Academic literature on the topic 'Schauder spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schauder spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Schauder spaces"

1

Horvath, Charles D., and Marc Lassonde. "Leray–Schauder spaces." Nonlinear Analysis: Theory, Methods & Applications 46, no. 7 (2001): 923–31. http://dx.doi.org/10.1016/s0362-546x(00)00139-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Polyrakis, Ioannis A. "Schauder bases in locally solid lattice Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 101, no. 1 (1987): 91–105. http://dx.doi.org/10.1017/s0305004100066433.

Full text
Abstract:
Schauder bases in Banach spaces are studied in [5].In ordered Banach spaces a special type of Schauder bases, the O.P. Schauder bases, are studied because then the properties of ordered spaces can be used.
APA, Harvard, Vancouver, ISO, and other styles
3

Khosravi, Amir, and Jamaleh Sohrabi Banyarani. "Some properties of g-frames in Banach spaces." International Journal of Wavelets, Multiresolution and Information Processing 16, no. 06 (2018): 1850051. http://dx.doi.org/10.1142/s0219691318500510.

Full text
Abstract:
In this paper, we introduce and study woven approximate Schauder g-frames. We show that for any two approximate Schauder g-frames, each weaving is an approximate Schauder g-frame if and only if there is a uniform constant [Formula: see text] such that every weaving is a C-approximate Schauder g-frame, and we obtain some perturbation results for approximate Schauder g-frames. Finally, some results have been found for weaving approximate Schauder g-frames.
APA, Harvard, Vancouver, ISO, and other styles
4

García-Pacheco, Francisco Javier, and Francisco Javier Pérez-Fernández. "Pre-Schauder Bases in Topological Vector Spaces." Symmetry 11, no. 8 (2019): 1026. http://dx.doi.org/10.3390/sym11081026.

Full text
Abstract:
A Schauder basis in a real or complex Banach space X is a sequence ( e n ) n ∈ N in X such that for every x ∈ X there exists a unique sequence of scalars ( λ n ) n ∈ N satisfying that x = ∑ n = 1 ∞ λ n e n . Schauder bases were first introduced in the setting of real or complex Banach spaces but they have been transported to the scope of real or complex Hausdorff locally convex topological vector spaces. In this manuscript, we extend them to the setting of topological vector spaces over an absolutely valued division ring by redefining them as pre-Schauder bases. We first prove that, if a topol
APA, Harvard, Vancouver, ISO, and other styles
5

POUMAI, KHOLE TIMOTHY. "ON SOME CLASSES OF SCHAUDER FRAMES IN BANACH SPACES." International Journal of Wavelets, Multiresolution and Information Processing 12, no. 02 (2014): 1450022. http://dx.doi.org/10.1142/s0219691314500222.

Full text
Abstract:
Various types of Schauder frames have been defined and studied. A necessary and sufficient condition for each type of Schauder frame is given. Finally, we give some theoretical applications of these types of Schauder frames.
APA, Harvard, Vancouver, ISO, and other styles
6

Venkova, Milena. "Global Schauder decompositions of locally convex spaces." MATHEMATICA SCANDINAVICA 101, no. 1 (2007): 65. http://dx.doi.org/10.7146/math.scand.a-15032.

Full text
Abstract:
We define global Schauder decompositions of locally convex spaces and prove a necessary and sufficient condition for two spaces with global Schauder decompositions to be isomorphic. These results are applied to spaces of entire functions on a locally convex space.
APA, Harvard, Vancouver, ISO, and other styles
7

Agarwal, Ravi P., and Donal O'Regan. "Leray-Schauder results for multivalued nonlinear contractions defined on closed subsets of a Fréchet space." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–8. http://dx.doi.org/10.1155/ijmms/2006/43635.

Full text
Abstract:
New Leray-Schauder results are presented for multivalued contractions defined on subsets of a Fréchet spaceE. The proof relies on fixed point results in Banach spaces and on viewingEas the projective limit of a sequence of Banach spaces.
APA, Harvard, Vancouver, ISO, and other styles
8

Ariño, M. A. "On shrinking bases in p-Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 103, no. 1 (1988): 127–32. http://dx.doi.org/10.1017/s0305004100064689.

Full text
Abstract:
Singer [7] proved that in a Banach space all basic sequences are shrinking if and only if all of them are boundedly complete. Afterwards; Zippin [2] proved a similar result for Schauder bases, and it was extended [1] to Schauder decompositions.
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Xunxiang. "g-Bases in Hilbert Spaces." Abstract and Applied Analysis 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/923729.

Full text
Abstract:
The concept ofg-basis in Hilbert spaces is introduced, which generalizes Schauder basis in Hilbert spaces. Some results aboutg-bases are proved. In particular, we characterize theg-bases andg-orthonormal bases. And the dualg-bases are also discussed. We also consider the equivalent relations ofg-bases andg-orthonormal bases. And the property ofg-minimal ofg-bases is studied as well. Our results show that, in some cases,g-bases share many useful properties of Schauder bases in Hilbert spaces.
APA, Harvard, Vancouver, ISO, and other styles
10

Bies, Piotr Michał, and Przemysław Górka. "Schauder theory in variable Hölder spaces." Journal of Differential Equations 259, no. 7 (2015): 2850–83. http://dx.doi.org/10.1016/j.jde.2015.04.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Schauder spaces"

1

Ribera, Puchades Juan Miguel. "Atomic decompositions and frames in Fréchet spaces and their duals." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/49987.

Full text
Abstract:
[EN] The Ph.D. Thesis "Atomic decompositions and frames in Fréchet spaces and their duals" presented here treats different areas of functional analysis with applications. Schauder frames are used to represent an arbitrary element x of a function space E as a series expansion involving a fixed countable set {xj} of elements in that space such that the coefficients of the expansion of x depend in a linear and continuous way on x. Unlike Schauder bases, the expression of an element x in terms of the sequence {xj}, i.e. the reconstruction formula for x, is not necessarily unique. Atomic decomposi
APA, Harvard, Vancouver, ISO, and other styles
2

Beltrán, Meneu María José. "Operators on wighted spaces of holomorphic functions." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/36578.

Full text
Abstract:
The Ph.D. Thesis ¿Operators on weighted spaces of holomorphic functions¿ presented here treats different areas of functional analysis such as spaces of holomorphic functions, infinite dimensional holomorphy and dynamics of operators. After a first chapter that introduces the notation, definitions and the basic results we will use throughout the thesis, the text is divided into two parts. A first one, consisting of Chapters 1 and 2, focused on a study of weighted (LB)-spaces of entire functions on Banach spaces, and a second one, corresponding to Chapters 3 and 4, where we consider diffe
APA, Harvard, Vancouver, ISO, and other styles
3

Melendez, Caraballo Blas 1988. "Subespaços complementados de espaços de Banach clássicos." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307319.

Full text
Abstract:
Orientador: Jorge Tulio Mujica Ascui<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica<br>Made available in DSpace on 2018-08-27T12:08:37Z (GMT). No. of bitstreams: 1 MelendezCaraballo_Blas_M.pdf: 1140173 bytes, checksum: 61bc3f801fdfc8946dd6852692a39bfd (MD5) Previous issue date: 2015<br>Resumo: Em 1960, Pelczynski [1] provou que, se X é um dos espaços c0 ou lp, com p número real maior ou igual do que um. Então todo subespaço complementado de dimensão infinita de X é isomorfo a X. Outro resultado clássico de Pelczynski
APA, Harvard, Vancouver, ISO, and other styles
4

González, Correa Alma Lucía. "Compacta in Banach spaces." Doctoral thesis, Universitat Politècnica de València, 2010. http://hdl.handle.net/10251/8312.

Full text
Abstract:
Capítulo 1. Después de estudiar algunos preliminares sobre familias adecuadas de conjuntos, formulamos y probamos algunas equivalencias, cada una de ellas son una condición suficiente para que la familia defina un conjunto compacto de Gul'ko. Damos una caracterización de conjunto compacto de Gul'ko en términos de emparejamiento con un conjunto $\mathcal{K}$-analítico. Capítulo 2. Estudiamos propiedades de los espacios de Banach débilmente Lindelöf determinados no-separables. Damos una caracterización por medio de la existencia de un generador proyeccional full sobre él. Estudiamos algunos a
APA, Harvard, Vancouver, ISO, and other styles
5

Mendes, Abraão Caetano. "A forma fraca do teorema de peano em espaços de banach de dimensão infinita." Universidade Federal do Amazonas, 2015. http://tede.ufam.edu.br/handle/tede/4604.

Full text
Abstract:
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-09-02T13:30:29Z No. of bitstreams: 1 Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5)<br>Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:31:26Z (GMT) No. of bitstreams: 1 Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5)<br>Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:35:33Z (GMT) No. of b
APA, Harvard, Vancouver, ISO, and other styles
6

Preciso, Luca. "Perturbation Analysis of the Conformal Sewing Problem and Related Problems." Doctoral thesis, Università degli studi di Padova, 1998. http://hdl.handle.net/11577/3425905.

Full text
Abstract:
In this dissertation, we develop two related problems in the nonlinear functional analysis. The first is the analyticity of the Cauchy singular integral in Schauder spaces which is motivated by the second problem, namely the perturbation analysis of the conformal sewing problem in Schauder and Roumieu spaces. In Chapter II, we consider the Cauchy singular integral f (t)φ0 (t) f ◦ φ(−1) (ξ) 1 1 C[φ, f ]( · ) ≡ p. v. dt = p. v. dξ
APA, Harvard, Vancouver, ISO, and other styles
7

Miranda, Navarro Maria. "Comparative Study of Several Bases in Functional Analysis." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150462.

Full text
Abstract:
From the beginning of the study of spaces in functional analysis, bases have been an indispensable tool for operating with vectors and functions over a concrete space. Bases can be organized by types, depending on their properties. This thesis is intended to give an overview of some bases and their relations. We study Hamel basis, Schauder basis and Orthonormal basis; we give some properties and compare them in different spaces, explaining the results. For example, an infinite dimensional Hilbert space will never have a basis which is a Schauder basis and a Hamel basis at the same time, but if
APA, Harvard, Vancouver, ISO, and other styles
8

Moreau, Pierre. "Notions de petitesse, géométrie des espaces de Banach et hypercyclicité." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13803/document.

Full text
Abstract:
Il existe de nombreuses notions de petitesse en analyse. On considère trois d'entre elles: la Haar-négligeabilité, la Gauss-négligeabilité et la sigma-porosité. On étudie à quelles conditions le cône positif d'une base de Schauder est Haar-négligeable, et ce que cela entraîne pour l'espace de Banach associé. On étudie également sous quelles conditions l'ensemble des vecteurs non-hypercycliques d'un opérateur hypercyclique est Haar-négligeable ou sigma-poreux<br>There are many notions of smallness in Analysis. We will consider three of them: Haar-negligeability, Gauss-negligeability and sigma-p
APA, Harvard, Vancouver, ISO, and other styles
9

Pernecká, Eva. "Analýza v Banachových prostorech." Doctoral thesis, 2014. http://www.nusl.cz/ntk/nusl-332331.

Full text
Abstract:
The thesis consists of two papers and one preprint. The two papers are de- voted to the approximation properties of Lipschitz-free spaces. In the first pa- per we prove that the Lipschitz-free space over a doubling metric space has the bounded approximation property. In particular, the Lipschitz-free space over a closed subset of Rn has the bounded approximation property. We also show that the Lipschitz-free spaces over ℓ1 and over ℓn 1 admit a monotone finite-dimensional Schauder decomposition. In the second paper we improve this work and obtain even a Schauder basis in the Lipschitz-free spa
APA, Harvard, Vancouver, ISO, and other styles
10

Garbulińska-Węgrzyn, Joanna. "Universal structures in Banach spaces." Praca doktorska, 2014. https://ruj.uj.edu.pl/xmlui/handle/item/59408.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Schauder spaces"

1

1951-, Gupta M., ed. Schauder bases: Behaviour and stability. Longman Scientific & Technical, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1951-, Gupta Manjul, ed. Schauder bases: Behaviour and stability. Longman Scientific & Technical, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Christof, Karin. Der wollene Zugedeckte und der Schauer: Bemerkungen und Ausführungen zur Schnittstelle Fenster. Triton, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Semadeni, Z. Schauder Bases in Banach Spaces of Continuous Functions. Springer London, Limited, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kamthan, P. K., and M. Gupta. Schauder Bases (Pitman Monograph & Surveys in Pure & Applied Mathematics S.). CRC Press Inc, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Epstein, Charles L., and Rafe Mazzeo. Existence of Solutions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0010.

Full text
Abstract:
This chapter proves existence of solutions to the inhomogeneous problem using the Schauder estimate and analyzes a generalized Kimura diffusion operator, L, defined on a manifold with corners, P. The discussion centers on the solution w = v + u, where v solves the homogeneous Cauchy problem with v(x, 0) = f(x) and u solves the inhomogeneous problem with u(x, 0) = 0. The chapter first provides definitions for the Wright–Fisher–Hölder spaces on a general compact manifold with corners before explaining the steps involved in the existence proof. It then verifies the induction hypothesis and treats
APA, Harvard, Vancouver, ISO, and other styles
7

Epstein, Charles L., and Rafe Mazzeo. Holder Estimates for the 1-dimensional Model Problems. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0006.

Full text
Abstract:
This chapter establishes Hölder space estimates for the 1-dimensional model problems. It gives a detailed treatment of the 1-dimensional case, in part because all of the higher dimensional estimates are reduced to estimates on heat kernels for the 1-dimensional model problems. It also presents the proof of parabolic Schauder estimates for the generalized Kimura diffusion operator using the explicit formula for the heat kernel, along with standard tools of analysis. Finally, it considers kernel estimates for degenerate model problems, explains how Hölder estimates are obtained for the 1-dimensi
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Schauder spaces"

1

Lindenstrauss, Joram, and Lior Tzafriri. "Schauder Bases." In Classical Banach Spaces I. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-540-37732-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lindenstrauss, Joram, and Lior Tzafriri. "g. Schauder Decompositions." In Classical Banach Spaces I and II. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-53294-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lindenstrauss, Joram, and Lior Tzafriri. "b. Schauder Bases and Duality." In Classical Banach Spaces I and II. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-53294-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Czerwik, Stefan. "On b-Metric Spaces and Brower and Schauder Fixed Point Principles." In Approximation Theory and Analytic Inequalities. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60622-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schechter, Martin. "Critical Point Theory in Infinite Dimensional Spaces Using the Leray–Schauder Index." In Nonlinear Analysis, Differential Equations, and Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72563-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Valent, Tullio. "Composition Operators in Sobolev and Schauder Spaces. Theorems on Continuity, Differentiability, and Analyticity." In Springer Tracts in Natural Philosophy. Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3736-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Megginson, Robert E. "Schauder Bases." In An Introduction to Banach Space Theory. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0603-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boules, Adel N. "Banach Spaces." In Fundamentals of Mathematical Analysis. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198868781.003.0006.

Full text
Abstract:
The first four sections of this chapter form its core and include classical topics such as bounded linear transformations, the open mapping theorem, the closed graph theorem, the uniform boundedness principle, and the Hahn-Banach theorem. The chapter includes a good number of applications of the four fundamental theorems of functional analysis. Sections 6.5 and 6.6 provide a good account of the properties of the spectrum and adjoint operators on Banach spaces. They may be largely bypassed, since the treatment of the corresponding topics for operators on Hilbert spaces in chapter 7 is self-contained. The section on weak topologies is more advanced and may be omitted if a brief introduction is the goal. The chapter is enriched by such topics as the best polynomial approximation, the Hilbert cube, Gelfand’s theorem, Schauder bases, complemented subspaces, and the Banach-Alaoglu theorem.
APA, Harvard, Vancouver, ISO, and other styles
9

Garcia, Domingo, Manuel Maestre, and Pilar Rueda. "Schauder Decompositions of Weighted Spaces of Holomorphic Functions." In Finite or infinite dimensional complex analysis. CRC Press, 2019. http://dx.doi.org/10.1201/9780429187681-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kantorovitz, Shmuel, and Ami Viselter. "Integral representation." In Introduction to Modern Analysis, 2nd ed. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192849540.003.0009.

Full text
Abstract:
Abstract This chapter is mostly concerned with integral representations of bounded operators, which are far-reaching generalizations of the spectral theorem for selfadjoint matrices. We prove the classical spectral theorem for normal operators on Hilbert spaces. We then use a renorming method in the general Banach space setting to construct the semi-simplicity space of a bounded operator, on which it admits a continuous operational calculus provided that the Banach space is reflexive. We present the analytic operational calculus for elements of an arbitrary Banach algebra and use it to develop the Riesz–Schauder theory of compact operators. Finally, the chapter offer exercises to challenge the reader.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!