Academic literature on the topic 'Schwarz Lemma and generalization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Schwarz Lemma and generalization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Schwarz Lemma and generalization"
Joseph, James E., and Myung H. Kwack. "A Generalization of the Schwarz Lemma to Normal Selfaps of Complex Spaces." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 68, no. 1 (February 2000): 10–18. http://dx.doi.org/10.1017/s1446788700001543.
Full textSvetlik, Marek. "A note on the Schwarz lemma for harmonic functions." Filomat 34, no. 11 (2020): 3711–20. http://dx.doi.org/10.2298/fil2011711s.
Full textRoth, Oliver. "The Nehari-Schwarz lemma and infinitesimal boundary rigidity of bounded holomorphic functions." Studia Universitatis Babes-Bolyai Matematica 67, no. 2 (June 8, 2022): 285–94. http://dx.doi.org/10.24193/subbmath.2022.2.05.
Full textBisi, Cinzia, and Caterina Stoppato. "Landau’s theorem for slice regular functions on the quaternionic unit ball." International Journal of Mathematics 28, no. 03 (March 2017): 1750017. http://dx.doi.org/10.1142/s0129167x17500173.
Full textZhu, Jian-Feng. "Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings." Filomat 32, no. 15 (2018): 5385–402. http://dx.doi.org/10.2298/fil1815385z.
Full textYang, Yan, and Tao Qian. "Schwarz lemma in Euclidean spaces." Complex Variables and Elliptic Equations 51, no. 7 (July 2006): 653–59. http://dx.doi.org/10.1080/17476930600688623.
Full textEdigarian, Armen, and Włodzimierz Zwonek. "Schwarz lemma for the tetrablock." Bulletin of the London Mathematical Society 41, no. 3 (March 22, 2009): 506–14. http://dx.doi.org/10.1112/blms/bdp022.
Full textRatto, Andrea, Marco Rigoli, and Laurent Veron. "extensions of the Schwarz Lemma." Duke Mathematical Journal 74, no. 1 (April 1994): 223–36. http://dx.doi.org/10.1215/s0012-7094-94-07411-5.
Full textXu, Zhenghua. "Schwarz lemma for pluriharmonic functions." Indagationes Mathematicae 27, no. 4 (September 2016): 923–29. http://dx.doi.org/10.1016/j.indag.2016.06.002.
Full textHuang, Ziyan, Di Zhao, and Hongyi Li. "A boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions." Filomat 34, no. 9 (2020): 3151–60. http://dx.doi.org/10.2298/fil2009151h.
Full textDissertations / Theses on the topic "Schwarz Lemma and generalization"
Terenzi, Gloria. "Lemma di Schwarz e la sua interpretazione geometrica." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13543/.
Full textBacca, Salvatore. "Il lemma di Schwarz e la distanza di Kobayashi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13823/.
Full textBarros, Jéssica Laís Calado de. "O teorema da aplicação de Riemann: uma prova livre de integração." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-13122017-161946/.
Full textIn this work, following the Weierstrass\'s approach, we aim to answer the following question: knowing the equivalence between holomorphy and analyticity in the complex case, which properties of analytic functions can be obtained without assuming such equivalence? Through analyzing this situation, interesting results will be obtained without employing of any complex integration theorem and in order to achieve this goal, our main tools will be the theory of unordered sums in C and properties of winding numbers of closed paths. Among the proven results are the well known Fundamental Theorem of Algebra, Schwarz\'s Lemma, Montel\'s Theorem, Weierstrass\'s Double Series Theorem, Argument Principle, Rouché\'s Theorem, Weierstrass\'s Factorization Theorem, Picard\'s Little Theorem and the Riemann\'s Mapping Theorem.
N'Doye, Ibrahima. "Généralisation du lemme de Gronwall-Bellman pour la stabilisation des systèmes fractionnaires." Phd thesis, Université Henri Poincaré - Nancy I, 2011. http://tel.archives-ouvertes.fr/tel-00584402.
Full textArman, Andrii. "Generalizations of Ahlfors lemma and boundary behavior of analytic functions." 2013. http://hdl.handle.net/1993/22095.
Full textSARFATTI, GIULIA. "Elements of function theory in the unit ball of quaternions." Doctoral thesis, 2013. http://hdl.handle.net/2158/806320.
Full textLin, Cheng-Tsai, and 林成財. "Schwarz Lemma on Symmetrized Bidisc." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/05462082649779495998.
Full text東海大學
數學系
89
Let $\Gamma$ denote the set of symmetrized bidisc. In this thesis we discuss the Schwarz lemma on $\Gamma$ also known as the special flat problem on $\Gamma$ as: Given $\alpha_{2}\in\mathbb{D},~\alpha_{2}\neq0~$ and $(s_{2},p_{2})\in\Gamma$, find an analytic function $\varphi:\mathbb{D}\rightarrow\Gamma$with $\varphi(\lambda)=(s(\lambda),p(\lambda))$ satisfies $$\varphi(0)=(0,0),~\varphi(\alpha_{2})=(s_{2},p_{2})$$ Based on the equality of Carath\'odory and Kobayashi distances, and the Schur's theorem, we construct an analytic function $\varphi$ to solve this problem. Keywords: Spectral Nevanlinna-Pick interpolation, Poincar\'{e} distance, Carath\'odory distance, Kobayashi distance, Symmetrized bidisc, Schwarz lemma.
Erickson, John D. Ph D. "Generalization, lemma generation, and induction in ACL2." Thesis, 2008. http://hdl.handle.net/2152/4004.
Full texttext
SAMBUSETTI, Andrea. "Aspetti topologici e geometrici di un lemma di Schwarz in geometria riemanniana." Doctoral thesis, 1998. http://hdl.handle.net/11573/221025.
Full textChandel, Vikramjeet Singh. "The Pick-Nevanlinna Interpolation Problem : Complex-analytic Methods in Special Domains." Thesis, 2017. http://etd.iisc.ernet.in/2005/3700.
Full textBooks on the topic "Schwarz Lemma and generalization"
Kim, Kang-Tae. Schwarz's lemma from a differential geometric viewpoint. Singapore: World Scientific, 2011.
Find full textShapiro, Harold S. The Schwarz function and its generalization to higher dimensions. New York: Wiley, 1992.
Find full textSogge, Christopher D. Improved spectral asymptotics and periodic geodesics. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.003.0005.
Full textBook chapters on the topic "Schwarz Lemma and generalization"
Kodaira, Kunihiko. "Schwarz–Kobayashi Lemma." In SpringerBriefs in Mathematics, 19–38. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6787-7_2.
Full textKobayashi, Shoshichi. "Schwarz Lemma and Negative Curvature." In Grundlehren der mathematischen Wissenschaften, 19–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03582-5_2.
Full textElin, Mark, Fiana Jacobzon, Marina Levenshtein, and David Shoikhet. "The Schwarz Lemma: Rigidity and Dynamics." In Harmonic and Complex Analysis and its Applications, 135–230. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01806-5_3.
Full textGamelin, Theodore W. "The Schwarz Lemma and Hyperbolic Geometry." In Undergraduate Texts in Mathematics, 260–73. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21607-2_9.
Full textBurckel, Robert B. "Schwarz’ Lemma and its Many Applications." In Classical Analysis in the Complex Plane, 397–456. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1965-0_7.
Full textMoriya, Katsuhiro. "The Schwarz Lemma for Super-Conformal Maps." In Hermitian–Grassmannian Submanifolds, 59–68. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5556-0_6.
Full textIwanuma, Koji, and Kenichi Kishino. "Lemma Generalization and Non-unit Lemma Matching for Model Elimination." In Advances in Computing Science — ASIAN’99, 163–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-46674-6_15.
Full textBalakrishnan, A. V. "A Generalization of the Kalman-Yakubovic Lemma." In Systems, Models and Feedback: Theory and Applications, 59. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4757-2204-8_5.
Full textBurgeth, Bernhard. "Schwarz Lemma Type Inequalities for Harmonic Functions in the Ball." In Classical and Modern Potential Theory and Applications, 133–47. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1138-6_13.
Full textWang, Wu-Sheng, Zhengfang Mo, and Zongyi Hou. "Generalization of Lemma Gronwall–Bellman on Retarded Integral Inequality." In Lecture Notes in Electrical Engineering, 749–56. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4790-9_98.
Full textConference papers on the topic "Schwarz Lemma and generalization"
Akyel, Tuğba, and Bülent Nafi Örnek. "On the rigidity part of Schwarz Lemma." In THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136123.
Full textÖrnek, Bülent Nafi, and Tuğba Akyel. "An application of Schwarz Lemma for analytic functions in the unit disc." In 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0117524.
Full textSun, Ningxin, and Haiyan Wang. "A version of Schwarz lemma based on Cauchy integral formula in octonionic analysis." In 2nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2022), edited by Chi-Hua Chen, Xuexia Ye, and Hari Mohan Srivastava. SPIE, 2022. http://dx.doi.org/10.1117/12.2638800.
Full textИмомкулов, Севдиёр, and Усмон Собиров. "Some generalization of Hartogs's lemma about analytic extension of functions of several complex variables." In International scientific conference "Ufa autumn mathematical school - 2021". Baskir State University, 2021. http://dx.doi.org/10.33184/mnkuomsh1t-2021-10-06.44.
Full textWang, Di, and Jinhui Xu. "Lower Bound of Locally Differentially Private Sparse Covariance Matrix Estimation." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/665.
Full textMonchiet, V., T. H. Tran, and G. Bonnet. "Numerical Implementation of Higher-Order Homogenization Problems and Computation of Gradient Elasticity Coefficients." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82060.
Full text