Academic literature on the topic 'Schmitt Trigger'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schmitt Trigger.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Schmitt Trigger"
Vidhyadharan, Abhay Sanjay, and Sanjay Vidhyadharan. "Improved hetero-junction TFET-based Schmitt trigger designs for ultra-low-voltage VLSI applications." World Journal of Engineering 18, no. 5 (March 26, 2021): 750–59. http://dx.doi.org/10.1108/wje-08-2020-0367.
Full textFilanovsky, I. M., and H. Baltes. "CMOS Schmitt trigger design." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41, no. 1 (1994): 46–49. http://dx.doi.org/10.1109/81.260219.
Full textRamkumar, K., and K. Nagaraj. "A ternary Schmitt trigger." IEEE Transactions on Circuits and Systems 32, no. 7 (July 1985): 732–35. http://dx.doi.org/10.1109/tcs.1985.1085779.
Full textSteyaert, M., and W. Sansen. "Novel CMOS Schmitt trigger." Electronics Letters 22, no. 4 (1986): 203. http://dx.doi.org/10.1049/el:19860142.
Full textKumar, Umesh. "Measurements and Analytical Computer-Based Study of CMOS Inverters and Schmitt Triggers." Active and Passive Electronic Components 19, no. 1 (1996): 41–54. http://dx.doi.org/10.1155/1996/52421.
Full textWang, C. S., S. Y. Yuan, and S. Y. Kuo. "Full-swing BiCMOS Schmitt trigger." IEE Proceedings - Circuits, Devices and Systems 144, no. 5 (1997): 303. http://dx.doi.org/10.1049/ip-cds:19971142.
Full textWang, Z., and W. Guggenbohl. "Novel CMOS current Schmitt trigger." Electronics Letters 24, no. 24 (1988): 1514. http://dx.doi.org/10.1049/el:19881034.
Full textAl-Sarawi, S. F. "Low power Schmitt trigger circuit." Electronics Letters 38, no. 18 (2002): 1009. http://dx.doi.org/10.1049/el:20020687.
Full textAlAhdal, A., and C. Toumazou. "ISFET-based chemical Schmitt trigger." Electronics Letters 48, no. 10 (2012): 549. http://dx.doi.org/10.1049/el.2011.3781.
Full textBastan, Yasin, and Parviz Amiri. "A Digital-Based Ultra-Low-Voltage Pseudo-Differential CMOS Schmitt Trigger." Journal of Circuits, Systems and Computers 29, no. 04 (June 26, 2019): 2020002. http://dx.doi.org/10.1142/s0218126620200029.
Full textDissertations / Theses on the topic "Schmitt Trigger"
Prodanov, William. "Um comparador de corrente Schmitt-Trigger digitalmente programável." Florianópolis, SC, 2002. http://repositorio.ufsc.br/xmlui/handle/123456789/83532.
Full textMade available in DSpace on 2012-10-20T00:50:35Z (GMT). No. of bitstreams: 1 183185.pdf: 2210812 bytes, checksum: 07123e7508f20565afef5470328b8040 (MD5)
Apresentação de uma nova estrutura para um comparador de corrente Schmitt-trigger compatível com sistemas de baixa tensão de alimentação. A principal virtude é a fácil programabilidade digital do laço de histerese, laço este que é a principal figura de mérito de um comparador desta natureza. O comparador de corrente é composto por diversas células básicas tais como amplificador operacional, comparador de tensão, redes divisoras de corrente e portas lógicas XOR. Cada uma destas células é apresentada individualmente com a finalidade de destacar influências no comportamento geral do comparador de corrente. Para a comprovação da funcionalidade da estrutura são apresentadas simulações computacionais, bem como testes de bancadas em chips protótipos que foram integrados em tecnologia CMOS de 0.8?m, com alimentação de $3,3V$. O comparador de corrente implementado é inteiramente compatível com tecnologias VLSI (Very Large Scale Integration). Como exemplo de utilização do comparador de corrente, é apresentado um gerador de sinal digitalmente programável com simulações computacionais que demonstram o funcionamento do gerador.
Melek, Luiz Alberto Pasini. "Analysis and design of a subthreshold CMOS Schmitt trigger circuit." reponame:Repositório Institucional da UFSC, 2017. https://repositorio.ufsc.br/xmlui/handle/123456789/183242.
Full textMade available in DSpace on 2018-02-06T03:20:46Z (GMT). No. of bitstreams: 1 349773.pdf: 5894584 bytes, checksum: f7cc1810c920ff756724711896de8791 (MD5) Previous issue date: 2017
Nesta tese, o disparador Schmitt (ou Schmitt trigger) CMOS clássico (ST) operando em inversão fraca é analisado. A transferência de tensão DC completa é determinada, incluindo expressões analíticas para as tensões dos nós internos. A transferência de tensão DC resultante do ST apresenta um comportamento contínuo mesmo na presença da histerese. Nesse caso, a característica da tensão de saída entre os limites da histerese é formada por um segmento metaestável, que pode ser explicado em termos das resistências negativas dos subcircuitos NMOS e PMOS do ST. A tensão mínima para o aparecimento da histerese é determinada fazendo-se a análise de pequenos sinais. A análise de pequenos sinais também é utilizada para a estimativa da largura do laço de histerese. É mostrado que a histerese não aparece para tensões de alimentação menores que 75 mV em 300 K. A análise do ST operando como amplificador também foi feita. A razão ótima dos transistores foi determinada com o objetivo de se maximizar o ganho de tensão. A comparação do disparador Schmitt com o inversor CMOS convencional destaca as vantagens e desvantagens de cada um para aplicações de ultra-baixa tensão. Também é mostrado que o ST é teoricamente capaz de operar (com ganho de tensão absoluto ?1) com uma tensão de alimentação tão baixa quanto 31.5 mV, a qual é menor do que o conhecido limite prévio de 36 mV, para o inversor convencional. Como amplificador, o ST possui ganho de tensão absoluto consideravelmente maior que o inversor convencional na mesma tensão de alimentação. Três circuitos integrados foram projetados e fabricados para estudar o comportamento do ST com tensões de alimentação entre 50 mV e 1000 mV.
Abstract : In this thesis, the classical CMOS Schmitt trigger (ST) operating in weak inversion is analyzed. The complete DC voltage transfer characteristic is determined, including analytical expressions for the internal node voltage. The resulting voltage transfer characteristic of the ST presents a continuous output behavior even when hysteresis is present. In this case, the output voltage characteristic between the hysteresis limits is formed by a metastable segment, which can be explained in terms of the negative resistance of the NMOS and PMOS subcircuits of the ST. The minimum supply voltage at which hysteresis appears is determined carrying out small-signal analysis, which is also used to estimate the hysteresis width. It is shown that hysteresis does not appear for supply voltages lower than 75 mV at 300 K. The analysis of the ST operating as a voltage amplifier was also carried out. Optimum transistor ratios were determined aiming at voltage gain maximization. The comparison of the ST with the standard CMOS inverter highlights the relative benefits and drawbacks of each one in ULV applications. It is also shown that the ST is theoretically capable of operating (voltage gain ?1) at a supply voltage as low as 31.5 mV, which is lower than the well-known limit of 36 mV, for the standard CMOS inverter. As an amplifier, the ST shows considerable higher absolute voltage gains than those showed by the conventional inverter at the same supply voltages. Three test chips were designed and fabricated to study the operation of the ST at supply voltages between 50 mV and 1000 mV.
Namala, Praneeth. "A 13T Single-Ended Low Power SRAM Using Schmitt-Trigger and Write-Assist." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1504191949021882.
Full textMaruf, Md Hasan. "An Input Amplifier for Body-Channel Communication." Thesis, Linköpings universitet, Elektroniksystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-89878.
Full textAyed, Alshammari Marji. "DESIGN OF HIGHER-ORDER ALL OPTICAL BINARY DELTA-SIGMA MODULATOR USING RING LASER." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1619.
Full textSchmitt, Sebastian [Verfasser], and André [Akademischer Betreuer] Schöning. "Measurement of the Inclusive pp->Z/gamma*->e+e- Cross Section at sqrt(s) = 7 TeV with the ATLAS Experiment and Design Studies for a First Level Track Trigger for the ATLAS Trigger Upgrade at the future High Luminosity LHC / Sebastian Schmitt ; Betreuer: André Schöning." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://d-nb.info/1177382881/34.
Full textSchmidt, Adrian [Verfasser], and J. [Akademischer Betreuer] Blümer. "Realization of a Self-triggered Detector for the Radio Emission of Cosmic Rays / Adrian Schmidt. Betreuer: J. Blümer." Karlsruhe : KIT-Bibliothek, 2011. http://d-nb.info/1028567111/34.
Full textLauffer, Felix [Verfasser], Kilian G. [Akademischer Betreuer] Eyerich, Tilo [Gutachter] Biedermann, and Carsten [Gutachter] Schmidt-Weber. "Exogenous and endogenous triggers of distinct reactions of skin immunity in inflammatory skin diseases / Felix Lauffer ; Gutachter: Tilo Biedermann, Carsten Schmidt-Weber ; Betreuer: Kilian G. Eyerich." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1172415099/34.
Full textSchmidts, Ines [Verfasser], and Klaus [Akademischer Betreuer] Förstemann. "Biogenesis and biological function of double-strand break triggered small interfering RNAs in Drosophila melanogaster / Ines Schmidts ; Betreuer: Klaus Förstemann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1148276300/34.
Full textLiao, Jian-Tang, and 廖健棠. "Low-Power Feed-Forward CMOS Schmitt Trigger Circuits." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/48032557402464356996.
Full text雲林科技大學
電子與資訊工程研究所
96
This thesis proposed new high-performance CMOS Schmitt trigger circuit structures employing feed-forward technique, and improved the propagation delay, power dissipation, and even the design effort from traditional feedback structures. Our new feed-forward circuit structure has two main parts: the diode-connect MOS transistors provide a high and fixed trigger voltage, and the asymmetrical CMOS inverters set up the fine tuning trigger voltage. In addition, by using the multi-threshold voltage IC technology, our new Schmitt circuit can be easily designed in high, normal, and low hysteresis voltage without circuit sizing. Simulation and comparison results are made under TSMC 0.18μm 1.8V process, and two trigger voltages are set as (VDD - VDD/4) and VDD/4 (1.35V and 0.45V). All circuits are designed in 500MHz operating frequency, and the outputs loads are set as 20fF. Simulation results show that new proposed non-inversion and inversion Schmitt trigger circuits save 15% to 64% and 6% to 54% power, respectively, when comparing with traditional circuits. Moreover, without feedback, design our new Schmitt becomes more straightforward.
Book chapters on the topic "Schmitt Trigger"
Craig, Edwin C. "Schmitt Trigger Circuits." In Laboratory Manual for Electronics via Waveform Analysis, 99–104. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2610-9_18.
Full textHülse, Martin, and Frank Pasemann. "Dynamical Neural Schmitt Trigger for Robot Control." In Artificial Neural Networks — ICANN 2002, 783–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46084-5_127.
Full textMoraes, Leonardo B., Alexandra Lackmann Zimpeck, Cristina Meinhardt, and Ricardo Reis. "Robust FinFET Schmitt Trigger Designs for Low Power Applications." In IFIP Advances in Information and Communication Technology, 45–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53273-4_3.
Full textKumar, Abhishek, and Ravi Shankar Mishra. "Challenge-Response Pair (CRP) Generator Using Schmitt Trigger Physical Unclonable Function." In Advanced Computing and Communication Technologies, 213–23. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0680-8_20.
Full textAnushree, Mathur, Kumawat Mrinalini, Sharma Jyoti, and Avireni Srinivasulu. "A Schmitt Trigger by Means of a Voltage Differencing Transconductance Amplifier." In Advances in Smart Grid Automation and Industry 4.0, 527–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7675-1_52.
Full textCheng, Li, Decheng Lou, Ming Yan, and Ning Yang. "Novel 0.15 μm BiCMOS A/D Optoelectronic Converter with Schmitt Trigger Circuit." In Advanced Electrical and Electronics Engineering, 533–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19712-3_68.
Full textBanerjee, Subhasish, Eshita Sarkar, and Sagar Mukherjee. "Effect of intrinsic and extrinsic device parameter variations on Schmitt trigger circuit." In Computational Science and Engineering, 15–18. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: CRC Press, 2016. http://dx.doi.org/10.1201/9781315375021-5.
Full textNikitha, L., N. S. Bhargavi, and B. S. Kariyappa. "Design and Development of Non-volatile Multi-threshold Schmitt Trigger SRAM Cell." In Lecture Notes in Electrical Engineering, 877–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5802-9_76.
Full textSharma, Jyoti, Ritambhara, and Avireni Srinivasulu. "A Novel CNFET-Based CCCDTA and Its Application as a Schmitt Trigger." In Advances in Smart Grid Automation and Industry 4.0, 93–101. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7675-1_9.
Full textSharma, Pawan, Saurabh Khandelwal, and Shyam Akashe. "Modeling and Analysis of FinFET Based Schmitt Trigger with Stability Response and Gain-Bandwidth Product." In Springer Proceedings in Physics, 255–61. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2367-2_32.
Full textConference papers on the topic "Schmitt Trigger"
Sapawi, R., R. L. S. Chee, S. K. Sahari, and N. Julai. "Performance of CMOS Schmitt Trigger." In 2008 International Conference on Computer and Communication Engineering (ICCCE). IEEE, 2008. http://dx.doi.org/10.1109/iccce.2008.4580818.
Full textSinghanath, Pratchayaporn, Apirak Suadet, Arnon Kanjanop, Thawatchai Thongleam, Sanya Kuankid, and Varakorn Kasemsuwan. "Low voltage adjustable CMOS Schmitt trigger." In 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization (ICMSAO). IEEE, 2011. http://dx.doi.org/10.1109/icmsao.2011.5775531.
Full textIbrahim, Walid, Valeriu Beiu, Mihai Tache, and Fekri Kharbash. "On Schmitt trigger and other inverters." In 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, 2013. http://dx.doi.org/10.1109/icecs.2013.6815337.
Full textBeiu, Valeriu, and Mihai Tache. "On using Schmitt trigger for digital logic." In 2015 International Semiconductor Conference (CAS). IEEE, 2015. http://dx.doi.org/10.1109/smicnd.2015.7355206.
Full textSteininger, Andreas, Jurgen Maier, and Robert Najvirt. "The Metastable Behavior of a Schmitt-Trigger." In 2016 22nd IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC). IEEE, 2016. http://dx.doi.org/10.1109/async.2016.19.
Full textBeiu, Valeriu, Walid Ibrahim, Mihai Tache, and Fekri Kharbash. "When one should consider Schmitt trigger gates." In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388698.
Full textAdithi, R., Soumya Dambal, and Kirti S. Pande. "NMOS Only Schmitt Trigger Based SRAM Cell." In 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2019. http://dx.doi.org/10.1109/iceca.2019.8821802.
Full textMoraes, L. B., A. L. Zimpeck, C. Meinhardt, and R. Reis. "Exploring Schmitt Trigger Circuits for Process Variability Mitigation." In 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS). IEEE, 2019. http://dx.doi.org/10.1109/newcas44328.2019.8961235.
Full textZhige Zou, Xuecheng Zou, Dingbin Liao, Fan Guo, Jianming Lei, and Xiaofei Chen. "A novel schmitt trigger with low temperature coeficient." In APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2008. http://dx.doi.org/10.1109/apccas.2008.4746291.
Full textHang, Guoqiang, Yonghui Liao, Yang Yang, Danyan Zhang, and Xiaohui Hu. "Neuron-MOS Based Schmitt Trigger with Controllable Hysteresis." In 2012 Eighth International Conference on Computational Intelligence and Security (CIS). IEEE, 2012. http://dx.doi.org/10.1109/cis.2012.52.
Full text