Academic literature on the topic 'Scoring Matrices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scoring Matrices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Scoring Matrices"

1

WU, THOMAS D., CRAIG G. NEVILL-MANNING, and DOUGLAS L. BRUTLAG. "Minimal-Risk Scoring Matrices for Sequence Analysis." Journal of Computational Biology 6, no. 2 (1999): 219–35. http://dx.doi.org/10.1089/cmb.1999.6.219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mills, L. J., and W. R. Pearson. "Adjusting scoring matrices to correct overextended alignments." Bioinformatics 29, no. 23 (2013): 3007–13. http://dx.doi.org/10.1093/bioinformatics/btt517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trivedi, Rakesh, and Hampapathalu Adimurthy Nagarajaram. "Substitution scoring matrices for proteins ‐ An overview." Protein Science 29, no. 11 (2020): 2150–63. http://dx.doi.org/10.1002/pro.3954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frommlet, Florian, and Andreas Futschik. "On the Dependence Structure of Sequence Alignment Scores Calculated with Multiple Scoring Matrices." Statistical Applications in Genetics and Molecular Biology 3, no. 1 (2004): 1–12. http://dx.doi.org/10.2202/1544-6115.1073.

Full text
Abstract:
A common practice in protein sequence alignment is to try several scoring matrices until “something interesting" is found. This leads to a multiple testing problem making p- and E-values hard to interpret. We focus on local alignment and propose to use logistic copula functions to model explicitly the dependence structure of scores obtained using different scoring matrices. By doing this, we obtain p-value correction factors when using more than one scoring matrix on the same sequences. Furthermore the parameter of the logistic copula can be interpreted as measure of dependence, providing insight concerning the relatedness of the scores from different matrices.
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Scott F. "Homology search with binary and trinary scoring matrices." International Journal of Bioinformatics Research and Applications 2, no. 2 (2006): 119. http://dx.doi.org/10.1504/ijbra.2006.009763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SHPAER, EUGENE G. "DNA Scoring Matrices: Application to Detect Divergent Repeats." Microbial & Comparative Genomics 2, no. 1 (1997): 75–87. http://dx.doi.org/10.1089/omi.1.1997.2.75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sato, Kengo, Kensuke Morita, and Yasubumi Sakakibara. "PSSMTS: position specific scoring matrices on tree structures." Journal of Mathematical Biology 56, no. 1-2 (2007): 201–14. http://dx.doi.org/10.1007/s00285-007-0108-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KACZANOWSKI, Sz, and P. ZIELENKIEWICZ. "LOG-ODDS SCORING MATRICES CALCULATED FROM DESIGNED PROTEIN SEQUENCES." Biochemical Society Transactions 28, no. 5 (2000): A261. http://dx.doi.org/10.1042/bst028a261b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Crochemore, Maxime, Gad M. Landau, and Michal Ziv-Ukelson. "A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices." SIAM Journal on Computing 32, no. 6 (2003): 1654–73. http://dx.doi.org/10.1137/s0097539702402007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henikoff, Jorja G., and Steven Henikoff. "Using substitution probabilities to improve position-specific scoring matrices." Bioinformatics 12, no. 2 (1996): 135–43. http://dx.doi.org/10.1093/bioinformatics/12.2.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Scoring Matrices"

1

Zou, Ming-lun, and 鄒明倫. "Measuring and testing credit scoring of enterprises:Application of data envelopment analysis and credit rating transition matrices." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/95989582661477927621.

Full text
Abstract:
碩士<br>國立聯合大學<br>管理碩士學位學程<br>97<br>The credit risk management is one of the most importance issues for the financial institutions. This is also indicated by the Basel Committee on Banking Supervision which formalizes the universal approach to measure credit risk for financial institutions. As we know, banks earn profits from loans, and enterprises are main borrowers. Thus, credit risk management for loans is a major concern for banks. In the thesis, we use credit scoring method to assess the credit risk. First, this thesis applies factor analysis and data envelopment analysis to derive the credit scoring of domestic corporations, and results of credit scoring were validated by regression analysis. Second, we combine with credit scoring of corporations and credit rating transition matrices. The empirical result shows that many corporations have to improve their credit qualities. Finally, the advantage of credit scoring method is easy to follow and implement, and its empirical results can provide banks to make effective lending decisions. This thesis proposes mix credit scoring approaches, which will help banks to measure the credit risk of loans. Consequently, we hope that the proposed method helps banks to make efficient lending decisions and face the Basel Capital Accord in the future.
APA, Harvard, Vancouver, ISO, and other styles
2

Sandag, Green Arther, and 格林亞瑟. "Enhancing Prediction Protein Function of Transporter Using RBF Network with Position Specific Scoring Matrices and Post Translational Modification Information." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/76789465679948784937.

Full text
Abstract:
碩士<br>元智大學<br>資訊工程學系<br>104<br>Transporters are important transmembrane proteins that involve the cellular entry and exit of ions or molecules throughout the membrane proteins and thereby play important roles to recognize the immune system and energy transducers. Generally, three major classification transporter for membrane transport protein known as channel/pores, electrochemical transporters, and active transporters. In recent years, several studies have been conducted to analyze the transport proteins, especially discrimination class of transporters and their subfamilies have important roles in cell control system, transporting water, chemical and electric signals. Membrane transport proteins tend to forming an intricate system of pumps and channel span, and spanning cell membranes. Hence, discriminating the specific class of transporters and their subfamilies are essential tasks in computational biology and important to help biologist to have better understanding about how the function of protein in transporter proteins. Therefore, in this study attempt has been made to develop a method that used Post Translational Information (PTM) information to identify the function of transporter proteins in major class and family based on Position Specific Scoring Matrix (PSSM) profiles. The experiment results with PSSM feature set combined with PTM information could discriminate the transporter based on the three classes with independent dataset of 444 proteins can achieved an accuracy of 82.13%. Our result show that the performance prediction is better with accuracy improvement of 4%-12% and 7% compared to the previous work and Dipeptide Pair Composition (DPC) method, respectively. While for cross validation of 1904 proteins, PSSM with PTM information achieved an accuracy of 86.63% the improvement of accuracy increased about 10%, better than that gained with just DPC
APA, Harvard, Vancouver, ISO, and other styles
3

Sauer, Tilman. "Evaluierung des phylogenetischen Footprintings und dessen Anwendung zur verbesserten Vorhersage von Transkriptionsfaktor-Bindestellen." Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B383-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramkrishnan, Gayatri. "Recognition of Structures, Functions and Interactions of Proteins of Pathogens : Implications in Drug Discovery." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3818.

Full text
Abstract:
Significant advancements in genome sequencing techniques and other high-throughput initiatives have resulted in the availability of complete sequences of genomes of a large number of organisms, which provide an opportunity to study detailed biological information encoded therein. Identification of functional roles of proteins can aid in comprehension of various cellular activities in an organism, which is traditionally achieved using techniques pertaining to the field of molecular biology, protein chemistry and macromolecular crystallography. The established experimental methods for protein structure and function determination, although accurate and resourceful, are laborious and time consuming. Computational analyses of sequences of gene products and exploration of evolutionary relationships can give clues on protein structure and/or function with reasonable accuracy which can be used to direct experimental studies on proteins of interest, effectively. Moreover, with growing volumes of data, there has been a growing disparity in the number of well-characterized and uncharacterized proteins, further necessitating the use of computational methods for investigating evolutionary and structure-function relationships. The remarkable progress made in the development of computational techniques (Chapter 1) has immensely contributed to the state-of-the-art biological sequence analysis and recognition of protein structure and function in a reliable manner. These methods have largely influenced the exploration of protein sequence-structure-function space. One of the relevant applications of computational approaches is in the understanding of functional make-up of human pathogens, their complex interplay with the host and implications in pathogenesis. In this thesis, sensitive profile-based search procedures have been utilized to address various aspects in the context of three pathogens- Mycobacterium tuberculosis, Plasmodium falciparum and Trypanosoma brucei, which are causative agents of potentially life- threatening diseases. The existing drugs approved for the diseases, although of immense value in controlling the disease, have several shortcomings, the most important of them being the emergence of drug resistance that render the current treatment regimens futile. Thus, the identification of practicable targets and new drugs or new combination therapies become an important necessity. Analyses on structural and functional repertoire of proteins encoded in the pathogenic genomes can provide means for rational identification of therapeutic intervention strategies. This thesis begins with the computational analyses of proteins encoded in M. tuberculosis genome. M. tuberculosis is a primary aetiological agent of tuberculosis in humans, and is o responsible for an estimated 1.5 million deaths every year. The complete genome of the pathogen was sequenced and made available more than a decade ago, which has been valuable in determination of functional roles of its gene products. Yet, functions of many M. tuberculosis proteins remain unknown. Computational prediction of protein function is an on- going process based on ever growing information made available in public databases as well as the introduction of powerful homology recognition techniques. Hence, a continuous refinement is essential to make the most of the sequence data, ensuring its accuracy and relevance. With the use of multiple sequence and structural profile-based search procedures, an enhanced structural and functional characterization of M. tuberculosis proteins, totalling to 95% of the genome was achieved (Chapter 2). Following are the key findings. o Domain definitions were obtained for a total of 3566 of 4018 proteins. Amino acid residue coverage of >70% was achieved for 2295 proteins which constitute more than half of the proteome. o Domain assignments were newly identified for 244 proteins with domain-unassigned regions. Structure prediction for these proteins corroborated all the remote homologyrelationships recognized using profile-based methods, enhancing the reliability of the predictions. o Comparison on domain compositions of proteins between M. tuberculosis and human host, revealed presence of pathogen-specific domains that are not homologous to proteins in human. Such proteins in M. tuberculosis are mainly virulence factors involved in host-pathogen interactions such as immune-dominance and aiding entry and survival in human host macrophages, hence forming attractive targets for drug discovery. o Putative structural and functional information for proteins with no recognizable domains were inferred by means of fold recognition and an iterative profile-based search against sequence database. o Attributing putative structures and functions to 955 conserved hypothetical proteins in M. tuberculosis, 137 of which are reportedly essential to the pathogen, provide a basis to re-investigate their involvement in pathogenesis and survival in the host. Proteins with no detectable homologues were recognized as M. tuberculosis H37Rv-specific, which can serve as promising drug targets. An attempt was made to identify porin-like proteins in M. tuberculosis, considering MspA porin from M. smegmatis as a template. The difficulty in recognition of putative porins in M. tuberculosis is indicative of novel outer membrane channel proteins, not characterized yet, or high representation of ion-channels, symporters and transporters to compensate for the functional role of porins. In addition, MspA-like proteins were not readily recognized in other slow-growing mycobacterial pathogens that are known to infect human host, apart from M. tuberculosis. This indicates probable acquisition of physiological adaptations, i.e. absence of porins, to confer drug-resistance, in the course of their co-evolution with human hosts. Evolutionary relationships recognized between sequence (Pfam) and structural (SCOP) families aided in association of potential structures and/or functions for 55 uncharacterized Pfam domains recognized in M. tuberculosis. Such associations deliver useful insights into the structure and function of a protein housing the uncharacterized domain. The functional inferences drawn for M. tuberculosis proteins based on the predictions can provide valuable basis for experimental endeavours in understanding mechanisms of pathogenesis and can significantly impact anti-tubercular drug discovery programmes. An interesting outcome benefitted from the exercise of exploring relationships between Pfam and SCOP families, was the identification of evolutionary relationship between a Pfam domain of unknown function DUF2652 and class III nucleotidyl cyclases. A detailed investigation was undertaken to assess this relationship (Chapter 3). Nucleotidyl cyclases synthesize cyclic nucleotides which are critical second messengers in signalling pathways. The DUF2652 family predominantly comprises of bacterial proteins belonging to three lineages- Actinobacteria, Bacteroidetes and Proteobacteria. Thus, recognition of evolutionary relationship between these bacterial proteins and nucleotide cyclases is of particular interest due to the indispensability of cyclic nucleotides in regulation of varied biological activities in bacteria. Use of fold recognition program suggested presence of nucleotide cyclase-characteristic topological motif (βααββαβ) in all the members of the DUF2652 family. Detailed analyses on structural and functional features of the uncharacterized set of bacterial proteins corresponding to 50 bacterial genomes, using profile- based alignments, revealed presence of key features typical of nucleotidyl cyclases, including metal-binding aspartates, substrate-specifying residues and transition-state stabilizing residues. Depending on the features, 20 proteins of Actinobacteria lineage, predominantly mycobacteria, of unknown structure and function were identified as putative nucleotide cyclases, 23 proteins of Bacteroidetes lineage were associated with guanylyl cyclases, while 8 uncharacterized proteins of Proteobacteria were recognized as nucleotide cyclase-like proteins (7 adenylyl and one guanylyl cyclase). Sequence similarity-based clustering of the predicted nucleotide cyclase-like proteins with established nucleotide cyclases indicated the apparent evolutionarily distinctness of the subfamily of class III nucleotidyl cyclases predicted. Furthermore, analysis of evolutionarily conserved gene clusters of the predicted nucleotide cyclase-like proteins indicated functional associations that support the predictions on their participation in cellular signalling events. The inferences made can be experimentally investigated further to ascertain the involvement of the uncharacterized bacterial proteins in signalling pathways, which can help in understanding the pathobiology of pathogenic species of interest. The next objective was the recognition of biologically relevant protein-protein interactions across M. tuberculosis and human host (Chapter 4). M. tuberculosis is well known for its ability to successfully co-evolve with human host in terms of establishing infection, survival and persistence. The current knowledge on the mechanisms of host invasion, immune evasion and persistence in the host environment can be attributed, and is limited, to the experimental studies pursued by numerous groups. Chapter 4 presents an approach for computational identification of biologically feasible protein-protein interactions across M. tuberculosis and human host. The approach utilizes crystal structures of intra-organism protein-protein complexes which are transient in nature. Identification of homologues of host and pathogen proteins in the database of known protein-protein interactions, formed the initial step, followed by identification of conserved interfacial patch and integration of information on tissue-specific expression of human proteins and subcellular localization of human and M. tuberculosis proteins. In addition, appropriate filters were used to extract biologically feasible host-pathogen protein-protein interactions. This resulted in recognition of 386 interactions potentially mediated by 59 M. tuberculosis proteins and 90 human proteins. A predominance of host-pathogen interactions (193 protein-protein interactions) brought about by M. tuberculosis proteins participating in cell wall processes, was observed, which is in concurrence with the experimental studies on immuno-modulatory activities brought about by such proteins. These set of mycobacterial proteins were predicted to interact with diverse set of host proteins such as those involved in ubiquitin conjugation pathways, metabolic pathways, signalling pathways, regulation of cell proliferation, transport, apoptosis and autophagy. The predictions have the potential to complement experimental observations at the molecular level. Details on couple of interesting cases are presented in the chapter, one of which is the probable mechanism of immune evasion adopted by M. tuberculosis to inhibit lysozyme activity in macrophages, and second is the mechanism of nutrient uptake from host. The set of M. tuberculosis proteins predicted to mediate interactions with host proteins have the potential to warrant an experimental follow-up on probable mechanisms of pathogenesis and also serve as attractive targets for chemotherapeutic interventions. proteins known to participate in P. falciparum metabolism. Pathway holes, where evidence on metabolic step exists but the catalysing enzyme is not known, have also been addressed in the study, several of which have been suggested to play an important role in growth and development of the parasite during its intra-erythrocytic stages in human host. A subsequent objective was the recognition P. falciparum proteins potentially capable of remodelling erythrocytes to suit their niche (Chapter 7). Exploitative mechanisms are brought about by the parasite to remodel erythrocytes for growth and survival during intra-erythrocytic stages of its life-cycle, the understanding of which is limited to experimental studies. To achieve physicochemically viable protein-protein interactions potentially mediated by proteins of human erythrocytes and P. falciparum proteins, a structure-influenced protocol, similar to the one demonstrated in Chapter 4, was employed. Information on subcellular localization and protein expression is crucial especially for parasites like P. falciparum, which reside in One of the major shortcomings with current treatment regimen for tuberculosis is the emergence of multidrug (MDR) and extensively drug-resistant (XDR) strains that render first-line and second-line drug treatments futile. This entails a need to explore target space in M. tuberculosis as well as explore the potential of existing drugs for repurposing against tuberculosis. A drug repurposing strategy i.e. exploring within-target-family selectivity of small molecules, has been implemented (Chapter 5) to contribute towards time and cost-saving anti-tubercular drug development efforts. With the use of profile-based search procedures, evolutionary relationships between targets (other than proteins of M. tuberculosis) of FDA-approved drugs and M. tuberculosis proteins were investigated. A key filter to exclude drugs capable of acting on human proteins substantially reduced the chances of obtaining anti-targets. Thus, total of 130 FDA-approved drugs were recognized that can be repurposed against 78 M. tuberculosis proteins, belonging to the functional categories- intermediary metabolism and respiration, information pathways, cell wall and cell processes and lipid metabolism. The catalogue of structure and function of M. tuberculosis proteins and their involvement in host-pathogen protein-protein interactions compiled from chapters 2 and 4 served as a guiding tool to explore the functional importance of targets identified. Many of the potential targets identified have been experimentally shown to be essential for growth and survival of the pathogen earlier, thus gaining importance in terms of pharmaceutical relevance. Polypharmacological drugs or drugs capable of acting of multiple targets were also identified (92 drugs) in the study. These drugs have the potential to stand tolerance against development of drug resistance in the pathogen. Comparative sequence and structure-based analysis of M. tuberculosis proteins homologous to known targets yielded credible inferences on putative binding sites of FDA-approved drugs in potential targets. Instances where information on binding sites could not be readily inferred from known targets, potentially druggable sites have been predicted. Comparison with earlier experimental studies that report anti-tubercular potential of several approved drugs enhanced the credibility of 74 of 130 FDA-approved drugs that can be readily prioritized for clinical studies. An additional exercise was pursued to identify prospective anti-tubercular agents by means of structural comparison between ChEMBL compounds and 130 FDA-approved drugs. Only those compounds were retained that showed considerably high structural similarity with approved drugs. Such compounds with minor changes in terms of physicochemical properties provide a basis for exploration of compounds that may exhibit higher affinities to bind to M. tuberculosis targets. The set of approved drugs recognized as repurpose-able candidates against tuberculosis, in concert with the structurally similar compounds, can significantly impact anti-tubercular drug development and drug discovery. The next part of the thesis focuses on Plasmodium falciparum, an obligate intracellular protozoan parasite responsible for malaria. The parasite genome features unusual characteristics including abundance of low complexity regions and pronounced sequence divergence that render protein structure and function recognition difficult. The parasite also manifests remarkable plasticity in its metabolic organization throughout its developmental stages in two hosts-human and mosquito; thus obtaining an exhaustive list of metabolic proteins in the parasite gains importance. Considering the utility of multiple sensitive profile-based search approaches in enhanced annotation of M. tuberculosis genome, a similar exercise was employed to recognize potential metabolic proteins in P. falciparum (Chapter 6). A total of 172 metabolic proteins were identified as participants of 78 metabolic pathways, over and above 609heterogeneous environmental conditions at different stages in their lifecycle. Inclusion of such data aided in extraction of 208 biologically relevant protein-protein interactions potentially mediated by 59 P. falciparum proteins and 30 erythrocyte proteins. Host-parasite protein-protein interactions were predicted pertaining to several major strategies spanning intra-erythrocytic stages in P. falciparum pathogenesis including- gaining entry into the host erythrocytes (category: RBC invasion, protease), redirecting parasitic proteins to erythrocyte membrane (category: protein traffic), modulating erythrocyte machinery (category: rosette formation, putative adhesin, chaperone, kinase), evading immunity (category: immune evasion) and eventually egress (category: merozoite egress) to infect other uninfected erythrocytes. Elaborate means to analyse and evaluate the functional viability of a predicted interaction in terms of geometrical packing at the interfacial region, electrostatic complementarity of the interacting surfaces and interaction energies is also demonstrated. The protein-protein interactions, thus predicted between human erythrocytes and P. falciparum, have the potential to provide a useful basis in understanding probable mechanisms of pathogenesis, and indeed in pinning down attractive targets for antimalarial drug discovery. The emergence of drug resistance against all known antimalarial agents, currently in use, necessitates discovery and development of either new antimalarial agents or unexplored combination of drugs that may not only reduce mortality and morbidity of malaria, but also reduce the risk of resistance to antimalarial drugs. In an attempt to contribute towards the same, Chapter 8 explores the established concept of within-target-family selectivity of small molecules to recognize antimalarial potential of the approved drugs. Eighty six FDA-approved drugs, predominantly constituted by antibacterial agents, were identified as feasible candidates for repurposing against 90 P. falciparum proteins. Most of the potential parasite targets identified are known to participate in housekeeping machinery, protein biosynthesis, metabolic pathways and cell growth and differentiation, and thus are pharmaceutically relevant. During intra-erythrocytic growth of P. falciparum, the parasite resides within the erythrocyte, within a protective encasing, known as parasitophorous vacuole. Hence a drug, intended to target a parasite protein residing in an organelle, must be sufficiently hydrophilic or hydrophobic to be able to permeate cell membranes and reach its site of activity. On the basis of lipophilicity of the drugs, a physical property determined experimentally, 57 of 86 FDA-approved drugs were recognized as feasible candidates for use against P. falciparum during the course of blood-stages of infection, which can be prioritized for antimalarial drug development programmes. The final section of the thesis focuses on the protozoan parasite Trypanosoma brucei, a causative agent of African sleeping sickness (Chapter 9). This disease is endemic to sub-Saharan regions of Africa. Despite the availability of completely sequenced genome of T. brucei, structure and function for about 50% of the proteins encoded in the genome remain unknown. Absence of prophylactic chemotherapy and vaccine, compounded with emergence of drug-resistance renders anti-trypanosomal drug discovery challenging. Thus, considering the utility of frameworks established in earlier chapters for recognition of protein structure, function and drug-targets, similar steps were undertaken to understand functional repertoire of the parasite and use drug repurposing methods to accelerate anti-trypanosomal drug discovery efforts. Structures and functions were reliably recognized for 70% of the gene products (5894) encoded in T. brucei genome, with the use of multiple profile-based search procedures, coupled with information on presence of transmembrane domains and signal peptide cleavage sites. Consequently, a total of 282 uncharacterized T. brucei proteins could be newly coined as potential metabolic proteins. Integration of information on stage-specific expression profiles with Trypanosoma-specific and T-.brucei-specific proteins identified in the study, aided in pinning down potential attractive targets. Additionally, exploration of evolutionary relationships between targets of FDA-approved drugs and T. brucei proteins, 68 FDA-approved drugs were predicted as repurpose-able candidates against 42 potential T. brucei targets which primarily include proteins involved in regulatory processes and metabolism. Several targets predicted are reportedly essential in assisting the parasite to switch between differentiation forms (bloodstream and procyclic) in the course of its lifecycle. These targets are of high therapeutic relevance, hence the corresponding drug-target associations provide a useful resource for experimental endeavours. In summary, this thesis presents computational analyses on three pathogenic genomes in terms of enhancing the understanding of functional repertoire of the pathogens, addressing metabolic pathway holes, exploring probable mechanisms of pathogenesis brought about by potential host-pathogen protein-protein interactions, and identifying feasible FDA-approved drug candidates to repurpose against the pathogens. The studies are pursued primarily by taking advantage of powerful homology-detection techniques and the ever-growing biological information made available in public databases. Indeed, the inferences drawn for the three pathogenic genomes serve an excellent resource for an experimental follow-up. The set of protocols presented in the thesis are highly generic in nature, as demonstrated for three pathogens, and can be utilized for genome-wide analyses on many other pathogens of interest. The supplemental data associated with the chapters is provided in a compact disc attached with this thesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Ramkrishnan, Gayatri. "Recognition of Structures, Functions and Interactions of Proteins of Pathogens : Implications in Drug Discovery." Thesis, 2016. http://etd.iisc.ernet.in/2005/3818.

Full text
Abstract:
Significant advancements in genome sequencing techniques and other high-throughput initiatives have resulted in the availability of complete sequences of genomes of a large number of organisms, which provide an opportunity to study detailed biological information encoded therein. Identification of functional roles of proteins can aid in comprehension of various cellular activities in an organism, which is traditionally achieved using techniques pertaining to the field of molecular biology, protein chemistry and macromolecular crystallography. The established experimental methods for protein structure and function determination, although accurate and resourceful, are laborious and time consuming. Computational analyses of sequences of gene products and exploration of evolutionary relationships can give clues on protein structure and/or function with reasonable accuracy which can be used to direct experimental studies on proteins of interest, effectively. Moreover, with growing volumes of data, there has been a growing disparity in the number of well-characterized and uncharacterized proteins, further necessitating the use of computational methods for investigating evolutionary and structure-function relationships. The remarkable progress made in the development of computational techniques (Chapter 1) has immensely contributed to the state-of-the-art biological sequence analysis and recognition of protein structure and function in a reliable manner. These methods have largely influenced the exploration of protein sequence-structure-function space. One of the relevant applications of computational approaches is in the understanding of functional make-up of human pathogens, their complex interplay with the host and implications in pathogenesis. In this thesis, sensitive profile-based search procedures have been utilized to address various aspects in the context of three pathogens- Mycobacterium tuberculosis, Plasmodium falciparum and Trypanosoma brucei, which are causative agents of potentially life- threatening diseases. The existing drugs approved for the diseases, although of immense value in controlling the disease, have several shortcomings, the most important of them being the emergence of drug resistance that render the current treatment regimens futile. Thus, the identification of practicable targets and new drugs or new combination therapies become an important necessity. Analyses on structural and functional repertoire of proteins encoded in the pathogenic genomes can provide means for rational identification of therapeutic intervention strategies. This thesis begins with the computational analyses of proteins encoded in M. tuberculosis genome. M. tuberculosis is a primary aetiological agent of tuberculosis in humans, and is o responsible for an estimated 1.5 million deaths every year. The complete genome of the pathogen was sequenced and made available more than a decade ago, which has been valuable in determination of functional roles of its gene products. Yet, functions of many M. tuberculosis proteins remain unknown. Computational prediction of protein function is an on- going process based on ever growing information made available in public databases as well as the introduction of powerful homology recognition techniques. Hence, a continuous refinement is essential to make the most of the sequence data, ensuring its accuracy and relevance. With the use of multiple sequence and structural profile-based search procedures, an enhanced structural and functional characterization of M. tuberculosis proteins, totalling to 95% of the genome was achieved (Chapter 2). Following are the key findings. o Domain definitions were obtained for a total of 3566 of 4018 proteins. Amino acid residue coverage of >70% was achieved for 2295 proteins which constitute more than half of the proteome. o Domain assignments were newly identified for 244 proteins with domain-unassigned regions. Structure prediction for these proteins corroborated all the remote homologyrelationships recognized using profile-based methods, enhancing the reliability of the predictions. o Comparison on domain compositions of proteins between M. tuberculosis and human host, revealed presence of pathogen-specific domains that are not homologous to proteins in human. Such proteins in M. tuberculosis are mainly virulence factors involved in host-pathogen interactions such as immune-dominance and aiding entry and survival in human host macrophages, hence forming attractive targets for drug discovery. o Putative structural and functional information for proteins with no recognizable domains were inferred by means of fold recognition and an iterative profile-based search against sequence database. o Attributing putative structures and functions to 955 conserved hypothetical proteins in M. tuberculosis, 137 of which are reportedly essential to the pathogen, provide a basis to re-investigate their involvement in pathogenesis and survival in the host. Proteins with no detectable homologues were recognized as M. tuberculosis H37Rv-specific, which can serve as promising drug targets. An attempt was made to identify porin-like proteins in M. tuberculosis, considering MspA porin from M. smegmatis as a template. The difficulty in recognition of putative porins in M. tuberculosis is indicative of novel outer membrane channel proteins, not characterized yet, or high representation of ion-channels, symporters and transporters to compensate for the functional role of porins. In addition, MspA-like proteins were not readily recognized in other slow-growing mycobacterial pathogens that are known to infect human host, apart from M. tuberculosis. This indicates probable acquisition of physiological adaptations, i.e. absence of porins, to confer drug-resistance, in the course of their co-evolution with human hosts. Evolutionary relationships recognized between sequence (Pfam) and structural (SCOP) families aided in association of potential structures and/or functions for 55 uncharacterized Pfam domains recognized in M. tuberculosis. Such associations deliver useful insights into the structure and function of a protein housing the uncharacterized domain. The functional inferences drawn for M. tuberculosis proteins based on the predictions can provide valuable basis for experimental endeavours in understanding mechanisms of pathogenesis and can significantly impact anti-tubercular drug discovery programmes. An interesting outcome benefitted from the exercise of exploring relationships between Pfam and SCOP families, was the identification of evolutionary relationship between a Pfam domain of unknown function DUF2652 and class III nucleotidyl cyclases. A detailed investigation was undertaken to assess this relationship (Chapter 3). Nucleotidyl cyclases synthesize cyclic nucleotides which are critical second messengers in signalling pathways. The DUF2652 family predominantly comprises of bacterial proteins belonging to three lineages- Actinobacteria, Bacteroidetes and Proteobacteria. Thus, recognition of evolutionary relationship between these bacterial proteins and nucleotide cyclases is of particular interest due to the indispensability of cyclic nucleotides in regulation of varied biological activities in bacteria. Use of fold recognition program suggested presence of nucleotide cyclase-characteristic topological motif (βααββαβ) in all the members of the DUF2652 family. Detailed analyses on structural and functional features of the uncharacterized set of bacterial proteins corresponding to 50 bacterial genomes, using profile- based alignments, revealed presence of key features typical of nucleotidyl cyclases, including metal-binding aspartates, substrate-specifying residues and transition-state stabilizing residues. Depending on the features, 20 proteins of Actinobacteria lineage, predominantly mycobacteria, of unknown structure and function were identified as putative nucleotide cyclases, 23 proteins of Bacteroidetes lineage were associated with guanylyl cyclases, while 8 uncharacterized proteins of Proteobacteria were recognized as nucleotide cyclase-like proteins (7 adenylyl and one guanylyl cyclase). Sequence similarity-based clustering of the predicted nucleotide cyclase-like proteins with established nucleotide cyclases indicated the apparent evolutionarily distinctness of the subfamily of class III nucleotidyl cyclases predicted. Furthermore, analysis of evolutionarily conserved gene clusters of the predicted nucleotide cyclase-like proteins indicated functional associations that support the predictions on their participation in cellular signalling events. The inferences made can be experimentally investigated further to ascertain the involvement of the uncharacterized bacterial proteins in signalling pathways, which can help in understanding the pathobiology of pathogenic species of interest. The next objective was the recognition of biologically relevant protein-protein interactions across M. tuberculosis and human host (Chapter 4). M. tuberculosis is well known for its ability to successfully co-evolve with human host in terms of establishing infection, survival and persistence. The current knowledge on the mechanisms of host invasion, immune evasion and persistence in the host environment can be attributed, and is limited, to the experimental studies pursued by numerous groups. Chapter 4 presents an approach for computational identification of biologically feasible protein-protein interactions across M. tuberculosis and human host. The approach utilizes crystal structures of intra-organism protein-protein complexes which are transient in nature. Identification of homologues of host and pathogen proteins in the database of known protein-protein interactions, formed the initial step, followed by identification of conserved interfacial patch and integration of information on tissue-specific expression of human proteins and subcellular localization of human and M. tuberculosis proteins. In addition, appropriate filters were used to extract biologically feasible host-pathogen protein-protein interactions. This resulted in recognition of 386 interactions potentially mediated by 59 M. tuberculosis proteins and 90 human proteins. A predominance of host-pathogen interactions (193 protein-protein interactions) brought about by M. tuberculosis proteins participating in cell wall processes, was observed, which is in concurrence with the experimental studies on immuno-modulatory activities brought about by such proteins. These set of mycobacterial proteins were predicted to interact with diverse set of host proteins such as those involved in ubiquitin conjugation pathways, metabolic pathways, signalling pathways, regulation of cell proliferation, transport, apoptosis and autophagy. The predictions have the potential to complement experimental observations at the molecular level. Details on couple of interesting cases are presented in the chapter, one of which is the probable mechanism of immune evasion adopted by M. tuberculosis to inhibit lysozyme activity in macrophages, and second is the mechanism of nutrient uptake from host. The set of M. tuberculosis proteins predicted to mediate interactions with host proteins have the potential to warrant an experimental follow-up on probable mechanisms of pathogenesis and also serve as attractive targets for chemotherapeutic interventions. proteins known to participate in P. falciparum metabolism. Pathway holes, where evidence on metabolic step exists but the catalysing enzyme is not known, have also been addressed in the study, several of which have been suggested to play an important role in growth and development of the parasite during its intra-erythrocytic stages in human host. A subsequent objective was the recognition P. falciparum proteins potentially capable of remodelling erythrocytes to suit their niche (Chapter 7). Exploitative mechanisms are brought about by the parasite to remodel erythrocytes for growth and survival during intra-erythrocytic stages of its life-cycle, the understanding of which is limited to experimental studies. To achieve physicochemically viable protein-protein interactions potentially mediated by proteins of human erythrocytes and P. falciparum proteins, a structure-influenced protocol, similar to the one demonstrated in Chapter 4, was employed. Information on subcellular localization and protein expression is crucial especially for parasites like P. falciparum, which reside in One of the major shortcomings with current treatment regimen for tuberculosis is the emergence of multidrug (MDR) and extensively drug-resistant (XDR) strains that render first-line and second-line drug treatments futile. This entails a need to explore target space in M. tuberculosis as well as explore the potential of existing drugs for repurposing against tuberculosis. A drug repurposing strategy i.e. exploring within-target-family selectivity of small molecules, has been implemented (Chapter 5) to contribute towards time and cost-saving anti-tubercular drug development efforts. With the use of profile-based search procedures, evolutionary relationships between targets (other than proteins of M. tuberculosis) of FDA-approved drugs and M. tuberculosis proteins were investigated. A key filter to exclude drugs capable of acting on human proteins substantially reduced the chances of obtaining anti-targets. Thus, total of 130 FDA-approved drugs were recognized that can be repurposed against 78 M. tuberculosis proteins, belonging to the functional categories- intermediary metabolism and respiration, information pathways, cell wall and cell processes and lipid metabolism. The catalogue of structure and function of M. tuberculosis proteins and their involvement in host-pathogen protein-protein interactions compiled from chapters 2 and 4 served as a guiding tool to explore the functional importance of targets identified. Many of the potential targets identified have been experimentally shown to be essential for growth and survival of the pathogen earlier, thus gaining importance in terms of pharmaceutical relevance. Polypharmacological drugs or drugs capable of acting of multiple targets were also identified (92 drugs) in the study. These drugs have the potential to stand tolerance against development of drug resistance in the pathogen. Comparative sequence and structure-based analysis of M. tuberculosis proteins homologous to known targets yielded credible inferences on putative binding sites of FDA-approved drugs in potential targets. Instances where information on binding sites could not be readily inferred from known targets, potentially druggable sites have been predicted. Comparison with earlier experimental studies that report anti-tubercular potential of several approved drugs enhanced the credibility of 74 of 130 FDA-approved drugs that can be readily prioritized for clinical studies. An additional exercise was pursued to identify prospective anti-tubercular agents by means of structural comparison between ChEMBL compounds and 130 FDA-approved drugs. Only those compounds were retained that showed considerably high structural similarity with approved drugs. Such compounds with minor changes in terms of physicochemical properties provide a basis for exploration of compounds that may exhibit higher affinities to bind to M. tuberculosis targets. The set of approved drugs recognized as repurpose-able candidates against tuberculosis, in concert with the structurally similar compounds, can significantly impact anti-tubercular drug development and drug discovery. The next part of the thesis focuses on Plasmodium falciparum, an obligate intracellular protozoan parasite responsible for malaria. The parasite genome features unusual characteristics including abundance of low complexity regions and pronounced sequence divergence that render protein structure and function recognition difficult. The parasite also manifests remarkable plasticity in its metabolic organization throughout its developmental stages in two hosts-human and mosquito; thus obtaining an exhaustive list of metabolic proteins in the parasite gains importance. Considering the utility of multiple sensitive profile-based search approaches in enhanced annotation of M. tuberculosis genome, a similar exercise was employed to recognize potential metabolic proteins in P. falciparum (Chapter 6). A total of 172 metabolic proteins were identified as participants of 78 metabolic pathways, over and above 609heterogeneous environmental conditions at different stages in their lifecycle. Inclusion of such data aided in extraction of 208 biologically relevant protein-protein interactions potentially mediated by 59 P. falciparum proteins and 30 erythrocyte proteins. Host-parasite protein-protein interactions were predicted pertaining to several major strategies spanning intra-erythrocytic stages in P. falciparum pathogenesis including- gaining entry into the host erythrocytes (category: RBC invasion, protease), redirecting parasitic proteins to erythrocyte membrane (category: protein traffic), modulating erythrocyte machinery (category: rosette formation, putative adhesin, chaperone, kinase), evading immunity (category: immune evasion) and eventually egress (category: merozoite egress) to infect other uninfected erythrocytes. Elaborate means to analyse and evaluate the functional viability of a predicted interaction in terms of geometrical packing at the interfacial region, electrostatic complementarity of the interacting surfaces and interaction energies is also demonstrated. The protein-protein interactions, thus predicted between human erythrocytes and P. falciparum, have the potential to provide a useful basis in understanding probable mechanisms of pathogenesis, and indeed in pinning down attractive targets for antimalarial drug discovery. The emergence of drug resistance against all known antimalarial agents, currently in use, necessitates discovery and development of either new antimalarial agents or unexplored combination of drugs that may not only reduce mortality and morbidity of malaria, but also reduce the risk of resistance to antimalarial drugs. In an attempt to contribute towards the same, Chapter 8 explores the established concept of within-target-family selectivity of small molecules to recognize antimalarial potential of the approved drugs. Eighty six FDA-approved drugs, predominantly constituted by antibacterial agents, were identified as feasible candidates for repurposing against 90 P. falciparum proteins. Most of the potential parasite targets identified are known to participate in housekeeping machinery, protein biosynthesis, metabolic pathways and cell growth and differentiation, and thus are pharmaceutically relevant. During intra-erythrocytic growth of P. falciparum, the parasite resides within the erythrocyte, within a protective encasing, known as parasitophorous vacuole. Hence a drug, intended to target a parasite protein residing in an organelle, must be sufficiently hydrophilic or hydrophobic to be able to permeate cell membranes and reach its site of activity. On the basis of lipophilicity of the drugs, a physical property determined experimentally, 57 of 86 FDA-approved drugs were recognized as feasible candidates for use against P. falciparum during the course of blood-stages of infection, which can be prioritized for antimalarial drug development programmes. The final section of the thesis focuses on the protozoan parasite Trypanosoma brucei, a causative agent of African sleeping sickness (Chapter 9). This disease is endemic to sub-Saharan regions of Africa. Despite the availability of completely sequenced genome of T. brucei, structure and function for about 50% of the proteins encoded in the genome remain unknown. Absence of prophylactic chemotherapy and vaccine, compounded with emergence of drug-resistance renders anti-trypanosomal drug discovery challenging. Thus, considering the utility of frameworks established in earlier chapters for recognition of protein structure, function and drug-targets, similar steps were undertaken to understand functional repertoire of the parasite and use drug repurposing methods to accelerate anti-trypanosomal drug discovery efforts. Structures and functions were reliably recognized for 70% of the gene products (5894) encoded in T. brucei genome, with the use of multiple profile-based search procedures, coupled with information on presence of transmembrane domains and signal peptide cleavage sites. Consequently, a total of 282 uncharacterized T. brucei proteins could be newly coined as potential metabolic proteins. Integration of information on stage-specific expression profiles with Trypanosoma-specific and T-.brucei-specific proteins identified in the study, aided in pinning down potential attractive targets. Additionally, exploration of evolutionary relationships between targets of FDA-approved drugs and T. brucei proteins, 68 FDA-approved drugs were predicted as repurpose-able candidates against 42 potential T. brucei targets which primarily include proteins involved in regulatory processes and metabolism. Several targets predicted are reportedly essential in assisting the parasite to switch between differentiation forms (bloodstream and procyclic) in the course of its lifecycle. These targets are of high therapeutic relevance, hence the corresponding drug-target associations provide a useful resource for experimental endeavours. In summary, this thesis presents computational analyses on three pathogenic genomes in terms of enhancing the understanding of functional repertoire of the pathogens, addressing metabolic pathway holes, exploring probable mechanisms of pathogenesis brought about by potential host-pathogen protein-protein interactions, and identifying feasible FDA-approved drug candidates to repurpose against the pathogens. The studies are pursued primarily by taking advantage of powerful homology-detection techniques and the ever-growing biological information made available in public databases. Indeed, the inferences drawn for the three pathogenic genomes serve an excellent resource for an experimental follow-up. The set of protocols presented in the thesis are highly generic in nature, as demonstrated for three pathogens, and can be utilized for genome-wide analyses on many other pathogens of interest. The supplemental data associated with the chapters is provided in a compact disc attached with this thesis.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Scoring Matrices"

1

Tong, Joo Chuan. "Position-Specific Scoring Matrices (PMMS)." In Encyclopedia of Systems Biology. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Araújo, Elói, and José Soares. "Scoring Matrices That Induce Metrics on Sequences." In LATIN 2006: Theoretical Informatics. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11682462_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Patel, Ketan, Andrew Tuson, Andrew Coulson, Shane Sturrock, and Robert Fisher. "Evolving Protein Similarity Scoring Matrices Using Differential Evolution." In Developments in Soft Computing. Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-7908-1829-1_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Scoring Matrices." In Protein Bioinformatics. John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9780470092620.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Scoring Matrices"

1

Cheng, Wen, and Changhui Yan. "A method for discriminating native protein-DNA complexes from decoys using spatial specific scoring matrices." In 2013 7th International Conference on Systems Biology (ISB). IEEE, 2013. http://dx.doi.org/10.1109/isb.2013.6623804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taju, Semmy Wellem, Nguyen-Quoc-Khanh Le, and Yu-Yen Ou. "Using Deep Learning with Position Specific Scoring Matrices to Identify Efflux Proteins in Membrane and Transport Proteins." In 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2016. http://dx.doi.org/10.1109/bibe.2016.69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jimenez-Morales, David, Larisa Adamian, and Jie Liang. "Detecting remote homologues using scoring matrices calculated from the estimation of amino acid substitution rates of beta-barrel membrane proteins." In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4649414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Zheng, Lingwei Zhu, Ziwei Yang, and Renyuan Zhang. "Multi-Tier Platform for Cognizing Massive Electroencephalogram." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/342.

Full text
Abstract:
An end-to-end platform assembling multiple tiers is built for precisely cognizing brain activities. Being fed massive electroencephalogram (EEG) data, the time-frequency spectrograms are conventionally projected into the episode-wise feature matrices (seen as tier-1). A spiking neural network (SNN) based tier is designed to distill the principle information in terms of spike-streams from the rare features, which maintains the temporal implication in the nature of EEGs. The proposed tier-3 transposes time- and space-domain of spike patterns from the SNN; and feeds the transposed pattern-matrices into an artificial neural network (ANN, Transformer specifically) known as tier-4, where a special spanning topology is proposed to match the two-dimensional input form. In this manner, cognition such as classification is conducted with high accuracy. For proof-of-concept, the sleep stage scoring problem is demonstrated by introducing multiple EEG datasets with the largest comprising 42,560 hours recorded from 5,793 subjects. From experiment results, our platform achieves the general cognition overall accuracy of 87% by leveraging sole EEG, which is 2% superior to the state-of-the-art. Moreover, our developed multi-tier methodology offers visible and graphical interpretations of the temporal characteristics of EEG by identifying the critical episodes, which is demanded in neurodynamics but hardly appears in conventional cognition scenarios.
APA, Harvard, Vancouver, ISO, and other styles
5

Tay, Zhi Yung, Januwar Hadi, Dimitrios Konovessis, De Jin Loh, David Kong Hong Tan, and Xiaobo Chen. "Efficient Harbor Craft Monitoring System: Time-Series Data Analytics and Machine Learning Tools to Achieve Fuel Efficiency by Operational Scoring System." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-62658.

Full text
Abstract:
Abstract This paper presents the analysis to reduce carbon emission from tugboat operations by utilizing a proposed unsupervised machine learning operational scoring system. The time-series analysis is performed by transforming data into a common domain for clustering. The data are collected from a tugboat to investigate the correlation between environmental and location data with fuel consumption to achieve fuel efficiency. The relevant parameters that influence the fuel consumption of the tugboat, such as fuel consumption, vessel route, vessel speed and wind metrics are collected from sensors installed onboard the ship and data provider to monitor and to gauge the vessel’s performance. The raw readings are conditioned (data cleaning and data pre-processing) before transformation to Score Dataset: the Raw mass-flowrate readings are cleaned by using the Haar wavelet; the wind raw reading is converted to wind effect data; the Location data is converted to vessel speed data. Together, they form a Score Dataset by applying the time series K-means clustering. The subsequent unsupervised learning identifies the activity labels that describe qualitatively the operations of the vessels and are obtained by using the non-time series K-mean clustering. By using the Hidden Markov Model approach, this paper attempts to explain the stochastic correlation among parameters explained earlier. The correlation is the information of newly discovered knowledge in terms of likelihood matrices, also known as the knowledge base (KB). The KB may be consumed to perform predictions. Hence, it is possible to suggest the optimal ship operation, i.e., speed that produces the optimum fuel consumption. The Score Dataset and clustering that are produced in this paper could also be used in the Artificial Neural Network for future work.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Bin, Lei Lin, Xiaolong Wang, Xuan Wang, and Yi Shen. "Protein Long Disordered Region Prediction Based on Profile-Level Disorder Propensities and Position-Specific Scoring Matrixes." In 2009 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2009. http://dx.doi.org/10.1109/bibm.2009.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography