Journal articles on the topic 'Scaffold Bone Defect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Scaffold Bone Defect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kim, Jong Min, Jun Sik Son, Seong Soo Kang, Gonhyung Kim, and Seok Hwa Choi. "Bone Regeneration of Hydroxyapatite/Alumina Bilayered Scaffold with 3 mm Passage-Like Medullary Canal in Canine Tibia Model." BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/235108.
Full textFang, Yifei, Yong Gong, Zhijian Yang, and Yan Chen. "Repair of Osteoporotic Bone Defects Using Adipose-Derived Stromal Cells and Umbilical Vein Endothelial Cells Seeded in Chitosan/Nanohydroxyapatite-P24 Nanocomposite Scaffolds." Journal of Nanomaterials 2021 (August 21, 2021): 1–11. http://dx.doi.org/10.1155/2021/6237130.
Full textKessler, Franziska, Kevin Arnke, Benjamin Eggerschwiler, et al. "Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects." International Journal of Molecular Sciences 25, no. 10 (2024): 5555. http://dx.doi.org/10.3390/ijms25105555.
Full textLi, Ming, Jianheng Liu, Xiang Cui, et al. "Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection." Regenerative Biomaterials 6, no. 6 (2019): 373–81. http://dx.doi.org/10.1093/rb/rbz019.
Full textZhou, Shuai, Shihang Liu, Yan Wang, et al. "Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment." Journal of Functional Biomaterials 14, no. 8 (2023): 406. http://dx.doi.org/10.3390/jfb14080406.
Full textLim, Jin Xi, Min He, and Alphonsus Khin Sze Chong. "3D-printed Poly-Lactic Co-Glycolic Acid (PLGA) scaffolds in non-critical bone defects impede bone regeneration in rabbit tibia bone." Bio-Medical Materials and Engineering 32, no. 6 (2021): 375–81. http://dx.doi.org/10.3233/bme-216017.
Full textKim, You Min, Min-Soo Ghim, Meiling Quan, Young Yul Kim, and Young-Sam Cho. "Experimental Verification of the Impact of the Contact Area between the Defect Site and the Scaffold on Bone Regeneration Efficacy." Polymers 16, no. 3 (2024): 338. http://dx.doi.org/10.3390/polym16030338.
Full textChen, Shuang S., Ophir Ortiz, Alexandra K. Pastino, et al. "Hybrid Bone Scaffold Induces Bone Bridging in Goat Calvarial Critical Size Defects Without Growth Factor Augmentation." Regenerative Engineering and Translational Medicine 6, no. 2 (2020): 189–200. http://dx.doi.org/10.1007/s40883-019-00144-z.
Full textMi, Xue, Zhenya Su, Yu Fu, Shiqi Li, and Anchun Mo. "3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration." Biomedical Materials 17, no. 3 (2022): 035002. http://dx.doi.org/10.1088/1748-605x/ac5ffe.
Full textBergmann, Christian J. D., Jim C. E. Odekerken, Tim J. M. Welting, et al. "Calcium Phosphate Based Three-Dimensional Cold Plotted Bone Scaffolds for Critical Size Bone Defects." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/852610.
Full textCanciani, Elena, Paola Straticò, Vincenzo Varasano, et al. "Polylevolysine and Fibronectin-Loaded Nano-Hydroxyapatite/PGLA/Dextran-Based Scaffolds for Improving Bone Regeneration: A Histomorphometric in Animal Study." International Journal of Molecular Sciences 24, no. 9 (2023): 8137. http://dx.doi.org/10.3390/ijms24098137.
Full textSemyari, Hossein, Majid Salehi, Ferial Taleghani, et al. "Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering." Journal of Biomaterials Applications 33, no. 4 (2018): 501–13. http://dx.doi.org/10.1177/0885328218805229.
Full textYun, JW, SY Heo, MH Lee, and HB Lee. "Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine model." Veterinární Medicína 64, No. 12 (2019): 531–38. http://dx.doi.org/10.17221/80/2019-vetmed.
Full textRonca, Alfredo, Vincenzo Guarino, Maria Grazia Raucci, et al. "Large defect-tailored composite scaffolds for in vivo bone regeneration." Journal of Biomaterials Applications 29, no. 5 (2014): 715–27. http://dx.doi.org/10.1177/0885328214539823.
Full textVigni, Giulio Edoardo, Mariano Licciardi, Lorenzo D’itri, et al. "Improved Bone Regeneration Using Biodegradable Polybutylene Succinate Artificial Scaffold with BMP-2 Protein in a Rabbit Model." Materials 18, no. 10 (2025): 2234. https://doi.org/10.3390/ma18102234.
Full textSchlichting, Karin, Hanna Schell, Ralf U. Kleemann, et al. "Influence of Scaffold Stiffness on Subchondral Bone and Subsequent Cartilage Regeneration in an Ovine Model of Osteochondral Defect Healing." American Journal of Sports Medicine 36, no. 12 (2008): 2379–91. http://dx.doi.org/10.1177/0363546508322899.
Full textWang, Wenzhao, Boqing Zhang, Lihong Zhao, et al. "Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application." Nanotechnology Reviews 10, no. 1 (2021): 1359–73. http://dx.doi.org/10.1515/ntrev-2021-0083.
Full textShah, Sarav S., Haixiang Liang, Sandeep Pandit, et al. "Optimization of Degradation Profile for New Scaffold in Cartilage Repair." CARTILAGE 9, no. 4 (2017): 438–49. http://dx.doi.org/10.1177/1947603517700954.
Full textSithole, Mduduzi N., Pradeep Kumar, Lisa C. Du Toit, Kennedy H. Erlwanger, Philemon N. Ubanako, and Yahya E. Choonara. "A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies." International Journal of Molecular Sciences 24, no. 8 (2023): 7611. http://dx.doi.org/10.3390/ijms24087611.
Full textCharbonnier, B., L. Guyon, N. Touya, et al. "MECHANICALLY EVOLUTIVE 3D-PRINTED SCAFFOLDS FOR BONE REGENERATION." Orthopaedic Proceedings 106-B, SUPP_1 (2024): 63. http://dx.doi.org/10.1302/1358-992x.2024.1.063.
Full textPeña, Gonzalo de la, Lorena Gallego, Luis M. Redondo, Luis Junquera, Javier F. Doval, and Álvaro Meana. "Comparative analysis of plasma-derived albumin scaffold, alveolar osteoblasts and synthetic membrane in critical mandibular bone defects: An experimental study on rats." Journal of Biomaterials Applications 36, no. 3 (2021): 481–91. http://dx.doi.org/10.1177/0885328221999824.
Full textWang, Xiaoyang, Shuqing Tong, Shengyun Huang, Li Ma, Zhenxing Liu, and Dongsheng Zhang. "Application of a New Type of Natural Calcined Bone Repair Material Combined with Concentrated Growth Factors in Bone Regeneration in Rabbit Critical-Sized Calvarial Defect." BioMed Research International 2020 (November 24, 2020): 1–6. http://dx.doi.org/10.1155/2020/8810747.
Full textGabor, Alin, Tiberiu Hosszu, Cristian Zaharia, et al. "3D Printing of a Mandibular Bone Deffect." Materiale Plastice 54, no. 1 (2017): 29–31. http://dx.doi.org/10.37358/mp.17.1.4778.
Full textAlonso-Fernández, Iván, Håvard Jostein Haugen, Liebert Parreiras Nogueira, et al. "Enhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures." Polymers 16, no. 9 (2024): 1243. http://dx.doi.org/10.3390/polym16091243.
Full textUnni, Ashok R., Syam K. Venugopal, K. D. John Martin, S. Anoop, S. Maya Maya та B. Dhanush Krishna. "Serum biochemical evaluation of healing of critical-sized long bone defects in rats treated with biphasic hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds". Journal of Veterinary and animal sciences 55, № 3 (2024): 586–92. http://dx.doi.org/10.51966/jvas.2024.55.3.586-592.
Full textLee, Ming-Chan, Cheng-Tang Pan, Wen-Fan Chen, Meng-Chi Lin, and Yow-Ling Shiue. "Design, Manufacture, and Characterization of a Critical-Sized Gradient Porosity Dual-Material Tibial Defect Scaffold." Bioengineering 11, no. 4 (2024): 308. http://dx.doi.org/10.3390/bioengineering11040308.
Full textGani, Maria Apriliani, Aniek Setiya Budiatin, Dewi Wara Shinta, Chrismawan Ardianto, and Junaidi Khotib. "Bovine hydroxyapatite-based scaffold accelerated the inflammatory phase and bone growth in rats with bone defect." Journal of Applied Biomaterials & Functional Materials 21 (January 2023): 228080002211491. http://dx.doi.org/10.1177/22808000221149193.
Full textDombrovskaya, Yu A., N. I. Enukashvili, R. E. Banashkov, N. Yu Semenova, I. A. Karabak, and A. V. Silin. "Prospects for the use of fibrin scaffolds populated with pulp and periodontal stem cells: an experimental study." Parodontologiya 26, no. 2 (2021): 96–103. http://dx.doi.org/10.33925/1683-3759-2021-26-2-96-103.
Full textYoon, Sun Jung, Ki Suk Park, Bang Sil Choi, et al. "Effect of DBP/PLGA Hybrid Scaffold on Angiogenesis during the Repair of Calvarial Bone Defect." Key Engineering Materials 342-343 (July 2007): 161–64. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.161.
Full textWeng, Weizong, Shaojun Song, Liehu Cao, et al. "A Comparative Study of Bioartificial Bone Tissue Poly-L-lactic Acid/Polycaprolactone and PLLA Scaffolds Applied in Bone Regeneration." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/935149.
Full textVerykokou, Styliani, Charalabos Ioannidis, Sofia Soile, et al. "The Role of Cone Beam Computed Tomography in Periodontology: From 3D Models of Periodontal Defects to 3D-Printed Scaffolds." Journal of Personalized Medicine 14, no. 2 (2024): 207. http://dx.doi.org/10.3390/jpm14020207.
Full textLesci, Isidoro Giorgio, Leonardo Ciocca, Odila Mezini, and Norberto Roveri. "Synthetic Biomimetic HA Composite Scaffolds for the Bone Regenerative Medicine Using CAD-CAM Technology." Key Engineering Materials 672 (January 2016): 235–46. http://dx.doi.org/10.4028/www.scientific.net/kem.672.235.
Full textCristescu, Ioan, Lucian Marina, Daniel Vilcioiu, F. Safta, M. Istodorescu, and A. Stere. "The Potential of Antibiotic Collagen Based Biocomposites for the Treatment of Bone Defects." Key Engineering Materials 587 (November 2013): 404–11. http://dx.doi.org/10.4028/www.scientific.net/kem.587.404.
Full textZhu, Hong, Ziheng Lin, Qifei Luan, et al. "Angiogenesis-promoting composite TPMS bone tissue engineering scaffold for mandibular defect regeneration." International Journal of Bioprinting 10, no. 1 (2023): 0153. http://dx.doi.org/10.36922/ijb.0153.
Full textFauzan, Fauzan. "Effect of Human Adipose-Derived Mesenchymal Stem Cell (HADMSC) With Chitosan Scaffold on Bone Defect White Rats (Rattus Norvegicus) on Serum Alkaline Phosphatase (ALP) Levels." Journal of Stem Cell Research and Tissue Engineering 6, no. 1 (2022): 39–47. http://dx.doi.org/10.20473/jscrte.v6i1.37514.
Full textChen, Chiu-Fang, Ya-Shuan Chou, Tzer-Min Lee, et al. "The Uniform Distribution of Hydroxyapatite in a Polyurethane Foam-Based Scaffold (PU/HAp) to Enhance Bone Repair in a Calvarial Defect Model." International Journal of Molecular Sciences 25, no. 12 (2024): 6440. http://dx.doi.org/10.3390/ijms25126440.
Full textV., Sasi Kumar, Beeula A., Praveen Kumar та Naveen Kumar. "Influence of typographic biocomposite scaffold in facilitating biomineralization to progress complex hard tissue repair". BOHR Journal of Material Sciences and Engineering (BIJMSE) 1, № 1 (2023): 7–10. http://dx.doi.org/10.54646/bjmse.2023.02.
Full textKumar, V. Sasi, A. Beeula, Praveen Kumar, and Naveen Kumar. "Influence of Typographic Biocomposite Scaffold in Facilitating Biomineralization to Progress Complex Hard Tissue Repair." BOHR International Journal of Material Sciences and Engineering 1, no. 1 (2022): 7–10. http://dx.doi.org/10.54646/bijmse.002.
Full textHung, Kuo-Sheng, May-Show Chen, Wen-Chien Lan, et al. "Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential." Materials 15, no. 5 (2022): 1971. http://dx.doi.org/10.3390/ma15051971.
Full textZhang, Wang, Fu, Ye, Wang, and Zhou. "Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect." Molecules 24, no. 9 (2019): 1669. http://dx.doi.org/10.3390/molecules24091669.
Full textYang, Changsheng, Lei Zhou, Xiaodan Geng, Hui Zhang, Baolong Wang, and Bin Ning. "New dual-function in situ bone repair scaffolds promote osteogenesis and reduce infection." Journal of Biological Engineering 16, no. 1 (2022). http://dx.doi.org/10.1186/s13036-022-00302-y.
Full textJaber, Mahdi, Patrina S. P. Poh, Georg N. Duda, and Sara Checa. "PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An in silico study." Frontiers in Bioengineering and Biotechnology 10 (September 23, 2022). http://dx.doi.org/10.3389/fbioe.2022.995266.
Full textLiu, Bingchuan, Guojin Hou, Zhongwei Yang, et al. "Repair of critical diaphyseal defects of lower limbs by 3D printed porous Ti6Al4V scaffolds without additional bone grafting: a prospective clinical study." Journal of Materials Science: Materials in Medicine 33, no. 9 (2022). http://dx.doi.org/10.1007/s10856-022-06685-0.
Full textSingh, Srujan, Yuxiao Zhou, Ashley L. Farris, et al. "Geometric Mismatch Promotes Anatomic Repair in Periorbital Bony Defects in Skeletally Mature Yucatan Minipigs." Advanced Healthcare Materials, August 10, 2023. http://dx.doi.org/10.1002/adhm.202301944.
Full textHuiwen, Wu, Liang Shuai, Xie Jia, et al. "3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects." Journal of Biological Engineering 18, no. 1 (2024). http://dx.doi.org/10.1186/s13036-024-00416-5.
Full textRothweiler, R., S. Kuhn, T. Stark, et al. "Development of a new critical size defect model in the paranasal sinus and first approach for defect reconstruction—An in vivo maxillary bone defect study in sheep." Journal of Materials Science: Materials in Medicine 33, no. 11 (2022). http://dx.doi.org/10.1007/s10856-022-06698-9.
Full textSuzuki, Shigeto, Venkata Suresh Venkataiah, Yoshio Yahata, et al. "Correction of large jaw bone defect in the mouse using immature osteoblast-like cells and a three dimensional polylactic acid scaffold." PNAS Nexus, August 8, 2022. http://dx.doi.org/10.1093/pnasnexus/pgac151.
Full textTao, Yuan, Meng Jia, Yang Shao-Qiang, et al. "A novel fluffy PLGA/HA composite scaffold for bone defect repair." Journal of Materials Science: Materials in Medicine 35, no. 1 (2024). http://dx.doi.org/10.1007/s10856-024-06782-2.
Full textJahromi, Hossein Kargar, Morteza Alizadeh, Arian Ehterami та ін. "EVALUATION OF THE EFFECT OF POLY (𝜀-CAPROLACTONE)/POLY (L-LACTIC) ACID/GELATIN NANOFIBER 3D SCAFFOLD CONTAINING RESVERATROL ON BONE REGENERATION". Biomedical Engineering: Applications, Basis and Communications 35, № 05 (2023). http://dx.doi.org/10.4015/s1016237223500278.
Full textMa, Lan, Yijun Yu, Hanxiao Liu, et al. "Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-020-79734-9.
Full text