, Vancouver, ISO, and other styles
34

Premkumar, T. Micha, S. Seralathan, T. S. Ravikumar, and J. Jayagopal. "A Simulation Study of Flow and Pressure Distribution Patterns in a Two Stage Three Bucket Savonius Vertical Axis Wind Turbine." Applied Mechanics and Materials 812 (November 2015): 3–8. http://dx.doi.org/10.4028/www.scientific.net/amm.812.3.

Full text
Abstract:
Performance of Savonius vertical axis wind turbine can be increased by incorporating end plates, deflector plates, curtains, shielding, guide vanes etc in their designs. However, multi-staging of conventional VAWT rotors could be a viable proposition in terms of improvement of power output. Numerical analysis involving three bucket Savonius turbines are not available in the open domain. The objective of the present numerical investigation is to study the flow and pressure distribution patterns in the two-stage three bucket Savonius vertical axis wind turbine. The performance of SVAWT is based on the maximum difference in pressure between the upstream and downstream of the turbine. Velocity vector plots shows the energy transfer occurring from the fluid to the blade within the flow field in the upstream and downstream of the turbine. The trail of the wake left behind the SVAWT was observed in the downstream of the turbine. It is observed that eddies in large scale are present around the turbine flow field.
APA, Harvard, Vancouver, ISO, and other styles
35

Nurwicaksana, Wahyu Aulia, Budhy Setiawan, and Supriatna Adhisuwignjo. "Kontrol Uji Torsi pada Wind Turbine di dalam Wind Tunnel." Jurnal Elektronika dan Otomasi Industri 4, no. 1 (November 27, 2020): 37. http://dx.doi.org/10.33795/elkolind.v4i1.106.

Full text
Abstract:
Dengan perkembangan kebutuhan tenaga listrikyang terus meningkat, hal ini meyebabkan perlunyapengembangan pemanfaatkan energi terbarukan. Salah satusumber energi terbarukan adalah energi angin yangdimanfaatkan untuk menghasilkan energi listrik denganmenggunakan Sistem berupa turbin angin. Pembuatan turbinangin memerlukan suatu pengujian awal yaitu menggunkanterowongan angin sebagai seksi uji. Pengukuran yangdilakukan adalah pengukuran RPM, torsi, daya kincir , danefisiensi daya. Sensor optocoupler digunakan untuk mengukurRPM, Sensor Load cell untuk mengukur beban yangdiberikan, motor stepper untuk mengatur beban yangdiberikan. Dalam pengujian kincir angin tipe savonius dayamaksimal yang diperoleh adalah 9.58 Watt pada kecepatanangin 8 m/s dengan kecepatan putaran 416 RPM dan torsi 0.22Kgm. Efisiensi daya maksimal tipe savonius sebesar 30.82 %pada kecepaan angin 4 m/s, daya kincir 2.13 Watt, dan dayaangin 6.91 Watt. Setiap pembebanan yang diberikan padaporos akan mengurangi kecepatan berputar kincir Semakintinggi torsinya dan semakin kecil RPMnya maka daya yangdihasilkan akan semakin tinggi pula, begitu juga sebaliknya.
APA, Harvard, Vancouver, ISO, and other styles
36

Jamal, Jamal. "Pengaruh Jumlah Sudu Terhadap Kinerja Turbin Savonius." INTEK: Jurnal Penelitian 6, no. 1 (May 25, 2019): 64. http://dx.doi.org/10.31963/intek.v6i1.1127.

Full text
Abstract:
Savonius wind turbines are wind turbines that canoperate at low wind speeds, this type of turbine is very suitable tobe used in several places in Indonesia. The research aims toimprove the performance of the Savonius wind turbine withvariations in the number of turbine blades as well as variations inthe velocity of wind speed. The research method wasexperimental where wind turbine testing was carried out withvariations in the number of turbine blades with number of 2, 3and 4 blades, other variations carried out were wind speed at 3.5;4,5; 5.5 and 6.5 m/s. The study results show that the 2-bladeturbine produces greater rotation, but the torque moment islower than the 3 and 4 blade turbines, this can be seen in the lowefficiency of the 2 blade turbine at low wind speeds with highloading. At 3.5 m / s wind turbines 2 blade turbines haveefficiency that tends to be the same as 3 and 4 blade turbines upto 0.5 N but at loads of 0.6 - 1.2 N 2 blade turbines have lowerefficiency, while at wind speeds of 4.5 - 6.5 m / s 2 blade turbineshave greater efficiency than turbines 3 and 4 blades up to a loadof 1.2 N but if the load is added then the efficiency of 2-bladeturbines can be smaller than efficiency 3 and 4-blade.
APA, Harvard, Vancouver, ISO, and other styles
37

Wicaksono, Yoga Arob. "Effect of Stator Vane on the Performance of the Savonius Wind Turbine." R.E.M. (Rekayasa Energi Manufaktur) Jurnal 4, no. 2 (December 30, 2019): 159–68. http://dx.doi.org/10.21070/r.e.m.v4i2.811.

Full text
Abstract:
The turbulent air flow conditions in the urban area have a large effect on the performance of Savonius rotor wind turbines. To overcome this problem, a new design of the stator vane needs to be made. the stator vane has the ability to direct wind to the turbine rotor and increase air speed by utilizing throttling effects. Thus, the performance of the Savonius wind turbine can increase. In this study, the Savonius type vertical wind turbine is configured with three stator vane designs that have slope angles: 60o, and 70o. Performance testing is carried out at angles: 0o, 30o, and 60o towards the midpoint of the stator vane to find the direction of direction coming from the best wind on each stator vane design. All configurations are analyzed using an experimental wind tunnel open testing scheme with a wind speed range of 3-5 m/s. The parameters produced from the experiment include: power coefficient (Cp), torque coefficient (Ct) and Tip Speed ​​Ratio (TSR). The results showed that the stator vane with 60o inclination angle was able to increase Cp 35.66% in the 60o incoming wind direction.
APA, Harvard, Vancouver, ISO, and other styles
38

Ahmadi, Ahmadi, Mochamad Arif Irfa`i, and Basuki Basuki. "Pengaruh beban lampu terhadap tegangan, arus, dan rpm pada turbin angin savonius 2 sudu." ARMATUR : Artikel Teknik Mesin & Manufaktur 1, no. 2 (September 18, 2020): 41–47. http://dx.doi.org/10.24127/armatur.v1i2.259.

Full text
Abstract:
Right now using of electrical energy in society is increasing. This is reason in doing the work, peoples using tools machine that required voltage source as driver. The explanation to be basic for research about convertion of wind energy to electrical with making vertical axis wind turbine. The aim is find out effect of lamp load to voltage, current, and RPM on the 2 blade savonius wind turbine. This is a experiment research. This research using quantitative descriptive analysis, with independent variables are lamp load 0, 3, 6, 9 watts and the dependent variables are voltage, current, and RPM. Results obtain from testing then analysis and conclusion attract. Results research show highest performance of savonius 2 blades wind turbine on 0 watt lamp load it producting, 11.68 volts, 0 ampere, and 334.2 RPM. Lowest performance of 2 blades savonius wind turbine on 9 watt lamp load producting, 7.68 volts, 0.13 amperes, and 272.9 RPM. Based of results on the test can concluded that, The more lamp loads activated, voltage and RPM values decrease while, current value increases. This is because number of lamp loads increas then, amount electric charge moving per unit of time also increas.
APA, Harvard, Vancouver, ISO, and other styles
39

Santoso, Wahyu, Herman Saputro, and Husin Bugis. "STUDI EKSPERIMENTAL PERFORMANSI TURBIN SAVONIUS DI PESISIR PANTAI KABUPATEN DEMAK TERHADAP DAYA LISTRIK YANG DIHASILKAN." Jurnal Ilmiah Pendidikan Teknik dan Kejuruan 14, no. 1 (January 10, 2021): 16. http://dx.doi.org/10.20961/jiptek.v14i1.45215.

Full text
Abstract:
<p><em>Energy from fossil fuels consisting of petroleum, coal, natural gas containing raw material for energy fulfillment in Indonesia is still very central through the use of raw materials from renewable energy is still very low. In Indonesia the potential for renewable energy such as wind energy needs to be optimized. One of the uses of wind energy is through savonius wind turbine as electricity generators. Characteristics of savonius wind turbine with vertical axis rotors which gave a simple shape, and that able to control low speeds. This is in accordance with regions in Indonesi which have low average speeds. This experimental study, aims to determine the description of wind potential and determine the performance of savonius wind turbines on the coast of Demak regency on the electrical energy produced. Savonius wind turbine used is made of galvalum material in the form of an S type rotor with diameter 1.1 m and height 1.4 m, using pulley transmission system with multiplication ratio 1:6 dan using generator type PMG 200 W. This research uses the method experiment. Data collection in the form of wind speed, humidity, temperature, rotor rotation speed, voltage and electric curret is carried out at 14.30 to 17.30 Western Indonesian Time. Data Analysis in this study uses quantitative descriptive analysis. The result showed the potential of wind on the coast of Demak regency have an average wind speed of 2,02 m/s with a temperature of 31</em><em>,</em><em>34 </em><em><sup>0</sup></em><em>C and humidity of 76,96. And the performance of the installed wind turbine produces the highest power 3.5 watt with an electric power coefficient of 0,181 and tip speed ratio around 1,75. From these result, the potensial of wind with performance savonius turbine can generate electricity used for pond lighting in the village Berahan Kulon Kecamatan Wedung. </em><em></em></p>
APA, Harvard, Vancouver, ISO, and other styles
40

Chua, Bih Lii, Mohd Suffian Misaran, Yan Yan Farm, Mizanur Rahman, and Benjoe Eldana Barahim. "Development of Mixed Vertical Axis Wind Turbine (MVAWT) for Low Wind Condition." Applied Mechanics and Materials 660 (October 2014): 811–15. http://dx.doi.org/10.4028/www.scientific.net/amm.660.811.

Full text
Abstract:
Small-scaled renewable energy generation such as micro-hydro and domestic solar panel has become the recent trend of research in order to achieve sustainable energy generation and to eliminate the reliance of geographical selection and large farm area. As for the case of wind energy, a wind turbine that can operate at low wind condition are desirable. This paper presents a mixed design for Vertical Axis Wind Turbine comprises of Savonius and Darrieus rotors, being assembled together as a single rotor turbine. The mixed wind turbine model (MVAWT) was fabricated and tested in our lab as prove of concept. Experiments conducted on 5 MVAWT’s configurations and being compared to a standalone Darrieus turbine with +3 degree pitch angle, showed promising result in lowering the self-start speed of the Darrieus turbine. It was observed that all the positive pitch angle MVAWTs has started to rotate at lower wind speed (about 1.8 m/s) while the standalone Darrieus turbine was only started to rotate at wind speeds more than 3.0 m/s. However, the lower self-start were also being compensated by lower turbine rotational speed. With the low self-start speed in the MVAWT, it will enable the wind energy capture for a longer period of time at a low wind condition site. This development should lead to an interesting research on optimizing the mixture of Savonius and Darrieus turbine for a localized low wind speed conditions in the future.
APA, Harvard, Vancouver, ISO, and other styles
41

Mansour, Hamdy, and Rola Afify. "Design and 3D CFD Static Performance Study of a Two-Blade IceWind Turbine." Energies 13, no. 20 (October 14, 2020): 5356. http://dx.doi.org/10.3390/en13205356.

Full text
Abstract:
The IceWind turbine, a new type of Vertical Axis Wind Turbine, was proposed by an Iceland based startup. It is a product that has been featured in few published scientific research studies. This paper investigates the IceWind turbine’s performance numerically. Three-dimensional numerical simulations are conducted for the full scale model using the SST K-ω model at a wind speed of 15.8 m/s. The following results are documented: static torque, velocity distributions and streamlines, and pressure distribution. Comparisons with previous data are established. Additionally, comparisons with the Savonius wind turbine in the same swept area are conducted to determine how efficient the new type of turbine is. The IceWind turbine shows a similar level of performance with slightly higher static torque values. Vortices behind the IceWind turbine are confirmed to be three-dimensional and are larger than those of Savonius turbine.
APA, Harvard, Vancouver, ISO, and other styles
42

Lianda, Jefri, and Hikmatul Amri. "Implementasi Kincir Angin Savonius 2 Tingkat Menggunakan Generator Magnet Permanen." Manutech : Jurnal Teknologi Manufaktur 9, no. 02 (May 15, 2019): 33–37. http://dx.doi.org/10.33504/manutech.v9i02.43.

Full text
Abstract:
This paper focuses on improving the performance of a two-tiered windmill savonius to generate electricity through a permanent magnet generator. This study used an experimental method, taking into account the number and angle of the wind turbine Savonius two levels. The study was conducted at wind speed conditions of about 2.85 m / s to 6.42 m / s. Dimensions of windshield savonius blades with a width of 45 cm and a height of 50 cm. The wind turbine is installed with a height of 3.5 meters from the ground. This study uses a gearbox with a ratio of 1: 3.This study produces a maximum power of 95 watts. The average voltage generated 13.75 volts AC to 19.52 volts AC. The energy supplied to the battery uses a battery charger control (BCR).
APA, Harvard, Vancouver, ISO, and other styles
43

Li, Yan, Jun Rui Chai, Fa Ning Dang, Fang Feng, and Wen Qiang Tian. "Numerical Simulation on Static Performance of Savonius Rotor Based on Different Turbulence Models." Advanced Materials Research 488-489 (March 2012): 1238–42. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.1238.

Full text
Abstract:
With the advance of computer technology, numerical simulations were widely used for designing wind turbine. Savonius rotor is a kind of drag type wind turbine often used for water pumping for its good torque performance. In this study, numerical computations were carried out based on three different turbulence models including Splart-Allaras (S-A) model, k-εmodel and k- ωmodel to compute the static torque performance at different attack angles. Flow fields around the Savonius rotor were obtained. Comparing the computation results with the experimental results, the effects of turbulence models on the static performances of the Savonius rotor were discussed. The simulation result based on k-ω model was in agreement with test data generally.
APA, Harvard, Vancouver, ISO, and other styles
44

Putra, Irwanto Zarma, Fauzun Atabiq, Didi Istardi, Ridwan Ridwan, Arif Febriansyah Juwito, Muhammad Agil Wildan, Muhammad Ridlo Alfianto, and Rahman Hakim. "Preliminary Study of the Vertical Axis Wind Turbine (VAWT) Prototype at Urban Area." JURNAL INTEGRASI 13, no. 1 (April 30, 2021): 6–9. http://dx.doi.org/10.30871/ji.v13i1.2754.

Full text
Abstract:
This research complements the shortcomings of PLTB, namely by adding a Monitoring System to the Wind Power Plant at Batam State Polytechnic. By addition of sensors, installations, and a control panel containing instruments for monitoring wind conditions, Savonius turbine rpm, and pico-generator output electrical characteristics. The method used is conventional, starting from mechanical design, program development, and installation to testing. This study's preliminary results indicate that wind at the PLTB Polibatam location is not continuous. It does not occur, even though the maximum wind speed can reach 8.9 m / s. The implementation of the savonius-type wind turbine in this study can generate electricity around 87.83 kW / week or about 0.61 kW / hour.
APA, Harvard, Vancouver, ISO, and other styles
45

Wahyudi, Rahmat, Diniar Mungil Kurniawati, and Alfian Djafar. "Effect of Slotted Angle on Savonius Wind Turbine Performance." Advances in Science and Technology 104 (February 2021): 83–88. http://dx.doi.org/10.4028/www.scientific.net/ast.104.83.

Full text
Abstract:
The potential of wind energy is very abundant but its utilization is still low. The effort to utilize wind energy is to utilize wind energy into electrical energy using wind turbines. Savonius wind turbines have a very simple shape and construction, are inexpensive, and can be used at low wind speeds. This research aims to determine the effect of the slot angle on the slotted blades configuration on the performance produced by Savonius wind turbines. Slot angle variations used are 5o ,10o , and 15o with slotted blades 30% at wind speeds of 2,23 m/s to 4,7 m/s using wind tunnel. The result showed that a small slot angle variation of 5o produced better wind turbine performance compared to a standard blade at low wind speeds and a low tip speed ratio.
APA, Harvard, Vancouver, ISO, and other styles
46

Ueno, Hiroyuki, Takayuki Yaginuma, Masahiro Mino, and Norihisa Takada. "Savonius wind turbine with wind collector : Effect of wind collector." Proceedings of Conference of Hokuriku-Shinetsu Branch 2003.40 (2003): 145–46. http://dx.doi.org/10.1299/jsmehs.2003.40.145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ueno, Hiroyuki, Masahiro Mino, and Norihisa Takada. "Savonius wind turbine : The influence of the wind concentrator." Proceedings of Conference of Kyushu Branch 2002.55 (2002): 125–26. http://dx.doi.org/10.1299/jsmekyushu.2002.55.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ueno, Hiroyuki, Takayuki Yaginuma, Masahiro Mino, and Norihisa Takada. "Savonius wind turbine with wind collector : Effect of guide." Proceedings of Conference of Chugoku-Shikoku Branch 2003.41 (2003): 175–76. http://dx.doi.org/10.1299/jsmecs.2003.41.175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mrigua, Khalid, Abdelghani Toumi, Mounia Zemamou, Bader Ouhmmou, Yahya Lahlou, and Mohammed Aggour. "CFD Investigation of A New Elliptical-Bladed Multistage Savonius Rotors." International Journal of Renewable Energy Development 9, no. 3 (June 29, 2020): 383–92. http://dx.doi.org/10.14710/ijred.2020.30286.

Full text
Abstract:
The Savonius-conventional wind turbine is a class of wind turbines designed with a vertical axis. It has a good starting capacity and an insensitivity to wind direction. It works relatively at low wind speed in an easy installation. Savonius wind turbine faces major drawbacks, including some of the low efficiency and high negative torque created by the returning blade. Many attempts have been undertaken to optimize the blade’s shape to increase the performance of these wind turbines. The vertical axis is still under development. The elliptical-blades with a cut angle equal 47.50° have recently shown enhanced performance. In this study, we investigate the effect of Elliptical-bladed multistage Savonius Rotors (rotor aspect ratio, stage aspect ratio) on the performance by means of numerical simulation. The results obtained by comparison of one, two, and three-stage rotors indicate that the maximum power coefficient increase with a number of the stages (for the rotors with similar RAR of 0.7). Moreover, for the rotors with similar SAR of 0.7, the two stages have the highest performance than others.©2020. CBIORE-IJRED. All rights reserved
APA, Harvard, Vancouver, ISO, and other styles
50

Sugiharto, Budi, Sudjito Soeparman, Denny Widhiyanuriyawan, and Slamet Wahyudi. "Simulation Savonius Wind Turbine with Multi-Deflector." Applied Mechanics and Materials 836 (June 2016): 289–93. http://dx.doi.org/10.4028/www.scientific.net/amm.836.289.

Full text
Abstract:
This paper aims to study the windmill Savonius with multi-deflector. Multi-deflector placed around the windmill, which aims to reduced negative torque to the returning blade and directing the flow of wind to the advancing blade . CFD analysis with ANSYS software. The initial conditions with variation wind speeds 3, 4, 5 and 6 m / s. The result indicated by velocity distribution at positions 00, 450, 900 and 1350. The largest static torque occurs at position 450 caused by the greater the Coand-like flow, dragging flow and overlap flow. The greater the static torque that occurs with increasing wind speeds.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography