Academic literature on the topic 'Scintilační detektor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scintilační detektor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Scintilační detektor"

1

Tihlaříková, Eva. "Scintilační detektor SE pro EREM." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217869.

Full text
Abstract:
This project deals with the theme of environmental scanning electron microscopy (EREM). This method allows the examination of insulators and wet specimens without pretreatment and modification like drying and metallization. The principle of this method consists in using higher pressure in a specimen chamber. The pressure is within the range of 100 – 200 Pa. However, the pressure in the specimen chamber restricts the signal detection interference. The objective of the work is to explore the possibility of interference in secondary electron route detection by way of electrostatic field. The electrostatic field was realized with the system consisting of four electrodes located in front of the scintillation detector. It should have interfered the secondary electron´s trajectory to the detector chamber. The optimization of voltage on the electrodes was made by simulation program called SIMION. The simulation results were experimentally verified with laboratory EREM.
APA, Harvard, Vancouver, ISO, and other styles
2

Čudek, Pavel. "Scintilační detektor sekundárních elektronů pro ESEM." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-234652.

Full text
Abstract:
The thesis deals with the scintillation secondary electron detector for environmental scanning electron microscope, its design and construction. The starting point was numerical simulation of electrostatic fields and electron trajectories in the electrode system of the detector and simulation of pressure distribution and flow of gases in different parts of the detector. On the basis of modeling and simulation, construction changes of the detector were gradually implemented. Detection efficiency of each version of the detector was determined by the method described in the work. This method enables to evaluate signal level from the captured images of the specimen, quality of images was stated from signal to noise ratio. The thesis describes the whole process of the detector improvement from initial state, when the detector operated with lower efficiency in the pressure range from 300 to 900 Pa, to final version that enables usage of the detector in the range from vacuum up to 1000 Pa of water vapors in the specimen chamber of the microscope.
APA, Harvard, Vancouver, ISO, and other styles
3

Čudek, Pavel. "Scintilační detektor sekundárních elektronů pro ESEM." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217739.

Full text
Abstract:
The thesis deals with modifying and biulding of scintilation detector of secondary electrons for environmental scanning electron microscopy. It describes dilemma of environmental scanning electron microscopy, types of detectors and secondary electrons detection. The experimental part of this thesis focuses on the design and construction of new scintillation detector on the basis of simulations secondary electrons trajectories. Identifying the parameters, pressure dependencies and optimizations of electrode system of the detector realized.
APA, Harvard, Vancouver, ISO, and other styles
4

Račanský, David. "Scintilační detektor sekundárních elektronů pro VP SEM." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219370.

Full text
Abstract:
First part of this thesis is a theoretical essay which deals with the basics of the variable pressure scanning electron microscope, includes detection of secondary electrons with a view to a scintillation detector. The first applied part of the thesis is focused on prediction, measuring and setting-up optional working parley in vacuum electrodes scintillation detector system, with a stress small diameter hole in screenings C1 and C2. Second applied part was verify a change of working distance between sample and detector in consequence to optional solution for another work.
APA, Harvard, Vancouver, ISO, and other styles
5

Odehnal, Adam. "Scintilační detektor sekundárních elektronů pro environmentální rastrovací elektronový mikroskop." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242063.

Full text
Abstract:
Thesis deals with theoretical knowledge about scanning electron microscopy and environmental scanning electron microscopy. It describes principle of operation, signals generated by interaction between primary electron beam and specimen and means of detection of secondary electron signal in environmental conditions using scintillation detector. Furthermore, thesis focuses on optimization of detection od secondary electrons by adjusting electrode system of scintillation detector. Computer program Simion is used for modelling signal electron trajectories for proper adjustments. Simulation were starting-point for adjusting the design of the detector. Detection efficiency of adjusted detector was determined by evaluating signal magnitude from captured images, secondary electron detection capability from voltage contrast and quality of the captured images from signal/noise ratio.
APA, Harvard, Vancouver, ISO, and other styles
6

Kozák, Josef. "Scintilační detektor sekundárních elektronů s řízeným prouděním plynů pro EREM." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217926.

Full text
Abstract:
This master’s thesis deals with a design and optimization of an experimental scintillation secondary electron detector for the environmental scanning electron microscope and with a description of a detector operation principle. The experiment is founded on simulations of a gas flow in detector inner sections and on simulations of secondary electron trajectories in electrostatic fields of the detector. On the basis of the simulations, new solutions of the detector designs are proposed. For these designs, same simulations as previous are performed and designs that seem to be feasible for the secondary electron detection in environmental scanning electron microscope are selected.
APA, Harvard, Vancouver, ISO, and other styles
7

Poruban, Milan. "Analýza proudění plynů při čerpání vakua pro nově navržený scintilační detektor." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220571.

Full text
Abstract:
The aim of this thesis is to study the issue of eniveromental scanning electron microscopy and pumping gas to create vacuum in the newly designed scintillation detector. Further, creating a model of recently proposed scintillation detector and simulating and analyzing pumping gas in differentially pumped chamber of detector. The theoretical part deals with electron microscopy, electron sources, electron optics and secondary electrons detectors. It is also presented which signals are generated by the electron beam on the surface of a solid. Further fluid flow issues and equations describing the flow in the solved chamber are dismantled. Furthermore, the impact of gaseous environment on the trajectory of primary electrons, because there are collisions of primary beam with atoms and molecules of gas. The following section discusses creating, quality and importance of the network in mathematical modelling. A method of a final volume used to calculate the differential equations describing the flow of gas at the premises of the detector is described . The practical part consists in creating a model of scintillation detector and analyzing the gas flow in drawing a vacuum in the newly designed scintillation detector. At the end the simulation results of gas flow are compared for different variants of apertures and various pressures on the neck of a scintillation detector designed for optimum performance of the detector. The outcome of this thesis is model of newly designed scintillation detector with optimized shapes of apertures according to functional requirements.
APA, Harvard, Vancouver, ISO, and other styles
8

Flídr, Karel. "Vliv tvaru sacích kanálů na čerpání u scintilačního detektoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221082.

Full text
Abstract:
The thesis is concerned with the design of the shape of suction canals used for pumping in the scintillation detector. The goal is to perform analysis of the model of the detector according to the current conception and then perform an optimalisation of the suction canals as per demands to their function. In the beginning of the thesis the history of the microscope and electron microscopy is described. The next chapter is focused on a more detailed description of ESEM. The following charter is dedicated to describing the scintillation detector.The thesis recounts the kinds of liquid flow. In conclusion the programs SolidWorks and Ansys Fleunt are described. Next part of this thesis describes in detail parameters‘ settings of simulation calculation. Following chapter introduces designed changes of suction channels shape and its results are shown and described.
APA, Harvard, Vancouver, ISO, and other styles
9

Přichystal, Vít. "Návrh scintilačního detektoru s jednou clonkou pro enviromentální elektronový rastrovací mikroskop." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220570.

Full text
Abstract:
The thesis is focused on the design of a scintillation detector with one screen for environmental scanning electron microscope. At the beginning of the work is an introduction to microscopy. Further work is focused on the description of ESEM microscope and a scintillation detector. The following chapter is devoted to the dynamics of flow. They list the types of flow and mathematical description of equations. The next chapter is about using the software and the way of solution of flow. In the following chapter describes a proposal of the diaphragm and extraction method of the detector area. They are described some of type aperture. The last chapter is the conclusion, where the work is summarized.
APA, Harvard, Vancouver, ISO, and other styles
10

Buchta, Michal. "Metoda napěťového kontrastu v ESEM." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217627.

Full text
Abstract:
This graduation thesis deals with the problem of voltage contrast in ESEM. The purpose of this work was to verify influence of used detectors in the dependence on conditions in specimen chamber on the size of voltage contrast. With the conditions in specimen chamber we understand pressure and working conditions of signal detection. We used power transistor as specimen.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography