Contents
Academic literature on the topic 'Schémas volumes finis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schémas volumes finis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Schémas volumes finis"
Lalléchère, Sébastien, Pierre Bonnet, Sébastien Girard, Fatouf Diouf, and Françoise Paladian. "Contribution aux schémas volumes finis et hybrides DF/VF pour des modèles temporels de chambres réverbérantes Estimation de la dissipation de méthodes VFDT et hybridation de schémas temporels en CRBM." Revue internationale de génie électrique 10, no. 2-3 (June 28, 2008): 205–30. http://dx.doi.org/10.3166/rige.11.205-230.
Full textLe Potier, Christophe. "Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles." Comptes Rendus Mathematique 348, no. 11-12 (June 2010): 691–95. http://dx.doi.org/10.1016/j.crma.2010.04.017.
Full textBoulerhcha, Mohammed, Farid Boushaba, Imad Elmahi, and Hamid Amaoui. "Résolution des équations de Saint Venant par un schéma éléments finis et un schéma volumes finis." Revue Européenne des Éléments Finis 14, no. 8 (January 2005): 999–1013. http://dx.doi.org/10.3166/reef.14.999-1013.
Full textTeppaz, P., R. Herbin, and J. Ohayon. "Schéma De Volumes Finis en Interaction Fluide/Structure: Faisabilité et Application L'écoulement Vasculaire." Archives of Physiology and Biochemistry 103, no. 3 (January 1, 1995): C76. http://dx.doi.org/10.3109/13813459509037297.
Full textBergam, Amal, and Zoubida Mghazli. "Estimateurs a posteriori d'un schéma de volumes finis pour un problème non linéaire." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, no. 6 (September 2000): 475–78. http://dx.doi.org/10.1016/s0764-4442(00)01670-0.
Full textEymard, R., and T. Gallouët. "Convergence d'un schéma de type éléments finis-volumes finis pour un système formé d'une équation elliptique et d'une équation hyperbolique." ESAIM: Mathematical Modelling and Numerical Analysis 27, no. 7 (1993): 843–61. http://dx.doi.org/10.1051/m2an/1993270708431.
Full textLe Potier, Christophe. "Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés." Comptes Rendus Mathematique 340, no. 12 (June 2005): 921–26. http://dx.doi.org/10.1016/j.crma.2005.05.011.
Full textAchdou, Yves, and Christine Bernardi. "Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no. 7 (October 2001): 693–98. http://dx.doi.org/10.1016/s0764-4442(01)02071-7.
Full textBoivin, Sylvain, and Jean-Marc Hérard. "Un schéma de type volumes finis pour résoudre les équations de Navier-Stokes sur une triangulation." Revue Européenne des Éléments Finis 5, no. 4 (January 1996): 461–90. http://dx.doi.org/10.1080/12506559.1996.11509514.
Full textCombe, Laure, and Jean-Marc Hérard. "Un schéma Volumes-Finis pour la simulation d'un modèle bi-fluide d'écoulements diphasiques compressibles gaz-solide." Revue Européenne des Éléments Finis 6, no. 2 (January 1997): 197–231. http://dx.doi.org/10.1080/12506559.1997.10511266.
Full textDissertations / Theses on the topic "Schémas volumes finis"
Nabet, Flore. "Schémas volumes finis pour des problèmes multiphasiques." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4359/document.
Full textThis manuscript is devoted to the numerical analysis of finite-volume schemes for the discretization of two particular equations. First, we study the Cahn-Hilliard equation with dynamic boundary conditions whose one of the main difficulties is that this boundary condition is a non-linear parabolic equation on the boundary coupled with the interior of the domain. We propose a spatial finite-volume discretization which is well adapted to the coupling of the dynamics in the domain and those on the boundary by the flux term. Moreover this kind of scheme accounts naturally for the non-flat geometry of the boundary. We prove the existence and the convergence of the discrete solutions towards a weak solution of the system. Second, we study the Inf-Sup stability of the discrete duality finite volume (DDFV) scheme for the Stokes problem. We give a complete analysis of the unconditional Inf-Sup stability in some cases and of codimension 1 Inf-Sup stability for Cartesian meshes. We also implement a numerical method which allows us to compute the Inf-Sup constant associated with this scheme for a given mesh. Thus, we can observe the stable or unstable behaviour that can occur depending on the geometry of the meshes. In a last part we propose a DDFV scheme for a Cahn-Hilliard/Stokes phase field model that required the introduction of new discrete operators. We prove the dissipation of the energy in the discrete case and the existence of a solution to the discrete problem. All these research results are validated by extensive numerical results
Krell, Stella. "Schémas Volumes Finis en mécanique des fluides complexes." Phd thesis, Université de Provence - Aix-Marseille I, 2010. http://tel.archives-ouvertes.fr/tel-00524509.
Full textKrell, Katrin Stella. "Schémas volumes finis en mécanique des fluides complexes." Aix-Marseille 1, 2010. https://tel.archives-ouvertes.fr/tel-00524509.
Full textThis manuscript deals with the development and numerical analysis of finite volume schemes of type discrete duality (DDFV) for the discretization of the Darcy equations in porous heterogeneous anisotropic media and the Stokes equations with variable viscosity. A common feature of these problems, which motivates the use of DDFV schemes, is that their finite volume resolution requires to approximate all the components of the gradient of the solution. The DDFV method consists in discretizing the solution of equations simultaneously on the centers of the control volumes and on the vertices of the mesh. These two sets of unknowns allow to reconstitute a two-dimensional discrete gradient on a large class of 2D meshes, without assuming the “orthogonality” condition required for classical finite volume methods. We first study the discretization of anisotropic elliptic problems with mixed Dirichlet/Fourier boundary conditions. The scheme we propose allows to build the corresponding discrete non-overlapping Schwarz algorithm associated to a decomposition of the domain with Fourier interface conditions, which converges to the solution of the DDFV scheme on the initial domain. Numerical experiments illustrate the theoretical results of error estimates and of the DDFV Schwarz algorithm convergence. We then propose to discretize Stokes equations with a variable viscosity. The corresponding DDFV schemes are generally illposed. To overcome this difficulty, we stabilize the mass conservation equation with different pressure terms. First, we assume that the viscosity is smooth enough. The analysis of the scheme, which gives optimal error estimates, relies on a Korn inequality and on a uniform discrete inf-sup condition using the stabilization term. Secondly, we consider the case where the viscosity is discontinuous. The discontinuities must be taken into account in the scheme to overcome the consistency defect of the numerical fluxes. We need to build new operators with artificial unknowns. The theoretical study becomes more tricky. In all cases, the existence and uniqueness of the discrete solution are proved, as well as optimal error estimates. A first study of the extension of the DDFV schemes to Navier-Stokes equations is presented. A generalization in 3D of the results is given in the case of the Stokes problem with smooth variable viscosity. Numerical experiments illustrate the different error estimates
Agélas, Léo. "Schémas volumes finis multipoints pour grilles non orthogonales." Thesis, Paris Est, 2009. http://www.theses.fr/2009PEST1048/document.
Full textOne of the key ingredients for the numerical simulation of Darcy flow in heterogeneous porous media is the discretization of anisotropic heterogeneous elliptic terms. In the oil industry, the need to improve accuracy in near wellbore regions has prompted the use of general unstructured meshes and full permeability tensors. Our effort has therefore been devoted to find consistent and robust finite volume discretizations of anisotropic, heterogeneous elliptic terms on general meshes. Our research was focused on finite volume methods which are consistent and coercive on general polyhedral meshes as well as robust with respect to the anisotropy and heterogeneity of the permeability tensor ; yield well-conditioned linear systems for which optimal preconditioning strategies can be devised ; have a narrow stencil to reduce the communications in parallel implementations. To answer to this search, we have proposed several scemes such that generalized MPFA O, G scheme, CG method, VFSYM, DIOPTRE. We proved also the convergence of all these methods under suitable assumptions on both the permeability tensor and the mesh
Berton, Julien. "Schémas de volumes finis appliqués à certains modèles de mathématiques financières." Université de Marne-la-Vallée, 2007. http://www.theses.fr/2007MARN0333.
Full textChainais-Hillairet, Claire. "Schémas volumes finis pour des problèmes hyperboliques : convergence et estimations d'erreur." Paris 6, 1998. http://www.theses.fr/1998PA066438.
Full textSaas, Laurent. "Décomposition de domaine et schémas volumes finis sur maillages non-conformes." Paris 6, 2004. http://www.theses.fr/2004PA066493.
Full textFosso, Pouangue Arnaud. "Schémas Volumes Finis précis : application à l'aéroacoustique numérique de jets subsoniques." Paris 6, 2011. http://www.theses.fr/2011PA066084.
Full textLlobell, Julie. "Schémas volumes finis à mailles décalées pour la dynamique des gaz." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4077/document.
Full textThe objective of this thesis is to develop a new numerical scheme of finite volume type for gas dynamics. In two articles, F.Berthelin, T.Goudon and S.Minjeaud propose to solve the barotropic Euler system in dimension 1 of space, with a first order scheme that works on staggered grids and of which fluxes are inspired by kinetic schemes. We propose to enhance this scheme so that it can solve the barotropic or complete Euler systems, in dimension 2 of space on Cartesian or unstructured grids, possibly at order 2 and at Low Mach numbers where appropriate. We begin with the development of a 2D version of the scheme on Cartesian (or MAC) grids, at order 2 via a MUSCL type method, for the barotropic equations at first and then for the complete equations. The latter require to handle with an additional energy equation and one of the -solved- problems is to find a suitable discrete definition of the total energy such that it satisfies a local conservative equation. In a third chapter we study the transition from the compressible case to the incompressible limit and we shall see how to use the advantages of our initial scheme in order to make it an Asymptotic Preserving scheme at low Mach numbers. In a fourth chapter we propose an adaptation of the scheme on unstructured meshes. Our approach is strongly inspired by the DDFV methods and may have advantages in low-Mach regimes.This thesis ends with a fifth chapter issued from a collaboration during CEMRACS 2017, where the considered point of view is no longer macroscopic but microscopic. We begin by studying a simplified micro/macro model with an added stochastic process and then we attempt to deduce a large-scale model for a strongly coupled system which has to be consistent with the underlying micro / macro description of the physical problem
Champier, Sylvie. "Convergence de schémas numériques type Volumes finis pour la résolution d'équations hyperboliques." Saint-Etienne, 1992. http://www.theses.fr/1992STET4007.
Full text