Academic literature on the topic 'Scanning Near-field Optical Microscopy (SNOM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scanning Near-field Optical Microscopy (SNOM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Scanning Near-field Optical Microscopy (SNOM)"

1

Vobornik, Dušan, and Slavenka Vobornik. "Scanning Near-Field Optical Microscopy." Bosnian Journal of Basic Medical Sciences 8, no. 1 (February 20, 2008): 63–71. http://dx.doi.org/10.17305/bjbms.2008.3000.

Full text
Abstract:
An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.
APA, Harvard, Vancouver, ISO, and other styles
2

ITO, Shinzaburo, and Hiroyuki AOKI. "Scanning Near Field Optical Microscopy : SNOM." Journal of The Adhesion Society of Japan 41, no. 5 (2005): 170–76. http://dx.doi.org/10.11618/adhesion.41.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pohl, D. W., U. Ch Fischer, and U. T. Dürig. "Scanning near-field optical microscopy (SNOM)." Journal of Microscopy 152, no. 3 (December 1988): 853–61. http://dx.doi.org/10.1111/j.1365-2818.1988.tb01458.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cricenti, A. "Scanning near-field optical microscopy (SNOM)." physica status solidi (c) 5, no. 8 (June 2008): 2615–20. http://dx.doi.org/10.1002/pssc.200779106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pfeffer, M., P. Lambelet, and F. Marquis Weible. "Scanning Near-field Optical Microscopy (SNOM): Biomedical Applications." Biomedizinische Technik/Biomedical Engineering 41, s1 (1996): 282–83. http://dx.doi.org/10.1515/bmte.1996.41.s1.282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vobornik, D., G. Margaritondo, J. S. Sanghera, P. Thielen, I. D. Aggarwal, B. Ivanov, N. H. Tolk, et al. "Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)." Journal of Alloys and Compounds 401, no. 1-2 (September 2005): 80–85. http://dx.doi.org/10.1016/j.jallcom.2005.02.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hermann, Richard J., and Michael J. Gordon. "Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes." Annual Review of Chemical and Biomolecular Engineering 9, no. 1 (June 7, 2018): 365–87. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084150.

Full text
Abstract:
Light-matter interactions can provide a wealth of detailed information about the structural, electronic, optical, and chemical properties of materials through various excitation and scattering processes that occur over different length, energy, and timescales. Unfortunately, the wavelike nature of light limits the achievable spatial resolution for interrogation and imaging of materials to roughly λ/2 because of diffraction. Scanning near-field optical microscopy (SNOM) breaks this diffraction limit by coupling light to nanostructures that are specifically designed to manipulate, enhance, and/or extract optical signals from very small regions of space. Progress in the SNOM field over the past 30 years has led to the development of many methods to optically characterize materials at lateral spatial resolutions well below 100 nm. We review these exciting developments and demonstrate how SNOM is truly extending optical imaging and spectroscopy to the nanoscale.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Haomin, Jiahan Li, James H. Edgar, and Xiaoji G. Xu. "Three-dimensional near-field analysis through peak force scattering-type near-field optical microscopy." Nanoscale 12, no. 3 (2020): 1817–25. http://dx.doi.org/10.1039/c9nr08417g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schoenmaker, J., M. Pojar, A. D. Barra-Barrera, A. C. Seabra, and A. D. Santos. "Chemical Etching Tip Processing for Magneto-Optical Scanning Near-Field Optical Microscopy." Microscopy and Microanalysis 11, S03 (December 2005): 18–21. http://dx.doi.org/10.1017/s1431927605050798.

Full text
Abstract:
Nanoscale resolution in microscopy characterization has become crucial for state-of-the-art science and technology. We have developed a Magneto-optical Scanning Near-Field Optical Microscope (MO-SNOM), and it has demonstrated to be a powerful tool to study local magnetic properties [1,2]. One of the critical steps in producing a reliable instrument and consistent images is the fabrication of the microscope tip. This work presents concepts and results on tip processing by chemical etching on FS-SN-3224 optical fibers from 3M. The quality of the tips produced was tested on magnetic multilayers presenting exchange-bias coupling.
APA, Harvard, Vancouver, ISO, and other styles
10

Sekatskii, S. K., K. Dukenbayev, M. Mensi, A. G. Mikhaylov, E. Rostova, A. Smirnov, N. Suriyamurthy, and G. Dietler. "Single molecule fluorescence resonance energy transfer scanning near-field optical microscopy: potentials and challenges." Faraday Discussions 184 (2015): 51–69. http://dx.doi.org/10.1039/c5fd00097a.

Full text
Abstract:
A few years ago, single molecule Fluorescence Resonance Energy Transfer Scanning Near-Field Optical Microscope (FRET SNOM) images were demonstrated using CdSe semiconductor nanocrystal–dye molecules as donor–acceptor pairs. Corresponding experiments reveal the necessity to exploit much more photostable fluorescent centers for such an imaging technique to become a practically used tool. Here we report the results of our experiments attempting to use nitrogen vacancy (NV) color centers in nanodiamond (ND) crystals, which are claimed to be extremely photostable, for FRET SNOM. All attempts were unsuccessful, and as a plausible explanation we propose the absence (instability) of NV centers lying close enough to the ND border. We also report improvements in SNOM construction that are necessary for single molecule FRET SNOM imaging. In particular, we present the first topographical images of single strand DNA molecules obtained with fiber-based SNOM. The prospects of using rare earth ions in crystals, which are known to be extremely photostable, for single molecule FRET SNOM at room temperature and quantum informatics at liquid helium temperatures, where FRET is a coherent process, are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Scanning Near-field Optical Microscopy (SNOM)"

1

Stevenson, Richard. "Scanning near-field optical microscopy (SNOM) of semiconductor nanostructures." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schneider, Susanne Christine. "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1192105974322-82865.

Full text
Abstract:
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics
Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist
APA, Harvard, Vancouver, ISO, and other styles
3

Raval, Meera. "Development of novel distance control methods for the scanning near-field optical microscope (SNOM) to reliably image biological samples in liquids." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rothery, Alison Melinda. "Development of a novel light source for use in a scanning ion conductance-scanning near-field optical microscope (SICM-SNOM) for imaging of biological samples." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bobek, Juraj. "Příprava a testování SNOM sond speciálních vlastností." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402582.

Full text
Abstract:
Fotonická krystalická vlákna (PCF) představují slibný nástroj pro spojení technik známých z mikroskopie rastrovací sondou, elektronové mikroskopie a systémů pro vstřikování plynu. Přivedení světla a přenos pracovního plynu současně do blízkosti vzorku umístěného uvnitř elektronového mikroskopu přináší nové možnosti experimentů. PCF by mohly být použity nejen k charakterizaci nebo modifikaci struktur na mikroskopické úrovni, ale také k jejich výrobě. Tato práce se zabývá výzkumem literárních zdrojů s tématikou fotonických krystalů s důrazem na PCF. Leptání PCF pomocí kyseliny fluorovodíkové bez poškození jejich vnitřní struktury je experimentálně studováno s velkou precizností. Optické vlastnosti závislé na geometrii PCF jsou testovány pro různé modifikace PCF. Dále se práce zabývá spojením PCF s mikroskopií atomárních sil a následnou integrací do elektronového mikroskopu.
APA, Harvard, Vancouver, ISO, and other styles
6

Xie, Zhihua. "Fiber-integrated nano-optical antennas and axicons as ultra-compact all-fiber platforms for luminescence detection and imaging down to single nano-emitters." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2046/document.

Full text
Abstract:
Ma thèse concerne le développent de systèmes ultra compactes auto-alignés et à faible coût intégréssur fibre optique monomode pour la collection fibrée de la luminescence locale. Dans un premiertemps, un axicon fibré auto-aligné (AXIGRIN) est proposé permettant de fournir la première imagerierésolue ultra-compacte fibrée de quantum dots PbS infrarouges. Ensuite, la première nano-imagerie(système entièrement fibrée) de quantum dots PbS uniques est réalisée à l’aide d’une nano-antenneà ouverture bowtie intégrée sur pointe fibrée. Enfin, le concept d’≪antenne cornet≫ nano-optiqueest proposé pour le couplage direct et efficace de la luminescence excitée par rayons X à une fibreoptique, dans le but de générer les premiers capteurs et dosimètres fibrés à rayons X
My thesis is devoted to develop ultra-compact, plug-and-play and low-cost single-mode optical fibersystems for in-fiber luminescence collection. First, a new fiber self-aligned axicon is proposed toprovide the first resolved infrared fluorescence imaging of PbS quantum dots in far field. Then,all-fiber near-field imaging of single PbS quantum dots is achieved by double resonance bowtienano-aperture antenna (BNA) with nanometer resolution. Finally, the concept of fiber nano-opticalhorn antenna is proposed for in-fiber X-ray excited luminescence out-coupling, with the purpose ofgenerating the first generation of fiber X-ray sensors and dosimeters
APA, Harvard, Vancouver, ISO, and other styles
7

Foubert, Kevin. "Etude en champ proche optique de structures nanophotoniques couplées." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS091.

Full text
Abstract:
Depuis une vingtaine d’années, l’optique bénéficie des avancées considérables de la microélectronique.Ainsi, il est maintenant possible de produire, guider, confiner ou encore ralentirla lumière sur puce à une échelle sub-longueur d’onde. Dans cette thèse, nous étudions de telscomposants par l’intermédiaire d’un microscope en champ proche optique (SNOM).La première partie présente une vision d’ensemble de la situation actuelle en nanophotoniqueintégrée sur substrat diélectrique. Elle expose plusieurs enjeux et faits marquants récents dansce domaine. Elle introduit également le principe physique et le fonctionnement d’un SNOMdans les grandes lignes.La seconde partie est consacrée à la microscopie en champ proche optique d’un point devue instrumental. Après une analyse physique, nous détaillons le montage de notre propremicroscope sur le banc de caractérisation optique du laboratoire, avant d’analyser la formationdes images optiques obtenues avec cette technique.La troisième partie concerne l’étude de guides d’onde couplés en Silicium sur isolant (SOI),dans lesquels s’intègrent des nano-cavités optiques. Les phénomènes de couplage par recouvrementde champs évanescents sont étudiés numériquement et analytiquement. L’analyse de cesstructures grâce au SNOM nous a permis d’une part de vérifier la validité de ces modèles, etd’autre part d’observer directement le guidage et le confinement de la lumière dans un milieude faible indice de réfraction. Nous montrons cependant que ces résultats restent très sensiblesaux aléas de fabrication. Enfin, nous mettons en évidence grâce au SNOM et à des mesuresspectrales que la description de structures de N cavités juxtaposées peut être approchée par lathéorie des modes couplés
Since the end of the XXth century, optics benefits from significant breakthrough comingfrom the micro-electronic technologies. It is thus now possible to produce, guide, slow downor even trap light on a chip at a sub-wavelength scale. In this thesis, we study such opticalcomponents thanks to a Scanning Near-Field Optical Microscope (SNOM).The first part exposes an overall view of the current situation in the field of dielectricsubstrate integrated nanophotonics. Some of the recent outstanding issues and results are hereintroduced, as well as the general principle and the necessary tools to operate a SNOM.The second part is dedicated to optical near-field microscopy, technically speaking. Thephysical rules are here developed. Then we detail the instrumental set up of our own SNOMon our optical characterization bench. We end by analysing the optical images formation witha SNOM.The third part bears upon the study of Silicon-on-Insulator (SOI) coupled waveguides whereoptical nano-cavities could be inserted, by resorting to the previously implemented SNOM.Overlapping evanescent fields induced coupling phenomena are numerically and analyticallystudied. The use of the SNOM allowed us here to check the validity of our models. Besides,we have directly observed thanks to this instrument the guiding and confinement of light ina low refractive index media. However, we show that this phenomenon is highly subjected tofabrication uncertainties. Finally, we use the SNOM and spectral measurements in order todemonstrate that systems of N coupled nanocavities could be described with a simple coupledmodes model
APA, Harvard, Vancouver, ISO, and other styles
8

Leong, Siang Huei. "Apertureless scanning near-field optical microscopy." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Neacsu, Corneliu Catalin. "Tip-enhanced near-field optical microscopy." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16284.

Full text
Abstract:
Die vorliegende Arbeit beschreibt neue Entwicklungen im Verständnis und in der Umsetzung der optischen Nahfeldmikroskopie (scattering - type scanning near-field optical microscopy, s-SNOM) für die lineare und nichtlineare optische Bildgebung mit ultrahoher Auslösung und Empfindlichkeit. Die fundamentalen Mechanismen, die der Feldverstärkung am Ende von ultrascharfen metallischen Spitzen zugrunde liegen, werden systematisch behandelt. Die plasmonischen Eigenschaften der Spitze wurden erstmalig beobachtet, und ihre Bedeutung für die optische Kopplung zwischen Spitze und Probe sowie für die sich ergebende Einengung des Nahfeldes wird diskutiert. Ein aperturloses Nahfeldmikroskop für die spitzenverstärkte Ramanspektroskopie (tip-enhanced Raman spectroscopy, TERS) wurde entwickelt. Die Grundlagen der TERS und die wesentliche Rolle des plasmonischen Verhaltens der Spitze sowie die klare Unterscheidung von Nahfeld-Ramansignatur und Fernfeld-Abbildungsartefakten werden beschrieben. Nahfeld Raman Verstärkungsfaktoren von bis zu 10 wurden erreicht, was einer Feldverstärkung von bis zu 130 entspricht und Raman-Messungen bis auf Einzel-Molekül-Niveau ermöglichte. Die optische Frequenzverdopplung (second harmonic generation, SHG) an einzelnen Spitzen wurde untersucht. Aufgrund ihrer teilweise asymmetrischen Nanostruktur erlauben die Spitzen eine klare Unterscheidung von lokalen Oberflächen und nichtlokalen Volumenbeiträgen zur nichtlinearen Polarisation sowie die Analyse ihrer Polarisations- und Emissions-Auswahlregeln. Die spitzenverstärkte Frequenzverdopplungs-Spektroskopie und die räumlich hoch aufgelöste Abbildung auf Basis des dielektrischen Kontrasts werden demonstriert. Mit Hilfe einer phasen-sensitiven, Selbst-homodyn-Frequenzverdopplungs-s-SNOM-Abbildungsmethode kann die Oberflächen-Struktur der intrinsischen 180-Domänen im hexagonal multiferroischen YMnO aufgelöst werden.
This thesis describes the implementation of scattering-type near-field optical microscopy (s-SNOM) for linear and nonlinear optical imaging. The technique allows for optical spectroscopy with ultrahigh spatial resolution. New results on the microscopic understanding of the imaging mechanism and the employment of s-SNOM for structure determination at solid surfaces are presented. The method relies on the use of metallic probe tips with apex radii of only few nanometers. The local-field enhancement and its dependence on material properties are investigated. The plasmonic character of Au tips is identified and its importance for the optical tip-sample coupling and subsequent near-field confinement are discussed. The experimental results offer valuable criteria in terms of tip-material and structural parameters for the choice of suitable tips required in s-SNOM. An near-field optical microscope is developed for tip-enhanced Raman spectroscopy (TERS) studies. The principles of TERS and the role of the tip plasmonic behavior together with clear distinction of near-field Raman signature from far-field imaging artifacts are described. TERS results of monolayer and submonolayer molecular coverage on smooth Au surfaces are presented. Second harmonic generation (SHG) from individual tips is investigated. As a partially asymmetric nanostructure, the tip allows for the clear distinction of local surface and nonlocal bulk contributions to the nonlinear polarization and the analysis of their polarization and emission selection rules. Tip-enhanced SH microscopy and dielectric contrast imaging with high spatial resolution are demonstrated. SHG couples directly to the ferroelectric ordering in materials and in combination with scanning probe microscopy can give access to the morphology of mesoscopic ferroelectric domains. Using a phase sensitive self-homodyne SHG s-SNOM imaging method, the surface topology of 180 intrinsic domains in hexagonal multiferroic YMnO is resolved.
APA, Harvard, Vancouver, ISO, and other styles
10

LeBlanc, Philip R. "Dual-wavelength scanning near-field optical microscopy." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82911.

Full text
Abstract:
A dual-wavelength Scanning Near-Field Optical Microscope was developed in order to investigate near-field contrast mechanisms as well as biological samples in air. Using a helium-cadmium laser, light of wavelengths 442 and 325 nanometers is coupled into a single mode optical fiber. The end of the probe is tapered to a sub-wavelength aperture, typically 50 nanometers, and positioned in the near-field of the sample. Light from the aperture is transmitted through the sample and detected in a confocal arrangement by two photomultiplier tubes. The microscope has a lateral topographic resolution of 10 nanometers, a vertical resolution of 0.1 nanometer and an optical resolution of 30 nanometers. Two alternate methods of producing the fiber probes, heating and pulling, or acid etching, are compared and the metal coating layer defining the aperture is discussed. So-called "shear-force" interactions between the tip and sample are used as the feedback mechanism during raster scanning of the sample. An optical and topographic sample standard was developed to calibrate the microscope and extract the ultimate resolution of the instrument. The novel use of two wavelengths enables the authentication of true near-field images, as predicted by various models, as well as the identification of scanning artifacts and the deconvolution of often highly complicated relationships between the topographical and optical images. Most importantly, the use of two wavelengths provides information on the chemical composition of the sample. Areas of a polystyrene film are detected by a significant change in the relative transmission of the two wavelengths with a resolution of 30 nanometers. As a biological application, a preliminary investigation of the composition of Black Spruce wood cell fibers was performed. Comparisons of the two optical channels reveal the expected lignin distributions in the cell wall.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Scanning Near-field Optical Microscopy (SNOM)"

1

Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces (NanoScience and Technology). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, Francis L., and Hubert M. Pollock. Microspectroscopy as a tool to discriminate nanomolecular cellular alterations in biomedical research. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.8.

Full text
Abstract:
This article considers the use of microspectroscopy for discriminating nanomolecular cellular alterations in biomedical research. It begins with an overview of some existing mid-infrared microspectroscopy techniques, including FTIR microspectroscopy and Raman microspectroscopy. It then discusses near-field techniques such as scanning near-field optical microscopy, near-field Raman microscopy, and photothermal microspectroscopy (PTMS). It also examines promising alternative sources of IR light, possible advantages of using normal atomic force microscopy probes, experimental procedures for PTMS, and prospects for high spatial resolution in near-field FTIR spectroscopy. Finally, it describes the spectroscopic detection of small particles, along with the use of the analysis paradigm to discriminate nanomolecular cellular alterations in biomedical research.
APA, Harvard, Vancouver, ISO, and other styles
3

Narlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.

Full text
Abstract:
This Handbook presents important developments in the field of nanoscience and technology, focusing on the advances made with a host of nanomaterials including DNA and protein-based nanostructures. Topics include: optical properties of carbon nanotubes and nanographene; defects and disorder in carbon nanotubes; roles of shape and space in electronic properties of carbon nanomaterials; size-dependent phase transitions and phase reversal at the nanoscale; scanning transmission electron microscopy of nanostructures; the use of microspectroscopy to discriminate nanomolecular cellular alterations in biomedical research; holographic laser processing for three-dimensional photonic lattices; and nanoanalysis of materials using near-field Raman spectroscopy. The volume also explores new phenomena in the nanospace of single-wall carbon nanotubes; ZnO wide-bandgap semiconductor nanostructures; selective self-assembly of semi-metal straight and branched nanorods on inert substrates; nanostructured crystals and nanocrystalline zeolites; unusual properties of nanoscale ferroelectrics; structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers; fabrication and characterization of magnetic nanowires; and properties and potential of protein-DNA conjugates for analytic applications.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Scanning Near-field Optical Microscopy (SNOM)"

1

Richter, Marc, and Volker Deckert. "Scanning Near-Field Optical Microscopy (SNOM)." In Surface and Thin Film Analysis, 481–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636921.ch31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schollwöck, Ulrich, and Herbert Wagner. "A Perturbation-Theory Approach to Scanning Near-Field Optical Microscopy (SNOM)." In Near Field Optics, 247–54. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hartmann, T., R. Gatz, W. Wiegräbe, A. Kramer, A. Hillebrand, K. Lieberman, W. Baumeister, and R. Guckenberger. "A Scanning Near-Field Optical Microscope (SNOM) for Biological Applications." In Near Field Optics, 35–44. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Keplinger, Tobias, and Ingo Burgert. "Analyzing Plant Cell Wall Ultrastructure by Scanning Near-Field Optical Microscopy (SNOM)." In Methods in Molecular Biology, 239–49. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-0716-0621-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fujihira, Masamichi. "Fluorescence Microscopy and Spectroscopy by Scanning Near-Field Optical/Atomic Force Microscope (SNOM-AFM)." In Optics at the Nanometer Scale, 205–21. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0247-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fischer, U. Ch. "Scanning Near Field Optical Microscopy." In Scanning Microscopy, 76–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84810-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Narushima, Tetsuya. "Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy." In Compendium of Surface and Interface Analysis, 577–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fischer, U. C. "Scanning Near-Field Optical Microscopy." In Scanning Probe Microscopy, 161–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03606-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gimzewski, J. K., R. Berndt, R. R. Schlittler, A. W. McKinnon, M. E. Welland, T. M. H. Wong, Ph Dumas, et al. "Optical Spectroscopy and Microscopy Using Scanning Tunneling Microscopy." In Near Field Optics, 333–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Scanning Near-Field Optical Microscopy." In Encyclopedia of Nanotechnology, 2280–92. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_283.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Scanning Near-field Optical Microscopy (SNOM)"

1

Greener, H., M. Mrejen, U. Arieli, and H. Suchowski. "Multifrequency Near Field Scanning Optical Microscopy (MF-SNOM)." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_at.2018.jth2a.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chuang, C. H., and Y. L. Lo. "Heterodyne Detection Signal Analysis in Apertureless Scanning Near-Field Optical Microscopy." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52186.

Full text
Abstract:
Apertureless scattering near-field optical microscopy (A-SNOM) is generally performed using a heterodyne detection technique since it provides a higher signal-to-noise (S/N) ratio than homodyne detection. Accordingly, this study constructs a robust interference-based model of the detection signal which takes account of both the tip enhancement phenomena and the tip reflective background electric field to analyze the amplitude and phase of heterodyne detection signals at different harmonics of the tip vibration frequency. The analytical results indicate that the high-order harmonic tip scattering noise decays more rapidly with a high-order Bessel function for small phase modulation depths than the near-field interaction signal. It is also shown that the signal contrast improves as the wavelength of the illuminating light source is increased or the incident angle is reduced. As compared with homodyne technique, it can be found the signal contrast is much improved in visible region in heterodyne technique. The results presented in this study provide an improved understanding of the complex signal detected in the heterodyne A-SNOM technique and suggest potential means of improving its S/N ratio such that the signal contrast of heterodyne A-SNOM can be improved.
APA, Harvard, Vancouver, ISO, and other styles
3

Pohl, D. W., U. C. Fischer, and U. T. Durig. "Scanning Near-Field Optical Microscopy (SNOM*): Basic Principles And Some Recent Developments." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by E. Clayton Teague. SPIE, 1988. http://dx.doi.org/10.1117/12.944518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parent, G., S. Fumeron, and D. Lacroix. "FDTD Study of the Surface Waves Detection in Apertureless Scanning Near-Field Microscopy." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52241.

Full text
Abstract:
Recent studies have shown the importance of surface waves in heat transfer near interfaces. The scanning near field optical microscopy (SNOM) provides an experimental tool to investigate the thermal electromagnetic field near surfaces. In this work, we present a three dimensional model of SNOM devices. This model is based on the finite-difference-time domain (FDTD) method associated to a near to far field transformation. Near field and far field scattered by a silicon tetrahedral tip and by a pecfectly conducting one are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Lamela, J., E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, F. Jaque, J. Canet-Ferrer, and J. Martinez-Pastor. "Scanning near-field optical microscopy (SNOM) of lithium niobate aperiodically poled during growth." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferber, J., U. C. Fischer, J. Koglin, and Harald Fuchs. "Reflection mode scanning near-field optical microscope (SNOM) with the tetrahedral tip." In Lasers, Optics, and Vision for Productivity in Manufacturing I, edited by Christophe Gorecki. SPIE, 1996. http://dx.doi.org/10.1117/12.250781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daunis, Trey B., Farhat Abbas, Kevin P. Clark, Ehud Fuchs, Kevin Lascola, Yamac Dikmelik, Kimari Hodges, et al. "Infrared scanning near-field optical microscopy (IR-SNOM) for thermal profiling of quantum cascade lasers." In Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXI, edited by Israel Gannot and Katy Roodenko. SPIE, 2021. http://dx.doi.org/10.1117/12.2585911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaupp, Gerd, Andreas Herrmann, and Gerhard Wagenblast. "Scanning near-field optical microscopy (SNOM) with uncoated tips: applications in fluorescence techniques and Raman spectroscopy." In BiOS '99 International Biomedical Optics Symposium, edited by Eiichi Tamiya and Shuming Nie. SPIE, 1999. http://dx.doi.org/10.1117/12.350632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pandey, Binay Jung, Kevin Clark, Farhat Abbas, E. Fuchs, K. Lascola, Yamac Dikmelik, David Hinojos, et al. "IR-SNOM on a fork: infrared scanning near-field optical microscopy for thermal profiling of quantum cascade lasers." In Quantum Sensing and Nano Electronics and Photonics XVII, edited by Manijeh Razeghi, Jay S. Lewis, Giti A. Khodaparast, and Pedram Khalili. SPIE, 2020. http://dx.doi.org/10.1117/12.2543849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Iwabuchi, Shinichiro, Atsuko Hashigasako, Yasutaka Morita, Toshifumi Sakaguchi, Yuji Murakami, Kenji Yokoyama, and Eiichi Tamiya. "Advanced imaging for DNA analysis based on scanning near-field optical/atomic-force microscopy (SNOAM)." In BiOS '99 International Biomedical Optics Symposium, edited by Eiichi Tamiya and Shuming Nie. SPIE, 1999. http://dx.doi.org/10.1117/12.350624.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Scanning Near-field Optical Microscopy (SNOM)"

1

Nakakura, Craig Y., and Aaron Michael Katzenmeyer. Novel Applications of Near-Field Scanning Optical Microscopy (NSOM). Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, M., J. McWhirter, T. Huser, and W. Siekhaus. Defect studies of optical materials using near-field scanning optical microscopy and spectroscopy. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/15004114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barbara, Paul F. Ultrafast Near-Field Scanning Optical Microscopy (NSOM) of Emerging Display Technology Media: Solid State Electronic Structure and Dynamics,. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography