Academic literature on the topic 'Scanning Near-field Optical Microscopy (SNOM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scanning Near-field Optical Microscopy (SNOM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Scanning Near-field Optical Microscopy (SNOM)"
Vobornik, Dušan, and Slavenka Vobornik. "Scanning Near-Field Optical Microscopy." Bosnian Journal of Basic Medical Sciences 8, no. 1 (February 20, 2008): 63–71. http://dx.doi.org/10.17305/bjbms.2008.3000.
Full textITO, Shinzaburo, and Hiroyuki AOKI. "Scanning Near Field Optical Microscopy : SNOM." Journal of The Adhesion Society of Japan 41, no. 5 (2005): 170–76. http://dx.doi.org/10.11618/adhesion.41.170.
Full textPohl, D. W., U. Ch Fischer, and U. T. Dürig. "Scanning near-field optical microscopy (SNOM)." Journal of Microscopy 152, no. 3 (December 1988): 853–61. http://dx.doi.org/10.1111/j.1365-2818.1988.tb01458.x.
Full textCricenti, A. "Scanning near-field optical microscopy (SNOM)." physica status solidi (c) 5, no. 8 (June 2008): 2615–20. http://dx.doi.org/10.1002/pssc.200779106.
Full textPfeffer, M., P. Lambelet, and F. Marquis Weible. "Scanning Near-field Optical Microscopy (SNOM): Biomedical Applications." Biomedizinische Technik/Biomedical Engineering 41, s1 (1996): 282–83. http://dx.doi.org/10.1515/bmte.1996.41.s1.282.
Full textVobornik, D., G. Margaritondo, J. S. Sanghera, P. Thielen, I. D. Aggarwal, B. Ivanov, N. H. Tolk, et al. "Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)." Journal of Alloys and Compounds 401, no. 1-2 (September 2005): 80–85. http://dx.doi.org/10.1016/j.jallcom.2005.02.057.
Full textHermann, Richard J., and Michael J. Gordon. "Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes." Annual Review of Chemical and Biomolecular Engineering 9, no. 1 (June 7, 2018): 365–87. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084150.
Full textWang, Haomin, Jiahan Li, James H. Edgar, and Xiaoji G. Xu. "Three-dimensional near-field analysis through peak force scattering-type near-field optical microscopy." Nanoscale 12, no. 3 (2020): 1817–25. http://dx.doi.org/10.1039/c9nr08417g.
Full textSchoenmaker, J., M. Pojar, A. D. Barra-Barrera, A. C. Seabra, and A. D. Santos. "Chemical Etching Tip Processing for Magneto-Optical Scanning Near-Field Optical Microscopy." Microscopy and Microanalysis 11, S03 (December 2005): 18–21. http://dx.doi.org/10.1017/s1431927605050798.
Full textSekatskii, S. K., K. Dukenbayev, M. Mensi, A. G. Mikhaylov, E. Rostova, A. Smirnov, N. Suriyamurthy, and G. Dietler. "Single molecule fluorescence resonance energy transfer scanning near-field optical microscopy: potentials and challenges." Faraday Discussions 184 (2015): 51–69. http://dx.doi.org/10.1039/c5fd00097a.
Full textDissertations / Theses on the topic "Scanning Near-field Optical Microscopy (SNOM)"
Stevenson, Richard. "Scanning near-field optical microscopy (SNOM) of semiconductor nanostructures." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621756.
Full textSchneider, Susanne Christine. "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1192105974322-82865.
Full textDie optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist
Raval, Meera. "Development of novel distance control methods for the scanning near-field optical microscope (SNOM) to reliably image biological samples in liquids." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621239.
Full textRothery, Alison Melinda. "Development of a novel light source for use in a scanning ion conductance-scanning near-field optical microscope (SICM-SNOM) for imaging of biological samples." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619813.
Full textBobek, Juraj. "Příprava a testování SNOM sond speciálních vlastností." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402582.
Full textXie, Zhihua. "Fiber-integrated nano-optical antennas and axicons as ultra-compact all-fiber platforms for luminescence detection and imaging down to single nano-emitters." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2046/document.
Full textMy thesis is devoted to develop ultra-compact, plug-and-play and low-cost single-mode optical fibersystems for in-fiber luminescence collection. First, a new fiber self-aligned axicon is proposed toprovide the first resolved infrared fluorescence imaging of PbS quantum dots in far field. Then,all-fiber near-field imaging of single PbS quantum dots is achieved by double resonance bowtienano-aperture antenna (BNA) with nanometer resolution. Finally, the concept of fiber nano-opticalhorn antenna is proposed for in-fiber X-ray excited luminescence out-coupling, with the purpose ofgenerating the first generation of fiber X-ray sensors and dosimeters
Foubert, Kevin. "Etude en champ proche optique de structures nanophotoniques couplées." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS091.
Full textSince the end of the XXth century, optics benefits from significant breakthrough comingfrom the micro-electronic technologies. It is thus now possible to produce, guide, slow downor even trap light on a chip at a sub-wavelength scale. In this thesis, we study such opticalcomponents thanks to a Scanning Near-Field Optical Microscope (SNOM).The first part exposes an overall view of the current situation in the field of dielectricsubstrate integrated nanophotonics. Some of the recent outstanding issues and results are hereintroduced, as well as the general principle and the necessary tools to operate a SNOM.The second part is dedicated to optical near-field microscopy, technically speaking. Thephysical rules are here developed. Then we detail the instrumental set up of our own SNOMon our optical characterization bench. We end by analysing the optical images formation witha SNOM.The third part bears upon the study of Silicon-on-Insulator (SOI) coupled waveguides whereoptical nano-cavities could be inserted, by resorting to the previously implemented SNOM.Overlapping evanescent fields induced coupling phenomena are numerically and analyticallystudied. The use of the SNOM allowed us here to check the validity of our models. Besides,we have directly observed thanks to this instrument the guiding and confinement of light ina low refractive index media. However, we show that this phenomenon is highly subjected tofabrication uncertainties. Finally, we use the SNOM and spectral measurements in order todemonstrate that systems of N coupled nanocavities could be described with a simple coupledmodes model
Leong, Siang Huei. "Apertureless scanning near-field optical microscopy." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615953.
Full textNeacsu, Corneliu Catalin. "Tip-enhanced near-field optical microscopy." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16284.
Full textThis thesis describes the implementation of scattering-type near-field optical microscopy (s-SNOM) for linear and nonlinear optical imaging. The technique allows for optical spectroscopy with ultrahigh spatial resolution. New results on the microscopic understanding of the imaging mechanism and the employment of s-SNOM for structure determination at solid surfaces are presented. The method relies on the use of metallic probe tips with apex radii of only few nanometers. The local-field enhancement and its dependence on material properties are investigated. The plasmonic character of Au tips is identified and its importance for the optical tip-sample coupling and subsequent near-field confinement are discussed. The experimental results offer valuable criteria in terms of tip-material and structural parameters for the choice of suitable tips required in s-SNOM. An near-field optical microscope is developed for tip-enhanced Raman spectroscopy (TERS) studies. The principles of TERS and the role of the tip plasmonic behavior together with clear distinction of near-field Raman signature from far-field imaging artifacts are described. TERS results of monolayer and submonolayer molecular coverage on smooth Au surfaces are presented. Second harmonic generation (SHG) from individual tips is investigated. As a partially asymmetric nanostructure, the tip allows for the clear distinction of local surface and nonlocal bulk contributions to the nonlinear polarization and the analysis of their polarization and emission selection rules. Tip-enhanced SH microscopy and dielectric contrast imaging with high spatial resolution are demonstrated. SHG couples directly to the ferroelectric ordering in materials and in combination with scanning probe microscopy can give access to the morphology of mesoscopic ferroelectric domains. Using a phase sensitive self-homodyne SHG s-SNOM imaging method, the surface topology of 180 intrinsic domains in hexagonal multiferroic YMnO is resolved.
LeBlanc, Philip R. "Dual-wavelength scanning near-field optical microscopy." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82911.
Full textBooks on the topic "Scanning Near-field Optical Microscopy (SNOM)"
Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces (NanoScience and Technology). Springer, 2006.
Find full textMartin, Francis L., and Hubert M. Pollock. Microspectroscopy as a tool to discriminate nanomolecular cellular alterations in biomedical research. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.8.
Full textNarlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.001.0001.
Full textBook chapters on the topic "Scanning Near-field Optical Microscopy (SNOM)"
Richter, Marc, and Volker Deckert. "Scanning Near-Field Optical Microscopy (SNOM)." In Surface and Thin Film Analysis, 481–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636921.ch31.
Full textSchollwöck, Ulrich, and Herbert Wagner. "A Perturbation-Theory Approach to Scanning Near-Field Optical Microscopy (SNOM)." In Near Field Optics, 247–54. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_27.
Full textHartmann, T., R. Gatz, W. Wiegräbe, A. Kramer, A. Hillebrand, K. Lieberman, W. Baumeister, and R. Guckenberger. "A Scanning Near-Field Optical Microscope (SNOM) for Biological Applications." In Near Field Optics, 35–44. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_5.
Full textKeplinger, Tobias, and Ingo Burgert. "Analyzing Plant Cell Wall Ultrastructure by Scanning Near-Field Optical Microscopy (SNOM)." In Methods in Molecular Biology, 239–49. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-0716-0621-6_14.
Full textFujihira, Masamichi. "Fluorescence Microscopy and Spectroscopy by Scanning Near-Field Optical/Atomic Force Microscope (SNOM-AFM)." In Optics at the Nanometer Scale, 205–21. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0247-3_15.
Full textFischer, U. Ch. "Scanning Near Field Optical Microscopy." In Scanning Microscopy, 76–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84810-0_5.
Full textNarushima, Tetsuya. "Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy." In Compendium of Surface and Interface Analysis, 577–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_93.
Full textFischer, U. C. "Scanning Near-Field Optical Microscopy." In Scanning Probe Microscopy, 161–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03606-8_7.
Full textGimzewski, J. K., R. Berndt, R. R. Schlittler, A. W. McKinnon, M. E. Welland, T. M. H. Wong, Ph Dumas, et al. "Optical Spectroscopy and Microscopy Using Scanning Tunneling Microscopy." In Near Field Optics, 333–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_38.
Full textZhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Scanning Near-Field Optical Microscopy." In Encyclopedia of Nanotechnology, 2280–92. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_283.
Full textConference papers on the topic "Scanning Near-field Optical Microscopy (SNOM)"
Greener, H., M. Mrejen, U. Arieli, and H. Suchowski. "Multifrequency Near Field Scanning Optical Microscopy (MF-SNOM)." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_at.2018.jth2a.66.
Full textChuang, C. H., and Y. L. Lo. "Heterodyne Detection Signal Analysis in Apertureless Scanning Near-Field Optical Microscopy." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52186.
Full textPohl, D. W., U. C. Fischer, and U. T. Durig. "Scanning Near-Field Optical Microscopy (SNOM*): Basic Principles And Some Recent Developments." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by E. Clayton Teague. SPIE, 1988. http://dx.doi.org/10.1117/12.944518.
Full textParent, G., S. Fumeron, and D. Lacroix. "FDTD Study of the Surface Waves Detection in Apertureless Scanning Near-Field Microscopy." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52241.
Full textLamela, J., E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, F. Jaque, J. Canet-Ferrer, and J. Martinez-Pastor. "Scanning near-field optical microscopy (SNOM) of lithium niobate aperiodically poled during growth." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386178.
Full textFerber, J., U. C. Fischer, J. Koglin, and Harald Fuchs. "Reflection mode scanning near-field optical microscope (SNOM) with the tetrahedral tip." In Lasers, Optics, and Vision for Productivity in Manufacturing I, edited by Christophe Gorecki. SPIE, 1996. http://dx.doi.org/10.1117/12.250781.
Full textDaunis, Trey B., Farhat Abbas, Kevin P. Clark, Ehud Fuchs, Kevin Lascola, Yamac Dikmelik, Kimari Hodges, et al. "Infrared scanning near-field optical microscopy (IR-SNOM) for thermal profiling of quantum cascade lasers." In Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXI, edited by Israel Gannot and Katy Roodenko. SPIE, 2021. http://dx.doi.org/10.1117/12.2585911.
Full textKaupp, Gerd, Andreas Herrmann, and Gerhard Wagenblast. "Scanning near-field optical microscopy (SNOM) with uncoated tips: applications in fluorescence techniques and Raman spectroscopy." In BiOS '99 International Biomedical Optics Symposium, edited by Eiichi Tamiya and Shuming Nie. SPIE, 1999. http://dx.doi.org/10.1117/12.350632.
Full textPandey, Binay Jung, Kevin Clark, Farhat Abbas, E. Fuchs, K. Lascola, Yamac Dikmelik, David Hinojos, et al. "IR-SNOM on a fork: infrared scanning near-field optical microscopy for thermal profiling of quantum cascade lasers." In Quantum Sensing and Nano Electronics and Photonics XVII, edited by Manijeh Razeghi, Jay S. Lewis, Giti A. Khodaparast, and Pedram Khalili. SPIE, 2020. http://dx.doi.org/10.1117/12.2543849.
Full textIwabuchi, Shinichiro, Atsuko Hashigasako, Yasutaka Morita, Toshifumi Sakaguchi, Yuji Murakami, Kenji Yokoyama, and Eiichi Tamiya. "Advanced imaging for DNA analysis based on scanning near-field optical/atomic-force microscopy (SNOAM)." In BiOS '99 International Biomedical Optics Symposium, edited by Eiichi Tamiya and Shuming Nie. SPIE, 1999. http://dx.doi.org/10.1117/12.350624.
Full textReports on the topic "Scanning Near-field Optical Microscopy (SNOM)"
Nakakura, Craig Y., and Aaron Michael Katzenmeyer. Novel Applications of Near-Field Scanning Optical Microscopy (NSOM). Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475250.
Full textYan, M., J. McWhirter, T. Huser, and W. Siekhaus. Defect studies of optical materials using near-field scanning optical microscopy and spectroscopy. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/15004114.
Full textBarbara, Paul F. Ultrafast Near-Field Scanning Optical Microscopy (NSOM) of Emerging Display Technology Media: Solid State Electronic Structure and Dynamics,. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294879.
Full text