Academic literature on the topic 'Schottky Junction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schottky Junction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Schottky Junction"

1

Kaneko, Masao, Hirohito Ueno, and Junichi Nemoto. "Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions." Beilstein Journal of Nanotechnology 2 (February 28, 2011): 127–34. http://dx.doi.org/10.3762/bjnano.2.15.

Full text
Abstract:
The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO2 thin film photoanode was soaked in an aqueous methanol solution using an O2-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV) that the nanosurface of the mesoporous n-TiO2 film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction) was also proved by Mott–Schottky plots at the mesoporous TiO2 thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at −0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN)6]4− and the absence of methanol brought about ohmic contact behavior on the TiO2 film and exhibited reversible redox waves in the dark due to the [Fe(CN)6]4−/3− couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN)6]4−. That is, the TiO2 nanosurface responds to [Fe(CN)6]4− to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN)6]4− around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (E fb) lies near the redox potential of the iron complex.
APA, Harvard, Vancouver, ISO, and other styles
2

Atiwongsangthong, Narin, and Surasak Niemcharoen. "Photocurrent Enhancement between Two Coplanar Schottky-Barriers on Silicon MSM Photodetector." Advanced Materials Research 684 (April 2013): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.684.265.

Full text
Abstract:
Gain properties of dc and ac photocurrent generated between two Schottky barriers coplanarly placed on silicon metal-semiconductor-metal photodetector have been investigated experimentally. The test structure has two square Mo/n-Si Schottky barrier junctions on an n-type silicon substrate with a resistivity of 9-12 Ω-cm and the junction internal separation is 20 m. The current-voltage (I-V) characteristics under illumination in visible range showed a rapid increase in the photocurrent at higher bias region. From the I-V characteristics and noise measurements, increase in photocurrent was ascribed to avalanche multiplication of carriers photogenerated in the reverse-biased Schottky junction. From observation of optical signal demodulation at low frequencies (10 kHz and 50 kHz), it was found that multiplication factor larger than 100 at 10 kHz and 30 at 50 kHz was achieved respectively.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Xinming, and Hongwei Zhu. "The graphene–semiconductor Schottky junction." Physics Today 69, no. 9 (September 2016): 46–51. http://dx.doi.org/10.1063/pt.3.3298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seo, Cheolwon, Seung-Hyouk Hong, Ju-Hyung Yun, and Joondong Kim. "N-type Si Schottky Junction Photoelectric Device Using Nickel and Silver." Journal of the Korean Institute of Electrical and Electronic Material Engineers 27, no. 6 (June 1, 2014): 389–93. http://dx.doi.org/10.4313/jkem.2014.27.6.389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neetika, Ramesh Chandra, and V. K. Malik. "Temperature Dependent Current-Voltage Characteristics of Pt/MoS2 Schottky Junction." MRS Advances 4, no. 38-39 (2019): 2127–34. http://dx.doi.org/10.1557/adv.2019.283.

Full text
Abstract:
AbstractMolybdenum disulphide (MoS2) is one of the transition metal dichalcogenide (TMD) materials which has attracted attention due to its various interesting properties. MoS2 is very promising for electronic and optoelectronic devices due to its indirect band gap (∼1.2 eV) for few layer and direct band gap (∼1.8 eV) for monolayer MoS2. In MoS2 based Schottky devices, Schottky barrier height depends on the thickness of MoS2 because of its tunable electronic properties. Here, we have used DC sputtering technique to fabricate metal-semiconductor junction of MoS2 with platinum (Pt) metal contacts. In this work, MoS2 thin film (∼10 nm) was deposited on p-Silicon (111) using DC sputtering technique at optimized parameters. Schottky metallization of Pt metal (contact area ∼ 0.785x10-2 cm2) was also done using DC sputtering. Current-voltage (I-V) characteristics of the Pt/MoS2 Schottky junction have been investigated in the temperature range 80-350K. Forward I-V characteristics of Pt/MoS2 junction are analysed to calculate different Schottky parameters. Schottky barrier height increases and ideality factor decreases on increasing the temperature from 80-350K. The I-V-T measurements suggest the presence of local inhomogeneities at the Pt/MoS2 junction. Schottky barrier inhomogeneities occur in case of rough interface. In such cases, the Schottky barrier height does not remain constant and vary locally. Current transport through the Schottky junction is a thermally activated process. As temperature increases, more and more electrons overcome the spatially inhomogeneous barrier height. As a result, the ideality factor becomes close to unity and apparent barrier height increases due to increase in temperature.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jing Ling, Xiao Xia Cao, Hua Liang Yu, and Yong Jiang Gan. "“Double Junction” of Ag-Doping TiO2 Nanotubes." Key Engineering Materials 609-610 (April 2014): 175–79. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.175.

Full text
Abstract:
Ag-doping TiO2 nanotubes (Ag-TNTs) were synthesized. A double junction is proposed, involving a Schottky junction and p-n junction (denoted as Ag-p-n junction) occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. Ag-TNTs were characterized by XRD and TEM. XRD results indicated that a mixture of anatase and rutile phases. The presence of a new peak at 271 cm1 was revealed by Raman spectral analysis of Ag-TNTs.
APA, Harvard, Vancouver, ISO, and other styles
7

Koehler, Andrew D., Travis J. Anderson, Marko J. Tadjer, Anindya Nath, Boris N. Feigelson, David I. Shahin, Karl D. Hobart, and Francis J. Kub. "Vertical GaN Junction Barrier Schottky Diodes." ECS Journal of Solid State Science and Technology 6, no. 1 (December 14, 2016): Q10—Q12. http://dx.doi.org/10.1149/2.0041701jss.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

LEE, J. "Pentacene-based photodiode with Schottky junction." Thin Solid Films 451-452 (March 2004): 12–15. http://dx.doi.org/10.1016/j.tsf.2003.10.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ye, Yu, and Lun Dai. "Graphene-based Schottky junction solar cells." Journal of Materials Chemistry 22, no. 46 (2012): 24224. http://dx.doi.org/10.1039/c2jm33809b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liao, Tianjun, Jianying Du, Juncheng Guo, Xiaohang Chen, and Jincan Chen. "Schottky junction-based thermophotovoltaic-thermionic devices." Journal of Physics D: Applied Physics 53, no. 5 (November 25, 2019): 055503. http://dx.doi.org/10.1088/1361-6463/ab539e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Schottky Junction"

1

Dahlquist, Fanny. "Junction Barrier Schottky Rectifiers in Silicon Carbide." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Los, Andrei. "Influence of carrier freeze-out on SiC Schottky junction admittance." Diss., Mississippi State : Mississippi State University, 2001. http://library.msstate.edu/etd/show.asp?etd=etd-03272001-120540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Derek Yun Tsung. "Integrating graphene and nanofibers with silicon to form Schottky junction solar cells." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/43933.

Full text
Abstract:
Since the development of the world’s first practical solar cell in 1954 at Bell Laboratories, researches have been conducted to increase solar cell efficiencies and lower the fabrication cost. Traditional Schottky junction solar cells suffer from the low transparency of metal films and increasing cost of indium tin oxide. In this thesis, p-type and n-type silicon Schottky junction solar cells are fabricated by integrating novel materials with silicon in an attempt to overcome these limitations. The p-type solar cells integrate graphene and p-type silicon. Graphene is first synthesized using scotch tape exfoliation method, and then using chemical vapor deposition (CVD) of methane on copper foils to improve its quality. The CVD graphene growth system is custom built in our lab. Graphene films are optically and electrically characterized and solar cells are fabricated. Measured solar cell characteristics results are presented and reasons for the obtained parameters are discussed. Finally, methods for improving the solar cell performance are described. The n-type solar cells are fabricated by depositing gold coated Polyacrylonitrile (PAN) nanofiber mesh on top of n-type silicon. Schottky junctions are formed where the nanofibers are in contact with silicon surface, and each junction contributes to the total current. The nanofibers are economically produced by electrospinning and coated with gold by sputtering. The solar cells are characterized and the results suggest this structure can be a promising candidate for photovoltaic application. In addition to experimental work, we conduct numerical simulations of graphene based Schottky junction solar cells to identify possible future applications of graphene. Copper indium gallium diselenide, cadmium telluride, and amorphous silicon are chosen as the semiconductor bases because of their high absorption coefficient, high/tunable bandgap, and the possibility for economical fabrication as compared to single crystal silicon technology. The simulation is carried out using MATLAB with material properties obtained from textbooks and published literatures. The simulation results provide an estimate of the relevant photovoltaic parameters. It identifies graphene/p-type cadmium telluride as a potential Schottky junction solar cell that can achieve a conversion efficiency of 11.3%, if the graphene sheet resistance of 30 ohms/square and transmittance of 90% can be attained.
APA, Harvard, Vancouver, ISO, and other styles
4

Mathumba, Penny. "Aluminium and gold functionalized graphene quantum dots as electron acceptors for inverted Schottky junction type rainbow solar cells." University of Western Cape, 2020. http://hdl.handle.net/11394/7232.

Full text
Abstract:
Philosophiae Doctor - PhD
The main aim of this study was to prepare band gap-engineered graphene quantum dot (GQD) structures which match the different energies of the visible region in the solar spectrum. These band gap-engineered graphene quantum dot structures were used as donor materials in rainbow Schottky junction solar cells, targeting all the energies in the visible region of the solar spectrum for improved solar-to-electricity power conversion efficiency. Structural characterisation of the prepared nanomaterials under solid-state nuclear magnetic resonance spectroscopy (SS-NMR) showed appearance of bands at 40 ppm due to the presence of sp3 hybridised carbon atoms from the peripheral region of the GQD structures. Other bands were observed at 130 ppm due to the presence of polycyclic aromatic carbon atoms from the benzene rings of the GQD backbone, and around 180 ppm due to the presence of carboxylic acid carbons from oxidation due to moisture. Fourier-transform infrared resonance (FTIR) spectroscopy further confirmed the presence of aromatic carbon atoms and oxidised carbons due to the presence of C=O, C=C and -OH functional groups, concurrent with SS-NMR results.
2023-12-01
APA, Harvard, Vancouver, ISO, and other styles
5

Zahradníček, Radim. "Schottkyho solární články na rozhraní grafen/křemík." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231442.

Full text
Abstract:
This diploma thesis concerns itself with fabrication and characterization of Schottky solar cell on the graphene/silicon interface. Schottky solar cells were manufactured using a front collector electrode from gold, silver and carbon. On the graphene/silicon interface of the Schottky solar cell an interlayer of Al2O3 or SiO2. For the purpose of IV characterization of the manufactured Schottky solar cell a measuring apparatus was assembled.
APA, Harvard, Vancouver, ISO, and other styles
6

Brouri, Tayeb. "Élaboration et étude des propriétés électriques des couches minces et des nanofils de ZnO." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00648173.

Full text
Abstract:
L'oxyde de zinc (ZnO) est un semi-conducteur à large gap direct (3,37 eV) qui possède de nombreuses propriétés intéressantes (piézoélectrique, optique, catalytique, chimique...). Un large champs d'applications fait de lui l'un des matériaux les plus étudiés de la dernière décennie, notamment sous forme nanostructurée. Dans ce travail, nous nous intéressons à la synthèse par électrochimie des couches minces, des micro- & nano-plots, et des nanofils de ZnO. Deux méthodes ont été utilisées : la première dite Template consiste à la fabrication des micro- et nanopores en réseau ordonné à l'aide de la technique lithographique dans lesquels a lieu la croissance du ZnO ; la seconde consiste à la croissance libre de réseau de nanofils. Les caractérisations structurales, morphologiques et optiques du ZnO ainsi élaboré ont été réalisées par diffractométrie des rayons-X (DRX), microscopie électronique à balayage (MEB), microscopie électronique en transmission (MET), spectroscopie Raman, spectroscopie UV et photoluminescence (PL). Les propriétés électriques des couches minces et des réseaux de nanofils (sous l'effet collectif) de ZnO ont été étudiées par des mesures "courant tension" (I-V) à température ambiante dans la configuration métal/semi-conducteur/métal à l'aide d'un réseau de micro-électrodes métalliques déposé en surface du ZnO. Cette étude nous a permis de déterminer qualitativement la conductivité électrique du ZnO et les différents paramètres de la jonction Schottky entre le ZnO et le substrat doré. Celle-ci est fondamentale et indispensable pour la réalisation d'un dispositif de récupération d'énergie tel que le nanogénérateur de courant piézoélectrique à base de nanofils de ZnO
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Tom Harper. "Optoelectronic simulation of nonhomogeneous solar cells." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25892.

Full text
Abstract:
This thesis investigates the possibility of enhancing the efficiency of thin film solar cells by including periodic material nonhomogeneities in combination with periodically corrugated back reflectors. Two different types of solar cell are investigated; p-i-n junctions solar cells made from alloys of hydrogenated amorphous silicon (a-Si:H) (containing either carbon or germanium), and Schottky barrier junction solar cells made from alloys of indium gallium nitride (InξGa1-ξN). Material nonhomogeneities are produced by varying the fractions of the constituent elements of the alloys. For example, by varying the content of carbon or germanium in the a-Si:H alloys, semiconductors with bandgaps ranging from 1:3 eV to 1:95 eV can be produced. Changing the bandgap alters both the optical and electrical properties of the material so this necessitates the use of coupled optical and electrical models. To date, the majority of solar cell simulations either prioritise the electrical portion of the simulation or they prioritise the optical portion of the simulation. In this thesis, a coupled optoelectronic model, developed using COMSOL Multiphysics®, was used to simulate solar cells: a two-dimensional finite-element optical model, which solved Maxwell's equations throughout the solar cells, was used to calculate the absorption of incident sunlight; and a finite-element electrical drift-diffusion transport model, either one- or two-dimensional depending on the symmetries of the problem, was used to calculate the steady state current densities throughout the solar cells under external voltage biases. It is shown that a periodically corrugated back reflector made from silver can increase efficiency of an a-Si:H alloy single p-i-n junction solar cell by 9:9% compared to a baseline design, while for a triple junction the improvement is a relatively meagre 1:8%. It is subsequently shown that the efficiency of these single p-i-n junction solar cells with a back reflector can be further increased by the inclusion of material nonhomogeneities, and that increasing the nonhomogeneity progressively increases efficiency, especially in thicker solar cells. In the case of InξGa1-ξN Schottky barrier junction solar cells, the gains are shown to be even greater. An overall increase in efficiency of up to 26:8% over a baseline design is reported.
APA, Harvard, Vancouver, ISO, and other styles
8

Niwa, Hiroki. "Breakdown Characteristics in SiC and Improvement of PiN Diodes toward Ultrahigh-Voltage Applications." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gaucher, Samuel. "Growth of lattice-matched hybrid semiconductor-ferromagnetic trilayers using solid-phase epitaxy." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22599.

Full text
Abstract:
Diese Arbeit befasst sich mit dem Wachstum von Dünnschichtstrukturen, die zur Herstellung eines Spin-selektiven Schottky-Barrier-Tunneltransistors (SS-SBTT) erforderlich sind. Das Bauelement basiert auf dem Transport von Ladungsträgern durch eine dünne halbleitende (SC) Schicht, die zwei ferromagnetische (FM) Kontakte trennt. Daher müssen hochqualitative und gitterangepasste vertikale FM/SC/FM-Trilayer gezüchtet werden, was aufgrund der inkompatiblen Kristallisationsenergien zwischen SC und Metallen eine experimentelle Herausforderung darstellt. Das Problem wurde mit einem Festphasenepitaxie-Ansatz gelöst, bei dem eine dünne amorphe Ge-Schicht (4-8 nm) durch Ausglühen über Fe3Si auf GaAs(001)-Substraten kristallisiert wird. Langsame Glühgeschwindigkeiten bis zu einer Temperatur von 260°C konnten ein neues gitterangepasstes Polymorph von FeGe2 erzeugen, über das ein zweites Fe3Si mittels Molekularstrahlepitaxie gezüchtet werden könnte. SQUID-Magnetometermessungen zeigen, dass die dreischichtigen Proben in antiparallele Magnetisierungszustände versetzt werden können. Vertikale Spin-Ventil-Bauelemente, die mit verschiedenen Trilayern hergestellt wurden, wurden verwendet, um zu demonstrieren, dass der Ladungstransport über die Heteroübergänge spinselektiv ist und bei Raumtemperatur einen Magnetowiderstand von höchstens 0,3% aufweist. Der Effekt nimmt bei niedrigen Temperaturen ab, was mit einem ferromagnetischen Übergang in der FeGe2-Schicht korreliert. Durch TEM- und XRD-Experimente konnte festgestellt werden, dass das neue FeGe2-Polymorph die Raumgruppe P4mm aufweist und bis zu 17% Si-Atome als Ersatz für Ge-Stellen enthält. Die Isolierung von FeGe2 war möglich, indem das Verhältnis von Fe-, Si- und Ge-Atomen so eingestellt wurde, dass die richtige Stöchiometrie bei vollständiger Durchmischung erreicht wurde. Anhand von FeGe2-Dünnschichten wurde ein zunehmender spezifischer Widerstand bei niedriger Temperatur und ein semi-metallischer Charakter beobachtet.
This thesis discusses the growth of thin film structures required to fabricate a Spin-Selective Schottky Barrier Tunnel transistor (SS-SBTT). The device relies on charge carriers being transported through a thin semiconducting (SC) layer separating two ferromagnetic (FM) contacts. Thus, high quality and lattice-matched FM/SC/FM vertical trilayers must be grown, which is experimentally challenging due to incompatible crystallization energies between SC and metals. The problem was solved using a solid-phase epitaxy approach, whereby a thin amorphous layer of Ge (4-8 nm) is crystallized by annealing over Fe3Si on GaAs(001) substrates. Slow annealing rates up to a temperature of 260°C could produce a lattice-matched Ge-rich compound, over which a second Fe3Si could be grown my molecular-beam epitaxy. The compound obtained during annealing is a new layered polymorph of FeGe2. SQUID magnetometry measurements indicate that the trilayer samples can be placed in states of antiparallel magnetization. Vertical spin valve devices created using various trilayers were used to demonstrate that charge transport is spin-selective across the heterojunctions, showing a magnetoresistance of at most 0.3% at room temperature. The effect decreases at low temperature, correlating with a ferromagnetic transition in the FeGe2 layer. TEM and XRD experiments could determine that the new FeGe2 polymorph has a space group P4mm, containing up to 17% Si atoms substituting Ge sites. Isolating FeGe2 was possible by tuning the proportion Fe, Si and Ge atoms required to obtain the right stoichiometry upon full intermixing. Hall bars fabricated on FeGe2 thin films were used to observe an increasing resistivity at low temperature and semimetallic character.
APA, Harvard, Vancouver, ISO, and other styles
10

Berthou, Maxime. "Implementation of high voltage Silicon Carbide rectifiers and switches." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00770661.

Full text
Abstract:
In this document, we present ou study about the conception and realization of VMOS and Schottky and JBS Diodes on Silicon Carbide. This work allowed us optimize and fabricate diodes using Tungsten as Schottky barrier on both Schottky and JBS diodes of different blocking capability between 1.2kV and 9kV. Moreover, our study of the VMOS, by considering the overall fabrication process, has permitted to identify the totality of the problems we are facing. Thusly we could ameliorate the devices and try new designs as the VIEMOS or the monolithic integration of temperature and current sensors.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Schottky Junction"

1

Solymar, L., D. Walsh, and R. R. A. Syms. The free electron theory of metals. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0006.

Full text
Abstract:
The model of the free electron theory is presented. The density of states and the Fermi–Dirac distribution function are discussed, leading to the specific heat of the electrons, the work function, thermionic emission, and the Schottky effects. As examples of applications the field-emission microscope and quartz–halogen lamps are discussed. The photoelectric effect and the energy diagrams relating to the junction between two metals are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Electronic Properties of Semiconductor Interfaces. Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Metal--Semiconductor Schottky Barrier Junctions and Their Applications. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

P, Chen N., ed. Handbook of light emitting and Schottky diode research. Hauppauge, NY: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Schottky Junction"

1

Baliga, B. Jayant. "Junction Barrier Controlled Schottky Rectifiers." In Advanced Power Rectifier Concepts, 29–74. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-75589-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dhimmar, J. M., and B. P. Modi. "Temperature Dependence Junction Parameters: Schottky Barrier, Flatband Barrier, and Temperature Coefficients of Schottky Diode." In Physics of Semiconductor Devices, 89–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vassilevski, Konstantin V., I. Nikitina, A. B. Horsfall, Nicolas G. Wright, Anthony G. O'Neill, Keith P. Hilton, A. G. Munday, A. J. Hydes, Michael J. Uren, and C. Mark Johnson. "High Voltage Silicon Carbide Schottky Diodes with Single Zone Junction Termination Extension." In Materials Science Forum, 873–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, Tsuyoshi, Takeshi Endo, Nobuyuki Kato, Hiroki Nakamura, and Toshio Sakakibara. "600 V 100 A 4H-SiC Junction Barrier Schottky Diode with Guard Rings Termination." In Materials Science Forum, 857–60. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ota, Chiharu, Johji Nishio, Tetsuo Hatakeyama, Takashi Shinohe, Kazutoshi Kojima, Shin Ichi Nishizawa, and Hiromichi Ohashi. "Simulation, Fabrication and Characterization of 4H-SiC Floating Junction Schottky Barrier Diodes (Super-SBDs)." In Materials Science Forum, 881–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bhatnagar, Praneet, Nicolas G. Wright, A. B. Horsfall, C. Mark Johnson, Michael J. Uren, Keith P. Hilton, A. G. Munday, and A. J. Hydes. "High Temperature Applications Of 4H-SiC Vertical Junction Field-Effect Transistors And Schottky Diodes." In Materials Science Forum, 987–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hatakeyama, Tetsuo, Johji Nishio, and Takashi Shinohe. "Process and Device Simulation of a SiC Floating Junction Schottky Barrier Diode (Super-SBD)." In Materials Science Forum, 921–24. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kale, M. S., and D. S. Bhavsar. "Fabrication and Characterizations of Cu/CdS0.8Te0.2 Thin Film Schottky Junction Grown by Thermal Evaporation Technique." In Techno-Societal 2016, 479–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53556-2_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ota, Chiharu, Johji Nishio, Tetsuo Hatakeyama, Takashi Shinohe, Kazutoshi Kojima, Shin Ichi Nishizawa, and Hiromichi Ohashi. "Fabrication of 4H-SiC Floating Junction Schottky Barrier Diodes (Super-SBDs) and their Electrical Properties." In Silicon Carbide and Related Materials 2005, 1175–78. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.1175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hikita, Yasuyuki, and Harold Y. Hwang. "Complex Oxide Schottky Junctions." In Thin Film Metal-Oxides, 169–204. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0664-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Schottky Junction"

1

Litz, Marc S., Zhaoyang Fan, James J. Carroll, and Stephen Bayne. "Alpha Schottky junction energy source." In SPIE Defense, Security, and Sensing. SPIE, 2012. http://dx.doi.org/10.1117/12.918588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ciminelli, Caterina, Francesco DellrOlio, Giuseppe Brunetti, Donato Conteduca, and Mario N. Armenise. "Graphene/Silicon Schottky Junction Solar Cells." In 2018 20th International Conference on Transparent Optical Networks (ICTON). IEEE, 2018. http://dx.doi.org/10.1109/icton.2018.8473835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dubois, E., and G. Larrieu. "Integration and Performance of Schottky Junction SOI Devices." In 2006 International Workshop on Junction Technology. IEEE, 2006. http://dx.doi.org/10.1109/iwjt.2006.220882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grupp, D. E., D. Connelly, C. Faulkner, and P. A. Clifton. "A new junction technology for low-resistance contacts and Schottky barrier MOSFETs." In kshop on Junction Technology. IEEE, 2005. http://dx.doi.org/10.1109/iwjt.2005.203895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chang, L. B., N. C. Chen, and C. H. Chang. "On the Surface Sulfidation of AlGaN/GaN Schottky Contacts." In 2006 International Workshop on Junction Technology. IEEE, 2006. http://dx.doi.org/10.1109/iwjt.2006.220905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaneko, T., I. Muneta, T. Hoshii, H. Wakabayashi, K. Tsutsui, H. Iwai, and K. Kakushima. "Characterization of β-Ga2O3 Schottky barrier diodes." In 2018 18th International Workshop on Junction Technology (IWJT). IEEE, 2018. http://dx.doi.org/10.1109/iwjt.2018.8330290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ahmet, Parhat, Wataru Hosoda, Kohei Noguchi, Yoshihisa Ohishi, Kuniyuki Kakushima, Kazuo Tsutsui, and Hiroshi Iwai. "Er inserted Ni silicide metal source/drain for Schottky MOSFETs." In 2010 International Workshop on Junction Technology (IWJT). IEEE, 2010. http://dx.doi.org/10.1109/iwjt.2010.5474989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zetterling, Dahlquist, Lundberg, Ostling, Rottner, and Ramberg. "High voltage silicon carbide Junction Barrier Schottky rectifiers." In Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits. IEEE, 1997. http://dx.doi.org/10.1109/cornel.1997.649365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ravindra, Pramod, Suresh Kumar, Eashwer Atresh, Asmita Jash, Rajeev Ranjan, and Sushobhan Avasthi. "Ag2CrO4 Schottky Junction for All-Oxide Solar Cells." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Sih-Han, Yi-Chun Lai, Pei-Ting Tsai, Yi-Cheng Lin, Yan-Nan Lin, Chi-Hsien Huang, Hsin-Fei Meng, and Peichen Yu. "Hybrid carbon nanotube/silicon Schottky junction solar cells." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography