Dissertations / Theses on the topic 'Scale-Invariant-Feature-Transform (SIFT)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Scale-Invariant-Feature-Transform (SIFT).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Decombas, Marc. "Compression vidéo très bas débit par analyse du contenu." Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0067/document.
Full textThe objective of this thesis is to find new methods for semantic video compatible with a traditional encoder like H.264/AVC. The main objective is to maintain the semantic and not the global quality. A target bitrate of 300 Kb/s has been fixed for defense and security applications. To do that, a complete chain of compression has been proposed. A study and new contributions on a spatio-temporal saliency model have been done to extract the important information in the scene. To reduce the bitrate, a resizing method named seam carving has been combined with the H.264/AVC encoder. Also, a metric combining SIFT points and SSIM has been created to measure the quality of objects without being disturbed by less important areas containing mostly artifacts. A database that can be used for testing the saliency model but also for video compression has been proposed, containing sequences with their manually extracted binary masks. All the different approaches have been thoroughly validated by different tests. An extension of this work on video summary application has also been proposed
May, Michael. "Data analytics and methods for improved feature selection and matching." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/data-analytics-and-methods-for-improved-feature-selection-and-matching(965ded10-e3a0-4ed5-8145-2af7a8b5e35d).html.
Full textMurtin, Chloé Isabelle. "Traitement d’images de microscopie confocale 3D haute résolution du cerveau de la mouche Drosophile." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI081/document.
Full textAlthough laser scanning microscopy is a powerful tool for obtaining thin optical sections, the possible depth of imaging is limited by the working distance of the microscope objective but also by the image degradation caused by the attenuation of both excitation laser beam and the light emitted from the fluorescence-labeled objects. Several workaround techniques have been employed to overcome this problem, such as recording the images from both sides of the sample, or by progressively cutting off the sample surface. The different views must then be combined in a unique volume. However, a straightforward concatenation is often not possible, because the small rotations that occur during the acquisition procedure, not only in translation along x, y and z axes but also in rotation around those axis, making the fusion uneasy. To address this problem we implemented a new algorithm called 2D-SIFT-in-3D-Space using SIFT (scale Invariant Feature Transform) to achieve a robust registration of big image stacks. Our method register the images fixing separately rotations and translations around the three axes using the extraction and matching of stable features in 2D cross-sections. In order to evaluate the registration quality, we created a simulator that generates artificial images that mimic laser scanning image stacks to make a mock pair of image stacks one of which is made from the same stack with the other but is rotated arbitrarily with known angles and filtered with a known noise. For a precise and natural-looking concatenation of the two images, we also developed a module progressively correcting the sample brightness and contrast depending on the sample surface. Those tools we successfully used to generate tridimensional high resolution images of the fly Drosophila melanogaster brain, in particular, its octopaminergic and dopaminergic neurons and their synapses. Those monoamine neurons appear to be determinant in the correct operating of the central nervous system and a precise and systematic analysis of their evolution and interaction is necessary to understand its mechanisms. If an evolution over time could not be highlighted through the pre-synaptic sites analysis, our study suggests however that the inactivation of one of these neuron types triggers drastic changes in the neural network
Dellinger, Flora. "Descripteurs locaux pour l'imagerie radar et applications." Thesis, Paris, ENST, 2014. http://www.theses.fr/2014ENST0037/document.
Full textWe study here the interest of local features for optical and SAR images. These features, because of their invariances and their dense representation, offer a real interest for the comparison of satellite images acquired under different conditions. While it is easy to apply them to optical images, they offer limited performances on SAR images, because of their multiplicative noise. We propose here an original feature for the comparison of SAR images. This algorithm, called SAR-SIFT, relies on the same structure as the SIFT algorithm (detection of keypoints and extraction of features) and offers better performances for SAR images. To adapt these steps to multiplicative noise, we have developed a differential operator, the Gradient by Ratio, allowing to compute a magnitude and an orientation of the gradient robust to this type of noise. This operator allows us to modify the steps of the SIFT algorithm. We present also two applications for remote sensing based on local features. First, we estimate a global transformation between two SAR images with help of SAR-SIFT. The estimation is realized with help of a RANSAC algorithm and by using the matched keypoints as tie points. Finally, we have led a prospective study on the use of local features for change detection in remote sensing. The proposed method consists in comparing the densities of matched keypoints to the densities of detected keypoints, in order to point out changed areas
Dardas, Nasser Hasan Abdel-Qader. "Real-time Hand Gesture Detection and Recognition for Human Computer Interaction." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23499.
Full textDecombas, Marc. "Compression vidéo très bas débit par analyse du contenu." Electronic Thesis or Diss., Paris, ENST, 2013. http://www.theses.fr/2013ENST0067.
Full textThe objective of this thesis is to find new methods for semantic video compatible with a traditional encoder like H.264/AVC. The main objective is to maintain the semantic and not the global quality. A target bitrate of 300 Kb/s has been fixed for defense and security applications. To do that, a complete chain of compression has been proposed. A study and new contributions on a spatio-temporal saliency model have been done to extract the important information in the scene. To reduce the bitrate, a resizing method named seam carving has been combined with the H.264/AVC encoder. Also, a metric combining SIFT points and SSIM has been created to measure the quality of objects without being disturbed by less important areas containing mostly artifacts. A database that can be used for testing the saliency model but also for video compression has been proposed, containing sequences with their manually extracted binary masks. All the different approaches have been thoroughly validated by different tests. An extension of this work on video summary application has also been proposed
Dellinger, Flora. "Descripteurs locaux pour l'imagerie radar et applications." Electronic Thesis or Diss., Paris, ENST, 2014. http://www.theses.fr/2014ENST0037.
Full textWe study here the interest of local features for optical and SAR images. These features, because of their invariances and their dense representation, offer a real interest for the comparison of satellite images acquired under different conditions. While it is easy to apply them to optical images, they offer limited performances on SAR images, because of their multiplicative noise. We propose here an original feature for the comparison of SAR images. This algorithm, called SAR-SIFT, relies on the same structure as the SIFT algorithm (detection of keypoints and extraction of features) and offers better performances for SAR images. To adapt these steps to multiplicative noise, we have developed a differential operator, the Gradient by Ratio, allowing to compute a magnitude and an orientation of the gradient robust to this type of noise. This operator allows us to modify the steps of the SIFT algorithm. We present also two applications for remote sensing based on local features. First, we estimate a global transformation between two SAR images with help of SAR-SIFT. The estimation is realized with help of a RANSAC algorithm and by using the matched keypoints as tie points. Finally, we have led a prospective study on the use of local features for change detection in remote sensing. The proposed method consists in comparing the densities of matched keypoints to the densities of detected keypoints, in order to point out changed areas
Leoputra, Wilson Suryajaya. "Video foreground extraction for mobile camera platforms." Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/1384.
Full textHejl, Zdeněk. "Rekonstrukce 3D scény z obrazových dat." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236495.
Full textSaravi, Sara. "Use of Coherent Point Drift in computer vision applications." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12548.
Full textYang, Tzung-Da, and 楊宗達. "Scale-Invariant Feature Transform (SIFT) Based Iris Match Technology for Identity Identification." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/52714099795239015467.
Full text國立中興大學
電機工程學系所
105
Biometrics has been applied to the personal recognition popularly and it becomes more important. The iris recognition is one of the biometric identification methods, and the technology can provide the accurate personal recognition. As early as 2004, the German airport in Frankfurt began to use the iris identification system. By the iris scan identification, the iris information is linked to the passport data database, and the personal identity is functional. In recent years, the iris identification is used widely and increasingly in personal identifications. Even the mobile phone also begin to use the iris identification system, and the importance of biometrics gains more and more attention. The traditional iris recognition technology mainly transforms the iris feature region into a square matrix by using the polar coordinate method, and the square matrix is transformed to the feature codes, and then the signature is used to the feature match finally. The difference between the proposed and the traditional iris recognition systems is : to avoid the eyelid and eyelash interferences, the retrieved iris region in the proposed design only locates near the pupil around the ring area and the lower half of the iris area for recognitions. On the other side, the traditional iris identification uses the feature code matching technology; however, the proposed method uses the image feature matching technology, i.e. the scale-invariant feature transform (SIFT) method. The SIFT uses the local features of the image, and it keeps the feature invariance for the changes of rotation, scaling, and brightness. The SIFT also maintains a certain degree of stability for the change of the perspective affine transformation and noises. Therefore, it is very suitable that the SIFT technology is applied to iris feature matching. In the proposed design, the accuracy of the iris recognition is 95%. Compared with other methods by using the same database and the similar SIFT technology as the matching method, the recognition performance of the proposed design is suitable.
Pan, Wei-Zheng, and 潘偉正. "FPGA-Based Implementation for Scale Invariant Feature Transform (SIFT) of Image Recognition Algorithm." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/yjp76f.
Full text國立臺灣師範大學
電機工程學系
104
To solve the problem of image recognition, which requires plenty of computation time by software, we present a hardware implementation approach of SIFT recognition algorithm to achieve the goal of real time execution, through the use of offline calculation of the Gaussian kernel by software, a mathematical derivation to calculate inverse matrix without using any divisors, realization of image pyramid in parallel, etc. As a result, the system performs well in reducing a number of logic units required and the system frequency is significantly increased. In addition, the CORDIC algorithm is employed to implement not only mathematical functions such as trigonometric functions and square root computation, but also an image gradient histogram successfully by hardware. Consequently, the dominant orientation detection and key point descriptors can be implemented by image gradient histogram. To develop an applicable system, the first step is to apply the software and hardware co-design approach to accelerate functional modules and subsequenty implement the entire system in pure hardware. Besides, the structure of all modules is based on pipeline design. Experimental results demonstrated that the proposed approach has significantly reduced computation time required and efficiently increased maximum system frequency. Most importantly, the execution speed has achieved real time computation for practical applications.
Rajeev, Namburu. "Analysis of Palmprint and Palmvein Authentication Using Scale Invariant Feature Transform(SIFT) Features." Thesis, 2017. http://ethesis.nitrkl.ac.in/8803/1/2017_MT_N_Rajeev.pdf.
Full textTeng, Chtng-Yuan, and 鄧景元. "A study of using Scale Invariant Feature Transform (SIFT) algorithm for radar satellite imagery coregistration." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/84739806805595993983.
Full text國立臺灣海洋大學
海洋環境資訊學系
98
The time-sequence images are collected on different orbits and incidence angles, results in images are quite different in scale, position and rotation angle. That will be a problem when one tries to locate interest points on different images and match them. Besides, radar reflectance highly depends on the local incidence angle with terrain and the shape of the object; it is harder to match radar imagery. Therefore, how to automatically register radar imagery has become a critical issue. In this thesis, we study the radar imaging geometry, radar imagery characteristics, and differentiations between images like variance in scale and rotation. Scale Invariant Feature Transformation (SIFT) has been proven to match optical imagery with variance in scale, translation and rotation. After a thorough study, we try to use SIFT on radar imagery to get stable features automatically to avoid the influence of imagery shift, scale and speckles in time-sequence images, without user intervention. According to the result via testing SIFT on several pair radar images with different resolution and imaging angle. These shows that SIFT can locate interest points on the roads and building in the image and match them accurately. Therefore, SIFT can register different radar imagery effectively and automatically.
PRAKASH, VED. "AN ANALYTICAL APPROACH TOWARDS CONVERSION OF HUMAN SIGNED LANGUAGE TO TEXT USING MODIFIED SCALE INVARIANT FEATURE TRANSFORM (SIFT)." Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14739.
Full textWerkhoven, Shaun. "Improving interest point object recognition." Thesis, 2010. http://hdl.handle.net/1959.13/804109.
Full textVision is a fundamental ability for humans. It is essential to a wide range of activities. The ability to see underpins almost all tasks of our day to day life. It is also an ability exercised by people almost effortlessly. Yet, in spite of this it is an ability that is still poorly understood, and has been possible to reproduce in machines only to a very limited degree. This work grows out of a belief that substantial progress is currently being made in understanding visual recognition processes. Advances in algorithms and computer power have recently resulted in clear and measurable progress in recognition performance. Many of the key advances in recognizing objects have related to recognition of key points or interest points. Such image primitives now underpin a wide array of tasks in computer vision such as object recognition, structure from motion, navigation. The object of this thesis is to find ways to improve the performance of such interest point methods. The most popular interest point methods such as SIFT (Scale Invariant Feature Transform) consist of a descriptor, a feature detector and a standard distance metric. This thesis outlines methods whereby all of these elements can be varied to deliver higher performance in some situations. SIFT is a performance standard to which we often refer herein. Typically, the standard Euclidean distance metric is used as a distance measure with interest points. This metric fails to take account of the specific geometric nature of the information in the descriptor vector. By varying this distance measure in a way that accounts for its geometry we show that performance improvements can be obtained. We investigate whether this can be done in an effective and computationally efficient way. Use of sparse detectors or feature points is a mainstay of current interest point methods. Yet such an approach is questionable for class recognition since the most discriminative points may not be selected by the detector. We therefore develop a dense interest point method, whereby interest points are calculated at every point. This requires a low dimensional descriptor to be computationally feasible. Also, we use aggressive approximate nearest neighbour methods. These dense features can be used for both point matching and class recognition, and we provide experimental results for each. These results show that it is competitive with, and in some cases superior to, traditional interest point methods. Having formed dense descriptors, we then have a multi-dimensional quantity at every point. Each of these can be regarded as a new image and descriptors can be applied to them again. Thus we have higher level descriptors – ‘descriptors upon descriptors’. Experimental results are obtained demonstrating that this provides an improvement to matching performance. Standard image databases are used for experiments. The application of these methods to several tasks, such as navigation (or structure from motion) and object class recognition is discussed.
Γράψα, Ιωάννα. "Ανάπτυξη τεχνικών αντιστοίχισης εικόνων με χρήση σημείων κλειδιών." Thesis, 2012. http://hdl.handle.net/10889/5500.
Full textStitching multiple images together to create high resolution panoramas is one of the most popular consumer applications of image registration and blending. At this work, feature-based registration algorithms have been used. The first step is to extract distinctive invariant features from every image which are invariant to image scale and rotation, using SIFT (Scale Invariant Feature Transform) algorithm. After that, we try to find the first pair of images in order to stitch them. To check if two images can be stitched, we match their keypoints (the results from SIFT). Once an initial set of feature correspondences has been computed, we need to find the set that is will produce a high-accuracy alignment. The solution at this problem is RANdom Sample Consensus (RANSAC). Using this algorithm (RANSAC) we find the motion model between the two images (homography). If there is enough number of correspond points, we stitch these images. After that, seams are visible. As solution to this problem is used the method of Laplacian Pyramids. We repeat the above procedure using as initial image the ex panorama which has been created.
Rosner, Jakub. "Methods of parallelizing selected computer vision algorithms for multi-core graphics processors." Rozprawa doktorska, 2015. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=28390.
Full textRosner, Jakub. "Methods of parallelizing selected computer vision algorithms for multi-core graphics processors." Rozprawa doktorska, 2015. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=28390.
Full textPrasad, S. "Signal Processing Algorithms For Digital Image Forensics." Thesis, 2008. http://hdl.handle.net/2005/655.
Full textPrasad, S. "Signal Processing Algorithms For Digital Image Forensics." Thesis, 2007. https://etd.iisc.ac.in/handle/2005/655.
Full text