Academic literature on the topic 'Schottky Junction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schottky Junction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Schottky Junction"
Kaneko, Masao, Hirohito Ueno, and Junichi Nemoto. "Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions." Beilstein Journal of Nanotechnology 2 (February 28, 2011): 127–34. http://dx.doi.org/10.3762/bjnano.2.15.
Full textAtiwongsangthong, Narin, and Surasak Niemcharoen. "Photocurrent Enhancement between Two Coplanar Schottky-Barriers on Silicon MSM Photodetector." Advanced Materials Research 684 (April 2013): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.684.265.
Full textLi, Xinming, and Hongwei Zhu. "The graphene–semiconductor Schottky junction." Physics Today 69, no. 9 (September 2016): 46–51. http://dx.doi.org/10.1063/pt.3.3298.
Full textSeo, Cheolwon, Seung-Hyouk Hong, Ju-Hyung Yun, and Joondong Kim. "N-type Si Schottky Junction Photoelectric Device Using Nickel and Silver." Journal of the Korean Institute of Electrical and Electronic Material Engineers 27, no. 6 (June 1, 2014): 389–93. http://dx.doi.org/10.4313/jkem.2014.27.6.389.
Full textNeetika, Ramesh Chandra, and V. K. Malik. "Temperature Dependent Current-Voltage Characteristics of Pt/MoS2 Schottky Junction." MRS Advances 4, no. 38-39 (2019): 2127–34. http://dx.doi.org/10.1557/adv.2019.283.
Full textLi, Jing Ling, Xiao Xia Cao, Hua Liang Yu, and Yong Jiang Gan. "“Double Junction” of Ag-Doping TiO2 Nanotubes." Key Engineering Materials 609-610 (April 2014): 175–79. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.175.
Full textKoehler, Andrew D., Travis J. Anderson, Marko J. Tadjer, Anindya Nath, Boris N. Feigelson, David I. Shahin, Karl D. Hobart, and Francis J. Kub. "Vertical GaN Junction Barrier Schottky Diodes." ECS Journal of Solid State Science and Technology 6, no. 1 (December 14, 2016): Q10—Q12. http://dx.doi.org/10.1149/2.0041701jss.
Full textLEE, J. "Pentacene-based photodiode with Schottky junction." Thin Solid Films 451-452 (March 2004): 12–15. http://dx.doi.org/10.1016/j.tsf.2003.10.086.
Full textYe, Yu, and Lun Dai. "Graphene-based Schottky junction solar cells." Journal of Materials Chemistry 22, no. 46 (2012): 24224. http://dx.doi.org/10.1039/c2jm33809b.
Full textLiao, Tianjun, Jianying Du, Juncheng Guo, Xiaohang Chen, and Jincan Chen. "Schottky junction-based thermophotovoltaic-thermionic devices." Journal of Physics D: Applied Physics 53, no. 5 (November 25, 2019): 055503. http://dx.doi.org/10.1088/1361-6463/ab539e.
Full textDissertations / Theses on the topic "Schottky Junction"
Dahlquist, Fanny. "Junction Barrier Schottky Rectifiers in Silicon Carbide." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3367.
Full textLos, Andrei. "Influence of carrier freeze-out on SiC Schottky junction admittance." Diss., Mississippi State : Mississippi State University, 2001. http://library.msstate.edu/etd/show.asp?etd=etd-03272001-120540.
Full textLin, Derek Yun Tsung. "Integrating graphene and nanofibers with silicon to form Schottky junction solar cells." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/43933.
Full textMathumba, Penny. "Aluminium and gold functionalized graphene quantum dots as electron acceptors for inverted Schottky junction type rainbow solar cells." University of Western Cape, 2020. http://hdl.handle.net/11394/7232.
Full textThe main aim of this study was to prepare band gap-engineered graphene quantum dot (GQD) structures which match the different energies of the visible region in the solar spectrum. These band gap-engineered graphene quantum dot structures were used as donor materials in rainbow Schottky junction solar cells, targeting all the energies in the visible region of the solar spectrum for improved solar-to-electricity power conversion efficiency. Structural characterisation of the prepared nanomaterials under solid-state nuclear magnetic resonance spectroscopy (SS-NMR) showed appearance of bands at 40 ppm due to the presence of sp3 hybridised carbon atoms from the peripheral region of the GQD structures. Other bands were observed at 130 ppm due to the presence of polycyclic aromatic carbon atoms from the benzene rings of the GQD backbone, and around 180 ppm due to the presence of carboxylic acid carbons from oxidation due to moisture. Fourier-transform infrared resonance (FTIR) spectroscopy further confirmed the presence of aromatic carbon atoms and oxidised carbons due to the presence of C=O, C=C and -OH functional groups, concurrent with SS-NMR results.
2023-12-01
Zahradníček, Radim. "Schottkyho solární články na rozhraní grafen/křemík." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231442.
Full textBrouri, Tayeb. "Élaboration et étude des propriétés électriques des couches minces et des nanofils de ZnO." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00648173.
Full textAnderson, Tom Harper. "Optoelectronic simulation of nonhomogeneous solar cells." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25892.
Full textNiwa, Hiroki. "Breakdown Characteristics in SiC and Improvement of PiN Diodes toward Ultrahigh-Voltage Applications." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215548.
Full textGaucher, Samuel. "Growth of lattice-matched hybrid semiconductor-ferromagnetic trilayers using solid-phase epitaxy." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22599.
Full textThis thesis discusses the growth of thin film structures required to fabricate a Spin-Selective Schottky Barrier Tunnel transistor (SS-SBTT). The device relies on charge carriers being transported through a thin semiconducting (SC) layer separating two ferromagnetic (FM) contacts. Thus, high quality and lattice-matched FM/SC/FM vertical trilayers must be grown, which is experimentally challenging due to incompatible crystallization energies between SC and metals. The problem was solved using a solid-phase epitaxy approach, whereby a thin amorphous layer of Ge (4-8 nm) is crystallized by annealing over Fe3Si on GaAs(001) substrates. Slow annealing rates up to a temperature of 260°C could produce a lattice-matched Ge-rich compound, over which a second Fe3Si could be grown my molecular-beam epitaxy. The compound obtained during annealing is a new layered polymorph of FeGe2. SQUID magnetometry measurements indicate that the trilayer samples can be placed in states of antiparallel magnetization. Vertical spin valve devices created using various trilayers were used to demonstrate that charge transport is spin-selective across the heterojunctions, showing a magnetoresistance of at most 0.3% at room temperature. The effect decreases at low temperature, correlating with a ferromagnetic transition in the FeGe2 layer. TEM and XRD experiments could determine that the new FeGe2 polymorph has a space group P4mm, containing up to 17% Si atoms substituting Ge sites. Isolating FeGe2 was possible by tuning the proportion Fe, Si and Ge atoms required to obtain the right stoichiometry upon full intermixing. Hall bars fabricated on FeGe2 thin films were used to observe an increasing resistivity at low temperature and semimetallic character.
Berthou, Maxime. "Implementation of high voltage Silicon Carbide rectifiers and switches." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00770661.
Full textBooks on the topic "Schottky Junction"
Solymar, L., D. Walsh, and R. R. A. Syms. The free electron theory of metals. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0006.
Full textMetal--Semiconductor Schottky Barrier Junctions and Their Applications. Springer, 2012.
Find full textP, Chen N., ed. Handbook of light emitting and Schottky diode research. Hauppauge, NY: Nova Science Publishers, 2009.
Find full textBook chapters on the topic "Schottky Junction"
Baliga, B. Jayant. "Junction Barrier Controlled Schottky Rectifiers." In Advanced Power Rectifier Concepts, 29–74. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-75589-2_3.
Full textDhimmar, J. M., and B. P. Modi. "Temperature Dependence Junction Parameters: Schottky Barrier, Flatband Barrier, and Temperature Coefficients of Schottky Diode." In Physics of Semiconductor Devices, 89–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_21.
Full textVassilevski, Konstantin V., I. Nikitina, A. B. Horsfall, Nicolas G. Wright, Anthony G. O'Neill, Keith P. Hilton, A. G. Munday, A. J. Hydes, Michael J. Uren, and C. Mark Johnson. "High Voltage Silicon Carbide Schottky Diodes with Single Zone Junction Termination Extension." In Materials Science Forum, 873–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.873.
Full textYamamoto, Tsuyoshi, Takeshi Endo, Nobuyuki Kato, Hiroki Nakamura, and Toshio Sakakibara. "600 V 100 A 4H-SiC Junction Barrier Schottky Diode with Guard Rings Termination." In Materials Science Forum, 857–60. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.857.
Full textOta, Chiharu, Johji Nishio, Tetsuo Hatakeyama, Takashi Shinohe, Kazutoshi Kojima, Shin Ichi Nishizawa, and Hiromichi Ohashi. "Simulation, Fabrication and Characterization of 4H-SiC Floating Junction Schottky Barrier Diodes (Super-SBDs)." In Materials Science Forum, 881–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.881.
Full textBhatnagar, Praneet, Nicolas G. Wright, A. B. Horsfall, C. Mark Johnson, Michael J. Uren, Keith P. Hilton, A. G. Munday, and A. J. Hydes. "High Temperature Applications Of 4H-SiC Vertical Junction Field-Effect Transistors And Schottky Diodes." In Materials Science Forum, 987–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.987.
Full textHatakeyama, Tetsuo, Johji Nishio, and Takashi Shinohe. "Process and Device Simulation of a SiC Floating Junction Schottky Barrier Diode (Super-SBD)." In Materials Science Forum, 921–24. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.921.
Full textKale, M. S., and D. S. Bhavsar. "Fabrication and Characterizations of Cu/CdS0.8Te0.2 Thin Film Schottky Junction Grown by Thermal Evaporation Technique." In Techno-Societal 2016, 479–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53556-2_47.
Full textOta, Chiharu, Johji Nishio, Tetsuo Hatakeyama, Takashi Shinohe, Kazutoshi Kojima, Shin Ichi Nishizawa, and Hiromichi Ohashi. "Fabrication of 4H-SiC Floating Junction Schottky Barrier Diodes (Super-SBDs) and their Electrical Properties." In Silicon Carbide and Related Materials 2005, 1175–78. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.1175.
Full textHikita, Yasuyuki, and Harold Y. Hwang. "Complex Oxide Schottky Junctions." In Thin Film Metal-Oxides, 169–204. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0664-9_5.
Full textConference papers on the topic "Schottky Junction"
Litz, Marc S., Zhaoyang Fan, James J. Carroll, and Stephen Bayne. "Alpha Schottky junction energy source." In SPIE Defense, Security, and Sensing. SPIE, 2012. http://dx.doi.org/10.1117/12.918588.
Full textCiminelli, Caterina, Francesco DellrOlio, Giuseppe Brunetti, Donato Conteduca, and Mario N. Armenise. "Graphene/Silicon Schottky Junction Solar Cells." In 2018 20th International Conference on Transparent Optical Networks (ICTON). IEEE, 2018. http://dx.doi.org/10.1109/icton.2018.8473835.
Full textDubois, E., and G. Larrieu. "Integration and Performance of Schottky Junction SOI Devices." In 2006 International Workshop on Junction Technology. IEEE, 2006. http://dx.doi.org/10.1109/iwjt.2006.220882.
Full textGrupp, D. E., D. Connelly, C. Faulkner, and P. A. Clifton. "A new junction technology for low-resistance contacts and Schottky barrier MOSFETs." In kshop on Junction Technology. IEEE, 2005. http://dx.doi.org/10.1109/iwjt.2005.203895.
Full textChang, L. B., N. C. Chen, and C. H. Chang. "On the Surface Sulfidation of AlGaN/GaN Schottky Contacts." In 2006 International Workshop on Junction Technology. IEEE, 2006. http://dx.doi.org/10.1109/iwjt.2006.220905.
Full textKaneko, T., I. Muneta, T. Hoshii, H. Wakabayashi, K. Tsutsui, H. Iwai, and K. Kakushima. "Characterization of β-Ga2O3 Schottky barrier diodes." In 2018 18th International Workshop on Junction Technology (IWJT). IEEE, 2018. http://dx.doi.org/10.1109/iwjt.2018.8330290.
Full textAhmet, Parhat, Wataru Hosoda, Kohei Noguchi, Yoshihisa Ohishi, Kuniyuki Kakushima, Kazuo Tsutsui, and Hiroshi Iwai. "Er inserted Ni silicide metal source/drain for Schottky MOSFETs." In 2010 International Workshop on Junction Technology (IWJT). IEEE, 2010. http://dx.doi.org/10.1109/iwjt.2010.5474989.
Full textZetterling, Dahlquist, Lundberg, Ostling, Rottner, and Ramberg. "High voltage silicon carbide Junction Barrier Schottky rectifiers." In Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits. IEEE, 1997. http://dx.doi.org/10.1109/cornel.1997.649365.
Full textRavindra, Pramod, Suresh Kumar, Eashwer Atresh, Asmita Jash, Rajeev Ranjan, and Sushobhan Avasthi. "Ag2CrO4 Schottky Junction for All-Oxide Solar Cells." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547482.
Full textChen, Sih-Han, Yi-Chun Lai, Pei-Ting Tsai, Yi-Cheng Lin, Yan-Nan Lin, Chi-Hsien Huang, Hsin-Fei Meng, and Peichen Yu. "Hybrid carbon nanotube/silicon Schottky junction solar cells." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749894.
Full text