Academic literature on the topic 'Schlafen12'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schlafen12.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Schlafen12"
Chen, Jiaxing, and Leslie A. Kuhn. "Deciphering the three-domain architecture in schlafens and the structures and roles of human schlafen12 and serpinB12 in transcriptional regulation." Journal of Molecular Graphics and Modelling 90 (July 2019): 59–76. http://dx.doi.org/10.1016/j.jmgm.2019.04.003.
Full textZhao, Liang, Brent Neumann, Kathleen Murphy, John Silke, and Thomas J. Gonda. "Lack of reproducible growth inhibition by Schlafen1 and Schlafen2 in vitro." Blood Cells, Molecules, and Diseases 41, no. 2 (2008): 188–93. http://dx.doi.org/10.1016/j.bcmd.2008.03.006.
Full textKocziszky, Eva. " es wächst schlafend des Wortes Gewalt. Schlafen und Wachen bei Hölderlin." Études Germaniques 293, no. 1 (2019): 55. http://dx.doi.org/10.3917/eger.293.0055.
Full textde la Casa-Esperón, Elena. "From mammals to viruses: the Schlafen genes in developmental, proliferative and immune processes." BioMolecular Concepts 2, no. 3 (2011): 159–69. http://dx.doi.org/10.1515/bmc.2011.018.
Full textVomhof-DeKrey, Emilie E., Josey Umthun, and Marc D. Basson. "Loss of Schlafen3 influences the expression levels of Schlafen family members in ileum, thymus, and spleen tissue." PeerJ 8 (January 28, 2020): e8461. http://dx.doi.org/10.7717/peerj.8461.
Full textAl-Marsoummi, Sarmad, Emilie E. Vomhof-DeKrey, and Marc D. Basson. "Schlafens: Emerging Proteins in Cancer Cell Biology." Cells 10, no. 9 (2021): 2238. http://dx.doi.org/10.3390/cells10092238.
Full textShin, Soonim. "Eine Opposition gegen Autoritätssysteme des Marktes?" Soziologiemagazin 11, no. 2-2018 (2019): 47–61. http://dx.doi.org/10.3224/soz.v11i2.05.
Full textHanelt, Lorenz, and Martin Gary. "Schlafende Kapazität." Versicherungswirtschaft 74, no. 6 (2019): 28–29. http://dx.doi.org/10.1007/s43239-019-0008-1.
Full textYuan, Lisi, Yingjie Yu, Matthew A. Sanders, Adhip P. N. Majumdar, and Marc D. Basson. "Schlafen 3 induction by cyclic strain regulates intestinal epithelial differentiation." American Journal of Physiology-Gastrointestinal and Liver Physiology 298, no. 6 (2010): G994—G1003. http://dx.doi.org/10.1152/ajpgi.00517.2009.
Full textDöser, Johannes. "Der schlafende Josef." PSYCHE 73, no. 12 (2019): 1036–39. http://dx.doi.org/10.21706/ps-73-12-1036.
Full textDissertations / Theses on the topic "Schlafen12"
Smutná, Katarína 1991. "Schlafen 12, a novel HIV restriction factor involved in latency." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666297.
Full textEl proceso por el cual el virus de la Inmunodeficiencia Humana (VIH) establece y mantiene un estado de latencia no se conoce en su totalidad. La proliferación homeostática (HSP, de sus siglas en ingés “Homeostatic proliferation”) es uno de los mecanismos por el cual las células T CD4 “naive” y de memoria se mantienen in vivo. Además, HSP también contribuye al mantenimiento del reservorio de virus en forma latente. Además, las células T CD4 “naive” infectadas y cultivadas en condiciones de HSP no son capaces de reactivarse a diferencia de las células T CD4 de memoria activadas vía TCR. Estudios previos sugieren que esta observación se debe a un bloqueo post-transcripcional en células T “naive” cultivadas en condiciones de HSP. En esta tesis comparamos la perfil del transcriptoma de células T CD4 “naive” y de memoria. Entre los genes diferencialmente expresados que podrían participar en el proceso de latencia del VIH, identificamos Schlafen 12 (SLFN12) como un candidato interesante que podría ser un factor de restricción del virus. Los resultados de este trabajo muestran que SLFN12 establece un bloqueo post-transcripcional en células infectadas por VIH, y de esta forma inhibe tanto la producción del virus como su reactivación en células infectadas de forma latente. Estas observaciones pueden ser de gran ayuda para entender mejor los mecanismos subyacentes a la latencia del VIH así como su reactivación en células CD4 T “naive” mantenidas bajo condiciones de HSP. En su conjunto, estos resultados podrían contribuir al diseño de nuevas estrategias para erradicar el VIH.
Hochedlinger, Michael. ""Der schlafende Riese". Das Österreichische Staatsarchiv, Abteilung Kriegsarchiv." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2008/2077/.
Full textGoodbody, Rory Eric. "Functional analysis of viral schlafen from camelpox virus." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/5378.
Full textShair, Kathy Ho Yen. "Electromelia virus-host interactions : the viral growth factor and Schlafen proteins." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619967.
Full textHuber, Elisabeth [Verfasser], and Karl-Peter [Akademischer Betreuer] Hopfner. "The schlafen core domain: from structure to function / Elisabeth Huber ; Betreuer: Karl-Peter Hopfner." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1203544936/34.
Full textGeserick, Peter. "Identifikation der Slfn-(Schlafen)-Proteinfunktion und deren Bedeutung in der Zellzykluskontrolle und der T-Zellontogenie." [S.l. : s.n.], 2005. http://www.diss.fu-berlin.de/2005/6/index.html.
Full textFerraioli, Domenico. "Assessment and relevance of the putative DNA/RNA helicase Schlafen-11 in ovarian and breast cancer." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1324/document.
Full textSchlafen 11 (SLFN11) is a putative DNA/RNA helicase, first described for its role in thymocyte development and differentiation in mouse models. SLFN11 is part of a family of proteins with various degree of homology across species, but intriguingly being consistently present only in vertebrates and especially in mammals. Recently, the role of this putative DNA/RNA helicase, SLFN11, was causally associated with sensitivity to DNA damaging agents, such as platinum salts, topoisomerase I and II inhibitors, and other alkylators in the NCI-60 panel of cancer cell lines. In the first study, we validate an anti-SLFN11 antibody in formalin-fixed paraffin-embedded (FFPE) high-grade serous ovarian carcinoma (HGSOC) samples, developing an immunohistochemistry (IHC) protocol in order to determinate the expression of SLFN11 in our series of HGSOC. Indeed, we tested and validated a reliable SLFN 11 antibody (Ab) in IHC choosing between two anti-SLFN11 Ab used normally for Western Blot (WB) in culture cell block (CCB) of ovarian carcinoma and in an independent series of HGSOCs tissue micro-array (TMA). For each case, we evaluated both the Intensity Score (IS) and the Distribution Score (DS) evaluating at least 300 cells. A Histological Score (HS)was obtained as follow: HS=IS x DS. Successively, we applied our protocol to a large case series of HGSOC samples to confirm our preliminary results. We found one antibody to be reliable in CCB and TMA series allowing to determinate clearly IHC expression of SLFN11. These results were confirmed in our large case series of FFPE HGSOC samples. Briefly, as for TMA independent series, we found that the HS for SLFN11 expression presents a normal distribution with a prevalent (≈ 60%) intermediate expression. Parallel SLFN11 was not expressed in practically 40% of cases that clinically corresponded to the platinum resistant patients in about 60% of cases (16/27). So, we believe that low IHC expression of SLFN 11 should be correlated to response to the platinum-based chemotherapy. In the second study, we investigate the transcriptional landscape of SLFN11 in breast cancer performing a gene expression microarray meta-analysis of more than 7000 cases from 35 publicly available data sets. By correlation analysis, we identified 537 transcripts in the top 95th percentile of Pearson’s coefficients with SLFN11 identifying “immune response”, “lymphocyte activation” and “T cell activation” as top Gene Ontology enriched processes. Furthermore, we reported very strong association of SLFN11 with immune signatures in breast cancer through penalized maximum likelihood lasso regression. Finally, through multiple corresponded analysis we discovered a subgroup of patients, defined “SLF11-hot cluster”, characterized by high SLFN11 levels, estrogen receptor(ER) negativity, basal-like phenotype, elevated CD3D, STAT1 signature, and young age. Using Cox proportional hazard regression, we characterized that SLFN11 high levels, high proliferation index, and ER negativity are independent parameters for longer disease-free interval in patients undergoing chemotherapy. We believe that our second work supports proof of concept that: i) A clear and specific role for SLFN11 in breast cancer, in likely connection with the immune system modulation in such disease entity, ii) a strong correlation between high SFLN 11 and specific molecular subtype of breast cancer (estrogen receptor negativity, basal-like phenotype). Further studies will be performed to confirm our hypothesis in order to: 1) better understand the function of SLFN 11 in cancer cell, 2) validate an easy, reliable and standardized IHC protocol to assessment SLFN11, 3) use SFLN11expression as a predictive biomarker of response to DDA and PARP inhibitors and 4) determinate the relationship with immune system
Unbehaun, Axel. "Die vegetative Kontrolle der Herzfrequenz und ihre Koordination mit dem respiratorischen System untersucht im Schlafen und Wachen innerhalb der Pubertät: eine zeitreihenanalytische Studie /." [S.l.] : [s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=956625053.
Full textUnbehaun, Axel. "Die vegetative Kontrolle der Herzfrequenz und ihre Koordination mit dem respiratorischen System untersucht im Schlafen und Wachen nnerhalb der Pubertaet: Eine zeitreihenanalytische Studie." Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 1998. http://dx.doi.org/10.18452/14420.
Full textBreathing and blood flow interact as two, in series coupled units. To adapt heart beat and oxygen supply, a common coordination is required. Concluded from neurophysiological investigations, there is evidence for the existence of one cardiorespiratory network located in the ventrolateral part of the medulla. Since the physiological mechanisms inside the complex regulatory network are not readily accessible, linear and non-linear methods of time series analysis are a useful approach to investigate cardiorespiratory control. To study normal regulation, 42 healthy children, 11 girls and 31 boys (12-15 yr.), were investigated throughout 24 hours under different states of vigilance: wakefulness at rest, REM, and nonREM-sleep. All participants underwent polygraphic measurements, including ECG, thoracic and abdominal respirograms, electrooculogram, and actogram. To estimate the sympatho-vagal drive to the sinus node, the parameters of heart rate power spectra were calculated. The linear intensity of cardiorespiratory coupling was concluded from the coherence spectra. As to non-linear properties of heart rate, the largest Lyapunov exponents as well as the correlation dimension were determined. Similarly, the correlation dimension of the respiratory signals was evaluated. The total power of the heart rate spectrum was found to be greatest during REM, it decreased during wakefulness and was low in nonREM-sleep. These variations are mainly accounted for by low frequency power. The "complexity" of heart rate, as indicated by the correlation dimension, is diminished during sleep phases, whereas the Lyapunov exponents are less affected. The cardiorespiratory coherence is strongly modulated by vigilance with an increase during nonREM and lowest values during REM. The complexity of respiration was also affected by vigilance. A different behavior of heart rate complexity was found during REM-phases. Concluded from spectral analysis, a specific setting of autonomic heart rate regulation for each vigilance stage can be suggested. A low dimensional deterministic chaos is present in heart rate time series. More independent control loops were found to be active during wakefulness. Revealed by parameters of the non-linear dynamics, different stages of vigilance determine different operating points in the cardiorespiratory coordination.
Geserick, Peter [Verfasser]. "Identifikation der Slfn-(Schlafen)-Proteinfunktion und deren Bedeutung in der Zellzykluskontrolle und der T-Zellontogenie / vorgelegt von Peter Geserick." 2005. http://d-nb.info/973449462/34.
Full textBooks on the topic "Schlafen12"
Huber, Thomas. Bilder schlafen. Salon, 1998.
Martin, Marko. Schlafende Hunde: Erzählungen. Eichborn, 2009.
Schlafende Hunde: Erzählungen. Eichborn, 2009.
Katase, Kazuo. Kazuo Katase: Schlafende Sterne. Westfälischer Kunstverein, 1994.
editor, Maass Sebastian 1981, ed. "Verräter schlafen nicht". Regin-Verlag, 2011.
Überwachen und schlafen. Peter Lang, 2001.
Kelman, Judith. Wenn engel schlafen. [Goldmann]1988., 1988.
Thubron, Colin. Sibirien: Schlafende Erde - erwachendes Land. Droemer Knaur, 2003.
Wittstock, Joachim. Keulenmann und schlafende Muse: Erfahrungsschritte. Hora, 2005.
Hirshkowitz, Max. Besser schlafen für Dummies. 4th ed. John Wiley & Sons, 2012.
Book chapters on the topic "Schlafen12"
Däfler, Martin-Niels. "Schlafen." In Gib mir Geduld – aber flott! Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-19730-8_26.
Full textKahl-Scholz, Martina. "Schlafen." In Mensch! Erstaunliches über den Körper. Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56155-3_6.
Full textPiehl, Jona. "Schlafen." In Gebrauchsanleitungen optimal gestalten. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56311-9_1.
Full textStefan, Harald, Josef Eberl, Franz Allmer, et al. "Schlafen, beeinträchtigt." In POP® — PraxisOrientierte Pflegediagnostik. Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-79910-9_64.
Full textGewalt, Wolfgang. "Schwimmen und Schlafen." In Wale und Delphine. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78205-3_4.
Full textStefan, Harald, Josef Eberl, Franz Allmer, et al. "Schlafen, beeinträchtigt, Risiko." In POP® — PraxisOrientierte Pflegediagnostik. Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-79910-9_63.
Full textBirbaumer, N., and R. F. Schmidt. "Wachen, Aufmerksamkeit und Schlafen." In Physiologie des Menschen. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-09334-4_7.
Full textBirbaumer, N., and R. F. Schmidt. "Wachen, Aufmerksamkeit und Schlafen." In Physiologie des Menschen. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-09346-7_7.
Full textBirbaumer, N., and R. F. Schmidt. "Wachen, Aufmerksamkeit und Schlafen." In Springer-Lehrbuch. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-22217-1_16.
Full textBirbaumer, N., and R. F. Schmidt. "Wachen, Aufmerksamkeit und Schlafen." In Springer-Lehrbuch. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-22216-4_16.
Full textConference papers on the topic "Schlafen12"
Fertsch, S., A. Wolter, B. Munder, et al. "Kann Lipofilling schlafende Brustkrebszellen aktivieren?" In 39. Jahrestagung der Deutschen Gesellschaft für Senologie. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1687962.
Full textGürgan, S., K. Bosse, B. Böer, et al. "Zufallsbefund bei prophylaktischer Operation- „der schlafende Hund“." In Wissenschaftliche Abstracts zur 40. Jahrestagung der Deutschen Gesellschaft für Senologie e.V. (DGS) Interdisziplinär. Kommunikativ. Digital. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1730163.
Full textPommier, Yves, and Junko Murai. "Abstract IA19: PARP trapping and Schlafen 11." In Abstracts: AACR Special Conference on DNA Repair: Tumor Development and Therapeutic Response; November 2-5, 2016; Montreal, QC, Canada. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1557-3125.dnarepair16-ia19.
Full textPommier, Yves G., and Junko Murai. "Abstract IA21: PARP trapping and Schlafen 11 to kill cancer cells." In Abstracts: AACR International Conference held in cooperation with the Latin American Cooperative Oncology Group (LACOG) on Translational Cancer Medicine; May 4-6, 2017; São Paulo, Brazil. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.tcm17-ia21.
Full textMurai, Junko, Rozenn Josse, James H. Doroshow, and Yves Pommier. "Abstract 1718: Schlafen 11 (SLFN11) is a critical determinant of cellular sensitivity to PARP inhibitors." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1718.
Full textZoppoli, Gabriele, Marie Regairaz, Elisabetta Leo, William C. Reinhold, and Yves Pommier. "Abstract 4693: The putative DNA/RNA Helicase Schlafen-11 sensitizes cancer cells to topoisomerase I inhibitors." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4693.
Full textSchwartz, Anthony L., Sukhbir Kaur, Sai-Wen Tang, Yves Pommier, and David D. Roberts. "Abstract 3054: CD47 signaling regulates a DNA damage response pathway by suppressing the expression of Schlafen-11 (SLFN11)." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3054.
Full textOh, Phil-Sun, Vaishali B. Patel, Matthew A. Sanders, et al. "Abstract 5203: Schlafen-3 decreases cancer stem cell marker expression and autocrine/ juxtacrine signaling in FOLFOX-resistant colon cancer cells." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-5203.
Full textMurai, Junko, and Yves Pommier. "Abstract B64: Schlafen 11 (SLFN11) irreversibly blocks cell cycle recovery independently of ATR following replicative damage by poly(ADPribose) polymerase inhibitors." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1535-7163.targ-15-b64.
Full textMarzi, Laetitia, Ludmila Szabova, Zoe Weaver Ohler, et al. "Abstract 365: Indotecan (LMP400), indimitecan (LMP776) and LMP744, a new class of non-camptothecin topoisomerase I inhibitors selective for schlafen11-positive and BRCA-deficient cells that synergize with olaparib." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-365.
Full text