To see the other types of publications on this topic, follow the link: Scanning probe.

Journal articles on the topic 'Scanning probe'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Scanning probe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Taylor, James D., and Dennis D. Chandler. "SCANNING PROBE." Journal of the Acoustical Society of America 132, no. 3 (2012): 1877. http://dx.doi.org/10.1121/1.4752191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, James D. "Scanning probe." Journal of the Acoustical Society of America 120, no. 6 (2006): 3456. http://dx.doi.org/10.1121/1.2409474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ostromohov, Nadya, Baruch Rofman, Moran Bercovici, and Govind Kaigala. "Electrokinetic Scanning Probes: Electrokinetic Scanning Probe (Small 5/2020)." Small 16, no. 5 (February 2020): 2070028. http://dx.doi.org/10.1002/smll.202070028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lytvyn, P. M. "Mechanical scanning probe nanolithography: modeling and application." Semiconductor Physics Quantum Electronics and Optoelectronics 15, no. 4 (December 12, 2012): 321–27. http://dx.doi.org/10.15407/spqeo15.04.321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akiyama, K., T. Eguchi, T. An, Y. Fujikawa, T. Sakurai, and Y. Hasegawa. "Functional Probes for Scanning Probe Microscopy." Journal of Physics: Conference Series 61 (March 1, 2007): 22–25. http://dx.doi.org/10.1088/1742-6596/61/1/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oesterschulze, E. "Novel probes for scanning probe microscopy." Applied Physics A: Materials Science & Processing 66, no. 7 (March 1, 1998): S3—S9. http://dx.doi.org/10.1007/s003390051089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kalinin, Sergei. "Measuring Conductivity With Scanning Probe Microscopes." Microscopy Today 10, no. 2 (March 2002): 26–27. http://dx.doi.org/10.1017/s1551929500057837.

Full text
Abstract:
There are two kinds of conductivity measurements possible with scanning probe microscopy (SPM). In the first case, the specific resistance of material directly below the tip is probed. In the second case, SPM probes local potential induced by the lateral current applied through macroscopic contacts, thus providing the information on the mesoscopic transport properties of the sample.The first set of techniques is invariably based on measuring tip-surface current in contact or intermittent tapping mode. If the tip-surface contact resistance is small (good contact), the current will be limited by the spreading resistance of the sample from which specific resistance can be calculated, assuming that the contact area is known.
APA, Harvard, Vancouver, ISO, and other styles
8

FUJII, Masatoshi. "Scanning Probe Microscopy." Journal of Japan Oil Chemists' Society 49, no. 10 (2000): 1181–89. http://dx.doi.org/10.5650/jos1996.49.1181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SAKAI, Fumiki. "Scanning Probe Microscope." Journal of the Japan Society of Colour Material 69, no. 5 (1996): 343–50. http://dx.doi.org/10.4011/shikizai1937.69.343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MORITA, Seizo. "Scanning Probe Microscopy." Journal of the Vacuum Society of Japan 51, no. 12 (2008): 769–70. http://dx.doi.org/10.3131/jvsj2.51.769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Colton, Richard J., David R. Baselt, Yves F. Dufrêne, John-Bruce D. Green, and Gil U. Lee. "Scanning probe microscopy." Current Opinion in Chemical Biology 1, no. 3 (October 1997): 370–77. http://dx.doi.org/10.1016/s1367-5931(97)80076-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Poggi, Mark A., Elizabeth D. Gadsby, Lawrence A. Bottomley, William P. King, Emin Oroudjev, and Helen Hansma. "Scanning Probe Microscopy." Analytical Chemistry 76, no. 12 (June 2004): 3429–44. http://dx.doi.org/10.1021/ac0400818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lillehei, Peter T., and Lawrence A. Bottomley. "Scanning Probe Microscopy." Analytical Chemistry 72, no. 12 (June 2000): 189–96. http://dx.doi.org/10.1021/a10000108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bottomley, Lawrence A., Joseph E. Coury, and Phillip N. First. "Scanning Probe Microscopy." Analytical Chemistry 68, no. 12 (January 1996): 185–230. http://dx.doi.org/10.1021/a1960008+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bottomley, Lawrence A. "Scanning Probe Microscopy." Analytical Chemistry 70, no. 12 (June 1998): 425–76. http://dx.doi.org/10.1021/a1980011o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Welland, M. E., A. W. McKinnon, J. R. Barnes, and S. J. O'Shea. "Scanning probe microscopy." Engineering Science and Education Journal 1, no. 5 (1992): 203. http://dx.doi.org/10.1049/esej:19920042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Griffith, Joseph E. "Scanning probe metrology." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1124–25. http://dx.doi.org/10.1017/s0424820100130250.

Full text
Abstract:
Scanning probe microscopes have unusual advantages as measurement tools. They achieve high resolution simultaneously in all three dimensions, over almost any solid, in ambients ranging from high vacuum to fluid electrolytes. They offer the prospect of performing dimensional metrology at the atomic level with the calibration linked directly to crystal lattice constants. Application of these microscopes to measurement is not completely straightforward, however. As with optical and electron microscopes, accurate measurement is not possible without a thorough understanding of the instrument's properties. We discuss here two aspects of probe microscope behavior that affect position measurement because they exhibit strong nonlinearities.The piezo ceramic actuators commonly used to generate the probe motion are ferroelectric so they suffer from hysteresis and creep. Consequently, the probe motion must be independently monitored. We have adopted a capacitive scheme for monitoring the probe position in all three dimensions. This scheme allows the tube position to be measured to within 10 nm, though there are distortions caused by the tube bending that must be corrected.
APA, Harvard, Vancouver, ISO, and other styles
18

Poggi, Mark A., Lawrence A. Bottomley, and Peter T. Lillehei. "Scanning Probe Microscopy." Analytical Chemistry 74, no. 12 (June 2002): 2851–62. http://dx.doi.org/10.1021/ac025695w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Griffith, J. E., D. A. Grigg, M. J. Vasile, P. E. Russell, and E. A. Fitzgerald. "Scanning probe metrology." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 4 (July 1992): 674–79. http://dx.doi.org/10.1116/1.577708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Louder, Darrell R., and B. A. Parkinson. "Scanning Probe Microscopy." Analytical Chemistry 66, no. 12 (June 1994): 84–105. http://dx.doi.org/10.1021/ac00084a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ostromohov, Nadya, Baruch Rofman, Moran Bercovici, and Govind Kaigala. "Electrokinetic Scanning Probe." Small 16, no. 5 (December 29, 2019): 1904268. http://dx.doi.org/10.1002/smll.201904268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Weeks, Brandon L. "SCANNING: Probe Microscopy." Scanning 30, no. 2 (2008): 58. http://dx.doi.org/10.1002/sca.20102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Maddocks, J. L., and W. M. Heckl. "Scanning probe microscopy." Lancet 340, no. 8819 (September 1992): 600–601. http://dx.doi.org/10.1016/0140-6736(92)92126-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Genolet, G., M. Despont, P. Vettiger, and N. F. de Rooij. "Micromachined Photoplastic Probes for Scanning Probe Microscopy." Sensors Update 9, no. 1 (May 2001): 3–19. http://dx.doi.org/10.1002/1616-8984(200105)9:1<3::aid-seup3>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Grigg, D. A., P. E. Russell, J. E. Griffith, M. J. Vasile, and E. A. Fitzgerald. "Probe characterization for scanning probe metrology." Ultramicroscopy 42-44 (July 1992): 1616–20. http://dx.doi.org/10.1016/0304-3991(92)90494-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

HASEGAWA, SHUJI, ICHIRO SHIRAKI, FUHITO TANABE, REI HOBARA, TAIZO KANAGAWA, TAKEHIRO TANIKAWA, IWAO MATSUDA, et al. "ELECTRICAL CONDUCTION THROUGH SURFACE SUPERSTRUCTURES MEASURED BY MICROSCOPIC FOUR-POINT PROBES." Surface Review and Letters 10, no. 06 (December 2003): 963–80. http://dx.doi.org/10.1142/s0218625x03005736.

Full text
Abstract:
For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultrahigh vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several μm. These probes are installed in scanning-electron-microscopy/electron-diffraction chambers, in which the structures of sample surfaces and probe positions are observed in situ. The probes can be positioned precisely on aimed areas on the sample with the aid of piezoactuators. By the use of these machines, the surface sensitivity in conductivity measurements has been greatly enhanced compared with the macroscopic four-point probe method. Then the conduction through the topmost atomic layers (surface-state conductivity) and the influence of atomic steps on conductivity can be directly measured.
APA, Harvard, Vancouver, ISO, and other styles
27

Beketov, G. V. "Enhanced 2D plotting method for scanning probe microscopy imaging." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 1 (February 28, 2011): 80–87. http://dx.doi.org/10.15407/spqeo14.01.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Croft, D., D. McAllister, and S. Devasia. "High-Speed Scanning of Piezo-Probes for Nano-fabrication." Journal of Manufacturing Science and Engineering 120, no. 3 (August 1, 1998): 617–22. http://dx.doi.org/10.1115/1.2830166.

Full text
Abstract:
Low scanning speed of piezo-probes has been a fundamental limitation of scanning probe based nano-fabrication techniques. Typical scan-rates achieved are limited, by structural vibrations of the piezo-probe, to about 1/10th the fundamental vibrational frequency of the piezo-probe. Faster scanning of piezo-probes is achieved here (experimental results are presented) by using inversion of the piezo-dynamics—this approach uses a feedforward input voltage, applied to piezo-probe, to compensate for piezo vibrations.
APA, Harvard, Vancouver, ISO, and other styles
29

Carnally, Stewart A. M., and Lu Shin Wong. "Harnessing catalysis to enhance scanning probe nanolithography." Nanoscale 6, no. 10 (2014): 4998–5007. http://dx.doi.org/10.1039/c4nr00618f.

Full text
Abstract:
The use of scanning probes bearing catalysts to perform surface nanolithography combines the exquisite spatial precision of scanning probe microscopy with the synthetic capabilities of (bio)chemical catalysis.
APA, Harvard, Vancouver, ISO, and other styles
30

Hsiao, Gregor, and Jezz Leckenby. "Correcting Scanning Errors in Scanning Probe Microscopes." Microscopy Today 7, no. 7 (September 1999): 10–13. http://dx.doi.org/10.1017/s1551929500064737.

Full text
Abstract:
Scanning probe microscopes (SPMs) are a family of instruments used for studying the surface properties of materials on a dimensional scale ranging from the atomic to the micrometer level. As depicted in Figure 1, all SPMs work by scanning a finely tipped probe in a raster pattern over the sample surface while measuring and mapping some interaction between the probe and the surface as a function of x-y position. The piezoelectric scanners used to provide the scanning motion offer very fine positional control but have certain inherent errors that, uncorrected, can distort images, introduce artifacts, and degrade measurement accuracy.
APA, Harvard, Vancouver, ISO, and other styles
31

Mody, Cyrus C. M. "STARS: Scanning Probe Microscopy [Scanning Our Past]." Proceedings of the IEEE 102, no. 7 (July 2014): 1107–12. http://dx.doi.org/10.1109/jproc.2014.2326811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

YASUTAKE, Masatoshi. "Scanning Probe Microscope Methods." Journal of the Japan Society of Colour Material 79, no. 5 (2006): 210–16. http://dx.doi.org/10.4011/shikizai1937.79.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Аkhmetova, А., and I. Yaminskiy. "Fast-scanning probe microscopy." Nanoindustry Russia 11, no. 7-8 (2018): 530–33. http://dx.doi.org/10.22184/1993-8578.2018.11.7-8.530.533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Barbic, Mladen, Jack J. Mock, Andrew P. Gray, and S. Schultz. "Scanning probe electromagnetic tweezers." Applied Physics Letters 79, no. 12 (September 17, 2001): 1897–99. http://dx.doi.org/10.1063/1.1402963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, A. M., H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang. "Scanning Hall probe microscopy." Applied Physics Letters 61, no. 16 (October 19, 1992): 1974–76. http://dx.doi.org/10.1063/1.108334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Spizig, Peter. "Scanning Probe Microscope Control." Imaging & Microscopy 9, no. 1 (January 2007): 52–55. http://dx.doi.org/10.1002/imic.200790124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Corbitt, Thomas S., Richard M. Crooks, Claudia B. Ross, Mark J. Hampden-Smith, and Jonathan K. Schoer. "Scanning probe surface modification." Advanced Materials 5, no. 12 (December 1993): 935–38. http://dx.doi.org/10.1002/adma.19930051213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dinelli, F., C. Menozzi, P. Baschieri, P. Facci, and P. Pingue. "Scanning probe nanoimprint lithography." Nanotechnology 21, no. 7 (January 21, 2010): 075305. http://dx.doi.org/10.1088/0957-4484/21/7/075305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Garcia, Ricardo, Armin W. Knoll, and Elisa Riedo. "Advanced scanning probe lithography." Nature Nanotechnology 9, no. 8 (August 2014): 577–87. http://dx.doi.org/10.1038/nnano.2014.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Xuefeng, Kee S. Ryu, David A. Bullen, Jun Zou, Hua Zhang, Chad A. Mirkin, and Chang Liu. "Scanning Probe Contact Printing." Langmuir 19, no. 21 (October 2003): 8951–55. http://dx.doi.org/10.1021/la034858o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Vijayakumar, M., V. V. Rama Rao, and P. C. Angelo. "Scanning Electron Probe Microanalysis." Defence Science Journal 39, no. 1 (January 1, 1989): 13–32. http://dx.doi.org/10.14429/dsj.39.4744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Weiss, S., D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla. "Ultrafast scanning probe microscopy." Applied Physics Letters 63, no. 18 (November 1993): 2567–69. http://dx.doi.org/10.1063/1.110435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Duncumb, P. "Scanning electron probe microanalysis." Micron 24, no. 2 (January 1993): 149–53. http://dx.doi.org/10.1016/0968-4328(93)90066-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gao, Wei, J. Yokoyama, S. Kiyono, and N. Hitomi. "A Scanning Multi-Probe Straightness Measurement System for Alignment of Linear Collider Accelerator." Key Engineering Materials 295-296 (October 2005): 253–58. http://dx.doi.org/10.4028/www.scientific.net/kem.295-296.253.

Full text
Abstract:
This paper describes a scanning multi-probe measurement system for local alignment of linac components. The system consists of two probe-units, each having three displacement probes. The two probe-units, which are placed on the two sides of the cylindrical linac components, are moved by a scanning stage with a scanning range of 5 m to simultaneously scan the two opposed straightness profiles of the linac cylinders. A differential output calculated from the probe outputs in each probe-unit cancels the influence of error motions of the scanning stage, and a double ntegration of the differential output gives the straightness profile. The difference between the unknown zero-values of the probes in each probe-unit of zero-difference, which introduces a parabolic error term in the profile evaluation result, is calculated and compensated for by a zero-adjustment method so that accurate straightness profiles of the linac cylinders can be obtained. The effectiveness of the measuring system is confirmed by experimental results.
APA, Harvard, Vancouver, ISO, and other styles
45

Sachser, Roland, Johanna Hütner, Christian H. Schwalb, and Michael Huth. "Granular Hall Sensors for Scanning Probe Microscopy." Nanomaterials 11, no. 2 (February 1, 2021): 348. http://dx.doi.org/10.3390/nano11020348.

Full text
Abstract:
Scanning Hall probe microscopy is attractive for minimally invasive characterization of magnetic thin films and nanostructures by measurement of the emanating magnetic stray field. Established sensor probes operating at room temperature employ highly miniaturized spin-valve elements or semimetals, such as Bi. As the sensor layer structures are fabricated by patterning of planar thin films, their adaption to custom-made sensor probe geometries is highly challenging or impossible. Here we show how nanogranular ferromagnetic Hall devices fabricated by the direct-write method of focused electron beam induced deposition (FEBID) can be tailor-made for any given probe geometry. Furthermore, we demonstrate how the magnetic stray field sensitivity can be optimized in situ directly after direct-write nanofabrication of the sensor element. First proof-of-principle results on the use of this novel scanning Hall sensor are shown.
APA, Harvard, Vancouver, ISO, and other styles
46

ONO, Takahito, Hitoshi HAMANAKA, and Masayoshi ESASHI. "Application and Progress in the Scanning Probe Microscopy. Micromachining and Scanning Probe Microscope." Hyomen Kagaku 18, no. 4 (1997): 198–205. http://dx.doi.org/10.1380/jsssj.18.198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Stirling, Julian, Richard A. J. Woolley, and Philip Moriarty. "Scanning probe image wizard: A toolbox for automated scanning probe microscopy data analysis." Review of Scientific Instruments 84, no. 11 (November 2013): 113701. http://dx.doi.org/10.1063/1.4827076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wittmann, Ronald C., and Michael H. Francis. "Near-Field Spherical Scanning Antenna Measurements: Probe Deconvolution and Sensitivity." International Journal of Antennas and Propagation 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/587874.

Full text
Abstract:
We define and calculate sensitivity for several actual and simulated probes. Probe sensitivity can have a significant impact on the measurement uncertainty associated with probe deconvolution in near-field spherical-scanning, antenna measurements.
APA, Harvard, Vancouver, ISO, and other styles
49

O’Neil, Glen D., Han-wen Kuo, Duncan N. Lomax, John Wright, and Daniel V. Esposito. "Scanning Line Probe Microscopy: Beyond the Point Probe." Analytical Chemistry 90, no. 19 (August 28, 2018): 11531–37. http://dx.doi.org/10.1021/acs.analchem.8b02852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Chang, and Ronald Gamble. "Mass-producible monolithic silicon probes for scanning probe microscopes." Sensors and Actuators A: Physical 71, no. 3 (December 1998): 233–37. http://dx.doi.org/10.1016/s0924-4247(98)00182-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography