Academic literature on the topic 'Scar healing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scar healing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Scar healing"
Bashyam, Hema. "Scar-free healing." Journal of Experimental Medicine 205, no. 1 (January 7, 2008): 2. http://dx.doi.org/10.1084/jem.2051iti4.
Full textPugliese, Eugenia, João Q. Coentro, Michael Raghunath, and Dimitrios I. Zeugolis. "Wound healing and scar wars." Advanced Drug Delivery Reviews 129 (April 2018): 1–3. http://dx.doi.org/10.1016/j.addr.2018.05.010.
Full textStoica, Alexandra Elena, Alexandru Mihai Grumezescu, Anca Oana Hermenean, Ecaterina Andronescu, and Bogdan Stefan Vasile. "Scar-Free Healing: Current Concepts and Future Perspectives." Nanomaterials 10, no. 11 (October 31, 2020): 2179. http://dx.doi.org/10.3390/nano10112179.
Full textMonavarian, Mehri, Safaa Kader, Seyedsina Moeinzadeh, and Esmaiel Jabbari. "Regenerative Scar-Free Skin Wound Healing." Tissue Engineering Part B: Reviews 25, no. 4 (August 2019): 294–311. http://dx.doi.org/10.1089/ten.teb.2018.0350.
Full textUd-Din, Sara, Susan W. Volk, and Ardeshir Bayat. "Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives." Experimental Dermatology 23, no. 9 (July 21, 2014): 615–19. http://dx.doi.org/10.1111/exd.12457.
Full textFomovsky, Gregory M., and Jeffrey W. Holmes. "Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat." American Journal of Physiology-Heart and Circulatory Physiology 298, no. 1 (January 2010): H221—H228. http://dx.doi.org/10.1152/ajpheart.00495.2009.
Full textGorti, Goutham Krishna, and R. James Koch. "Modulation of wound healing and scar formation." Current Opinion in Otolaryngology & Head and Neck Surgery 10, no. 4 (August 2002): 287–91. http://dx.doi.org/10.1097/00020840-200208000-00009.
Full textRich, L. "Dermal Wound Closure Methods Alter Scar Healing." Academic Emergency Medicine 12, Supplement 1 (May 1, 2005): 74. http://dx.doi.org/10.1197/j.aem.2005.03.205.
Full textDiPietro, Luisa A. "Angiogenesis and scar formation in healing wounds." Current Opinion in Rheumatology 25, no. 1 (January 2013): 87–91. http://dx.doi.org/10.1097/bor.0b013e32835b13b6.
Full textDeliaert, A. E. K., E. Van den Kerckhove, S. Tuinder, S. M. J. S. Noordzij, T. S. Dormaar, and R. R. W. J. van der Hulst. "Smoking and its effect on scar healing." European Journal of Plastic Surgery 35, no. 6 (January 3, 2012): 421–24. http://dx.doi.org/10.1007/s00238-011-0661-3.
Full textDissertations / Theses on the topic "Scar healing"
Montgomery, Jade. "Building a Better Scar: Re-engineering Extracellular Matrix Structure in Dermal Scars." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104233.
Full textDoctor of Philosophy
Skin wounds frequently result in scars that can range from barely visible to enormous eyesores. Almost everyone will experience at least one skin wound in their lifetime leading to a scar that they wish were less visible, feeding the multi-billion dollar market for anti-scarring agents. However, many of the products on store shelves that claim to reduce scar appearance have not proven those claims. Most of the therapies that do have some degree of scientific evidence to support their claims are difficult to use properly, such as silicone sheeting, and often result in only minor improvements to scar appearance. Alpha Connexin Carboxy-Terminus 1 (αCT1), marketed in clinical trials as Granexin® gel, is a protein-based therapy that works on the cellular level to fundamentally alter the skin's initial reaction to wounding and improving long-term scar appearance. This dissertation explores the link between cellular processes altered by αCT1 and long-term clinical improvements in scar appearance by studying both the extracellular matrix present in the scar in human and animal models and the creation of that extracellular matrix by dermal fibroblasts. In both human and animal models, topical application of αCT1 had no effect on skin surface appearance at early timepoints of 2-6 weeks, correlating with previous research that found scar appearance only improved at 3+ months post-injury. However, deep within the newly constructed tissue of the scar, these studies show the collagen organizational structure of αCT1-treated scars is more similar to unwounded skin and slightly more dense at early timepoints, suggesting αCT1 marginally improved the speed of healing. These findings in humans and animals were also verified in part in cell culture experiments that found dermal fibroblasts increased collagen output in response to αCT1 treatment. A novel wound healing model in the hairless guinea pig, superior at replicating human skin than established models like the rat, is also presented and shown to have effects strongly similar to the human with αCT1 treatment. These results provide a fundamental insight into the mode-of-action by which αCT1 may improve long term scar appearance and identifies early collagen structure as a target for future therapeutics to modify, as well as a new animal model in which to test them.
Cook, Julian. "Mathematical models for dermal wound healing : wound contraction and scar formation /." Thesis, Connect to this title online; UW restricted, 1995. http://hdl.handle.net/1773/6756.
Full textHallen, Michael Ryan. "Commercialization of a Novel Wound Therapy and Scar Prevention Product." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1378942204.
Full textDardenne, Adrienne. "High Mobility Group Box-1 (HMGB-1) Induces Scar Formation in Early Fetal Wounds." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1336692891.
Full textVigor, Charlotte Jayne. "Switching off the fibro-proliferative phase of wound healing : an investigation of the normal mechanisms and pathological scar-related defects." Thesis, University College London (University of London), 2006. http://discovery.ucl.ac.uk/1446439/.
Full textBertheim, Ulf. "Impaired reparative processes in particular related to hyaluronan in various cutaneous disorders : a structural analysis." Doctoral thesis, Umeå : Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-276.
Full textHiwatashi, Nao. "The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar." Kyoto University, 2016. http://hdl.handle.net/2433/215428.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(医学)
甲第19602号
医博第4109号
新制||医||1014(附属図書館)
32638
京都大学大学院医学研究科医学専攻
(主査)教授 別所 和久, 教授 伊佐 正, 教授 川口 義弥
学位規則第4条第1項該当
Konz, Maximilian. "Räumlich-zeitliche Dynamik der laserinduzierten Hsp70-Expression in einem humanen Hautexplantatmodell." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-213660.
Full textCruz, Luiz Gustavo Balaguer. "Comparação entre o efeito do uso de diclofenaco de sódio e o laser de baixa potência (830nm) no processo de cicatrização em pele de ratos: aspectos biomecânicos e histológicos." Universidade Nove de Julho, 2014. http://bibliotecadigital.uninove.br/handle/tede/1314.
Full textMade available in DSpace on 2016-05-19T15:30:42Z (GMT). No. of bitstreams: 1 Luiz Gustavo Balaguer.pdf: 2319004 bytes, checksum: 8ae6797553f9db1485a7a79e6cfa0616 (MD5) Previous issue date: 2014-12-16
The skin is a coating tissue which undergoes permanent environmental action, often in aggressive forms, causing damage to this tissue. Generally, in the repair process structural changes occur which progress to the development of a scar. In this case the tissue may present morphological changes that interfere with its mechanical properties and this repair process produces a tissue with different properties than of the original tissue. Therefore, the use of therapies that favor this repair is important to seek a better scar quality. Low-level laser therapy appears as a resource used in the modulation of the inflammatory process helping the skin repair process. The objective of this study was evaluate the effect of low level laser (830nm) with 100 mW of potency us ing 1J or 3J of energy comparing to the effect of the topical sodium diclofenac on the repair process of the rat´s skin after induction of injury, analyzing the biomechanical behavior and histological changes of skin, 28 days after the harmful process. Male Wistar rats between 150g to 200g, 3 months old were used. The animals were anesthetized with association of xylazine hydrochloride and ketamine (90mg / kg and 10mg / kg, respectively, intraperitoneal injection). Once anesthetizd, 2 lesions were performed using a surgical scalpel at the dorsal area of the animal. The animals were divided into 5 groups of 7 animals: control (CTL), untreated scar (NT), scar + anti-inflammatory (DIC), scar + 1J laser (L1J) and scar + 3J laser (L3J). The pharmacological treatment and laser therapy were performed immediately after lesion induction and maintained daily irradiation until day 7. After 28 days, the animals were euthanized with an overdose of the same anesthetic and the tissue was immediately removed for histological analysis and traction trials. Results: Both the NT and group DIC showed a reduction of mechanical properties and alterations in histology analysis. L1J group showed significant improvement in mechanical properties and histological organization. We conclude that laser therapy improves certain mechanical properties of skin in this lesion model. However, more studies should be conducted to understand the proportion and organization of collagen fibers I and III biochemicaly. Either the study can be longer and evaluate the scars after the remodeling process.
A pele é um tecido de revestimento que sofre permanente ação do ambiente, muitas vezes de forma agressiva, levando a lesão deste tecido. Geralmente em seu processo de reparo ocorrem alterações estruturais que evoluem para o desenvolvimento de uma cicatriz. Neste caso o tecido pode apresentar alterações morfológicas que interferem em suas propriedades mecânicas e este processo de reparo produz um tecido com propriedades diferentes do tecido original. Dessa forma, a utilização de terapias que favoreçam esta reparação é importante para buscar uma qualidade melhor da cicatriz. A terapia com laser de baixa potência aparece como um recurso utilizado na modulação do processo inflamatório auxiliando no processo de reparo da pele. O Objetivo deste trabalho foi avaliar o efeito da terapia com laser de baixa potência de 830nm, com 100mW de potência nas energias de um 1J e 3J comparativamente ao efeito do diclofenaco de sódio tópico no processo de reparo da pele de ratos, após a indução de uma lesão controlada, observando aspectos histológicos e biomecânicos. Foram utilizados ratos wistar, entre 150g à 200g, com 3 meses de idade. Os animais foram anestesiados com associação de cloridrato de quetamina e xilazina (90mg/Kg e 10mg/Kg respectivamente, injeção intraperitoneal). Depois de anestesiados, foram realizadas 2 lesões cortantes utilizando um bisturi cirúrgico, no dorso do animal. Os animais foram divididos em 5 grupos de 5 animais: Controle (CTL), Cicatriz sem tratamento (NT), Cicatriz + Diclofenaco de sódio tópico (DIC), cicatriz + laser 1J (L1J) e cicatriz + laser 3J (L3J). O tratamento farmacológico e a terapia laser foram realizados imediatamente após a indução da lesão e mantida a irradiação diária até o sétimo dia. Após 28 dias, os animais foram eutanasiados com hiperdosagem do mesmo anestésico e o tecido foi imediatamente retirado para análises histológicas e de ensaios de tração. Resultados: Tanto o grupo NT quanto o grupo DIC apresentaram redução das propriedades mecânicas e alterações nas análises histológicas. O grupo tratado L1J e o grupo L3J apresentaram significativa melhora das propriedades mecânicas e na organização histológica. O grupo L1J apresentou resultados histológicos e biomecânicos próximos ao tecido saudável do grupo CTL. Conclusão: Concluímos que a utilização do diclofenaco de sódio tópico não conseguiu melhorar as características histológicas e biomecânicas da pele após a indução da lesão. A terapia com laser de baixa potência foi eficaz na melhora destas propriedades, sugerindo um melhor reparo tecidual. Porém, mais estudos devem ser realizados visando entender a proporção e organização das fibras de colágeno ou mesmo o estudo de tempos de reparo superiores ao utilizados neste estudo.
Luna, Ana Luiza Alves Pinto. "Fita de silicone-gel versus fita adesiva microporosa na cicatrização de feridas operatórias ensaio clínico randomizado /." Botucatu, 2017. http://hdl.handle.net/11449/151711.
Full textResumo: Introdução: A cicatriz desempenha um importante papel no resultado final de uma cirurgia. Muitos fatores são implicados no processo de cicatrização patológica, e diversos produtos e curativos foram desenvolvidos para prevenção de cicatriz hipertrófica e quelóide, porém poucos tem evidências que o suportem. Objetivos: Comparar o resultado da cicatriz cirúrgica após utilização da fita de silicone e da fita microporosa. Métodos: Realizamos um ensaio clínico controlado, cego e randomizado, onde um lado da incisão foi randomizado para receber a fita de silicone e o outro lado recebeu o tratamento controle (fita adesiva microporosa). Foram selecionadas pacientes submetidas a abdominoplastia ou mastoplastia de aumento com implantes de silicone no período de maio a outubro de 2016. A Escala de Cicatrização de Vancouver foi utilizada para avaliar as cicatrizes. Resultados: Foram selecionadas para o estudo 17 pacientes. A idade média das pacientes foi de 31,4 ± 6,7, sendo a mínima de 20 e a máxima de 45 anos. Vemos na comparação dos tipos de curativo que os valores de p foram próximos a 5%, sugerindo uma associação do uso da fita de silicone com melhores resultados estéticos e funcionais da cicatriz em relação à fita microporosa. Notamos também que os dois tipos de curativo tiveram uma redução significativa em seus escores do primeiro para o terceiro mês (traduzindo uma melhora no aspecto da cicatriz), porém a fita de silicone teve uma redução superior à fita microporosa (45,6% e 39,2%... (Resumo completo, clicar acesso eletrônico abaixo)
Mestre
Books on the topic "Scar healing"
Chamberlain, Janet. The manipulation of scar formation in adult dermal wound healing. Manchester: University of Manchester, 1993.
Find full textOkun, James D. Erasing scars: Herpes and healing. [United States: J.D. Okun], 1997.
Find full textJantz, Gregory L. Healing the scars of emotional abuse. Grand Rapids: Revell, 2009.
Find full textHealing the scars: Derelict land in Wales. [Swansea]: University College of Swansea, 1988.
Find full textOlson, Gail A. Scars and stripes: Healing the wounds of war. Bradenton, Fla: Human Services Institute, 1992.
Find full textB, Silverstein Virginia, and Nunn Laura Silverstein, eds. Cuts, scrapes, scabs, and scars. New York: Franklin Watts, 1999.
Find full textOsborn, Susan Titus. Wounded by words: Healing the invisible scars of emotional abuse. Birmingham, Ala: New Hope Publishers, 2008.
Find full textWoodward, Mary Ann. Scars of the soul: Holistic healing in the Edgar Cayce readings. Columbus, Ohio: Brinadella Books, 1985.
Find full textBook chapters on the topic "Scar healing"
Panayi, Adriana C., Chanan Reitblat, and Dennis P. Orgill. "Wound Healing and Scarring." In Total Scar Management, 3–16. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9791-3_1.
Full textUlrich, Magda M. W. "Fetal Wound Healing." In Textbook on Scar Management, 3–9. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_1.
Full textTéot, Luc, Claude Roques, Sami Otman, Antonio Brancati, and Rainer Mittermayr. "Managing Scars: Measurements to Improve Scar Management." In Measurements in Wound Healing, 291–312. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2987-5_15.
Full textYenikomshian, Haig A., and Nicole S. Gibran. "Burn Wound Healing and Scarring Pathophysiology." In Total Scar Management, 17–23. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9791-3_2.
Full textOgawa, Rei. "Mechanobiology of Cutaneous Scarring." In Textbook on Scar Management, 11–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_2.
Full textWood, Fiona M. "Scar Resurfacing." In Textbook on Scar Management, 311–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_36.
Full textMoortgat, Peter, Mieke Anthonissen, Ulrike Van Daele, Jill Meirte, Tine Vanhullebusch, and Koen Maertens. "Shock Wave Therapy for Wound Healing and Scar Treatment." In Textbook on Scar Management, 485–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_55.
Full textLe Touze, Anne. "Scars in Pediatric Patients." In Textbook on Scar Management, 397–404. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_46.
Full textMyers, Simon R., and Ali M. Ghanem. "Wound healing and scar formation." In Plastic and reconstructive surgery, 1–11. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118655412.ch1.
Full textPoetschke, Julian, and Gerd G. Gauglitz. "Onion Extract." In Textbook on Scar Management, 209–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_24.
Full textConference papers on the topic "Scar healing"
Fomovsky, Gregory M., and Jeffrey W. Holmes. "Collagen Fiber Structure Correlates With Mechanical Environment in Healing Myocardial Infarcts." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206767.
Full textGossé, Alban, Gwen Iarmarcovai, Alexandre Capon, Alain Cornil, and Serge Mordon. "Scar prevention by laser-assisted scar healing (LASH) using thermal post-conditioning." In SPIE BiOS: Biomedical Optics, edited by Steven L. Jacques, E. Duco Jansen, and William P. Roach. SPIE, 2009. http://dx.doi.org/10.1117/12.807807.
Full textGundiah, Namrata, Debby Chang, Peng Zhang, Mark Ratcliffe, and Lisa Pruitt. "Structural and Mechanical Characteristics of Healing Myocardial Scar Tissue." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59998.
Full textFomovsky, Gregory M., and Jeffrey W. Holmes. "Evolution of Scar Mechanical Properties During Myocardial Infarct Healing in Rat." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176422.
Full textШадрин, Валериан Сергеевич, Петр Михайлович Кожин, Олеся Олеговна Шошина, and Александр Леонидович Русанов. "IN VITRO MODEL OF A HYPERTROPHIC SCAR." In Наука. Исследования. Практика: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Июнь 2020). Crossref, 2020. http://dx.doi.org/10.37539/srp291.2020.39.77.014.
Full textGurkan, Umut Atakan, Alexandra Dubikovsky, Lynetta J. Freeman, Paul W. Snyder, Russell D. Meldrum, and Ozan Akkus. "In Vivo Actuation System for Mechanostimulation of Large Wound Healing." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53183.
Full textRiemann, Iris, Alexander Ehlers, Ronan LeHarzic, Sven Martin, Annette Reif, and Karsten König. "In vivo multiphoton tomography of skin during wound healing and scar formation." In Biomedical Optics (BiOS) 2007, edited by Ammasi Periasamy and Peter T. C. So. SPIE, 2007. http://dx.doi.org/10.1117/12.702407.
Full textThomopoulos, S., R. Das, H. M. Kim, D. Zeltser, K. Kousari, and L. Galatz. "The Role of the Loading Environment on the Developing Tendon-to-Bone Insertion." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206837.
Full textHanifi-Moghaddam, Pejman, and Amrollah Mostafazadeh. "Substances Secreted by Starved Human Dermal Fibroblasts Enhancing the Wound Healing Process in Rat without Scar: A Potential Acellular System for Wound Healing." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.hbpp2772.
Full textElkhalil, H., J. C. Bischof, and V. H. Barocas. "Cryoinjury of a Contractile Tissue-Equivalent: In Vitro Experiments." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192819.
Full text