Academic literature on the topic 'Scramjet engines'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Scramjet engines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Scramjet engines"

1

Jiang, Baohong. "Comprehensive Analysis of the Advanced Technologies for Scramjet." Highlights in Science, Engineering and Technology 43 (April 14, 2023): 137–49. http://dx.doi.org/10.54097/hset.v43i.7413.

Full text
Abstract:
Scramjet is a kind of aspirated engine, where oxygen in the atmosphere is used as oxidant to react with fuel in fuel bunker. Structural components are used in the scramjet to generate shock waves at high speed to compress the high-speed air flow, and realize the deceleration and pressurization of the air flow, which is different from engines where air compressors are used. Technologies related to the scramjet power/fuel are presented, and the features related to this kind of engines are highlighted in this paper. The development process of the scramjets in the application field both home and abroad is overviewed. The problems involved with scramjets in hypersonic vehicle application, combined cycle power system, design of thermal protection structures and high temperature materials are discussed. The critical technologies of scramjets, i.e., tail nozzle, combustion chamber, air inlet, fuel selection etc. are identified. The features of hydrocarbon fuel and its application in hypersonic vehicles are summarized. And the progress of research of the relevant technologies and personal prospects for scramjets are briefly described.
APA, Harvard, Vancouver, ISO, and other styles
2

CHINZEI, Nobuo, and Goro MASUYA. "Scramjet Engines." Journal of the Society of Mechanical Engineers 94, no. 866 (1991): 75–80. http://dx.doi.org/10.1299/jsmemag.94.866_75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daren, Y., C. Tao, and B. Wen. "An idea of distributed parameter control for scramjet engines." Aeronautical Journal 111, no. 1126 (December 2007): 787–96. http://dx.doi.org/10.1017/s0001924000001901.

Full text
Abstract:
AbstractScramjet engines are used under extreme temperatures and with wide range of Mach numbers from 3 to 8 or higher and have shown different control properties from other airbreathing engines. New control problems involving distributed parameter control have been found concerning investigations of the control of scramjet engines whose physical states are spatially interacted and whose governing equations are partial differential equations. The work of this paper is based on the application of distributed parameter control conception to study the control problems of scramjet engines with the aim of achieving the desirable design properties and increasing control reliability. A new control idea based on shape control theory is put forward to realise the distributed parameter control of scramjet engines with the preconditions of proper space dimension and frequency-domain simplification. Simulation results and theoretic analysis for an axisymmetric, wall-injection scramjet engine show the feasibility and validity of the control idea.
APA, Harvard, Vancouver, ISO, and other styles
4

Jin, Liang, Xian Yu Wu, Jing Lei, Li Yan, Wei Huang, and Jun Liu. "CFD Analysis of a Hypersonic Vehicle Powered by Triple-Module Scramjets." Applied Mechanics and Materials 390 (August 2013): 71–75. http://dx.doi.org/10.4028/www.scientific.net/amm.390.71.

Full text
Abstract:
A numerical investigation has been carried out to study the longitudinal performance of a hypersonic airbreathing vehicle with highly integrated triple-module scramjets. CFD-Fastran is used to evaluate the aerodynamic performance of the vehicle at inlet-open scramjet unpowered mode, and a chemical reacting code ChemTur3D has been built to evaluate the propulsion performance of the triple-module engines at scramjet powered mode. The flow conditions for the calculations include variations of angle of attack at Mach 5.85 test point. The wall pressure and surface friction are integrated to calculate drag, lift and pitching moment coefficients to predict the combined aeropropulsive force and moment characteristics during engine operation. Finally, numerical results is compared with available ground test data to assess solution accuracy, and a preflight aerodynamic database of the vehicle could be built for the hypersonic flight experiments.
APA, Harvard, Vancouver, ISO, and other styles
5

Tsujikawa, Y., and M. Nagaoka. "Determination of Cycle Configuration of Gas Turbines and Aircraft Engines by an Optimization Procedure." Journal of Engineering for Gas Turbines and Power 113, no. 1 (January 1, 1991): 100–105. http://dx.doi.org/10.1115/1.2906515.

Full text
Abstract:
This paper is devoted to the analyses and optimization of simple and sophisticated cycles, particularly for various gas turbine engines and aero-engines (including the scramjet engine) to achieve maximum performance. The optimization of such criteria as thermal efficiency, specific output, and total performance for gas turbine engines, and overall efficiency, nondimensional thrust, and specific impulse for aero-engines has been performed by the optimization procedure with the multiplier method. Comparison of results with analytical solutions establishes the validity of the optimization procedure.
APA, Harvard, Vancouver, ISO, and other styles
6

Fureby, Christer, Guillaume Sahut, Alessandro Ercole, and Thommie Nilsson. "Large Eddy Simulation of Combustion for High-Speed Airbreathing Engines." Aerospace 9, no. 12 (December 1, 2022): 785. http://dx.doi.org/10.3390/aerospace9120785.

Full text
Abstract:
Large Eddy Simulation (LES) has rapidly developed into a powerful computational methodology for fluid dynamic studies, between Reynolds-Averaged Navier–Stokes (RANS) and Direct Numerical Simulation (DNS) in both accuracy and cost. High-speed combustion applications, such as ramjets, scramjets, dual-mode ramjets, and rotating detonation engines, are promising propulsion systems, but also challenging to analyze and develop. In this paper, the building blocks needed to perform LES of high-speed combustion are reviewed. Modelling of the unresolved, subgrid terms in the filtered LES equations is highlighted. The main families of combustion models are presented, focusing on finite-rate chemistry models. The density-based finite volume method and the reaction mechanisms commonly employed in LES of high-speed H2-air combustion are briefly reviewed. Three high-speed combustor applications are presented: an experiment of supersonic flame stabilization behind a bluff body, a direct connect facility experiment as a transition case from ramjet to scramjet operation mode, and the STRATOFLY MR3 Small-Scale Flight Experiment. Several combinations of turbulence and combustion models are compared. Comparisons with experiments are also provided when available. Overall, the results show good agreement with experimental data (e.g., shock train, mixing, wall heat flux, transition from ramjet to scramjet operation mode).
APA, Harvard, Vancouver, ISO, and other styles
7

Curran, Edward T. "Scramjet Engines: The First Forty Years." Journal of Propulsion and Power 17, no. 6 (November 2001): 1138–48. http://dx.doi.org/10.2514/2.5875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Atashi-Abkenar, M. A. "Study on the Effect of Two Uncertainty Parameters on Scramjet Engine Using Monte Carlo Simulation." International Journal of Mathematical Models and Methods in Applied Sciences 16 (May 13, 2022): 89–94. http://dx.doi.org/10.46300/9101.2022.16.16.

Full text
Abstract:
Today, aerospace engines are developing rapidly, these engines are divided into two groups of gas turbines and without gas turbines. In this thesis, the thermodynamic performance of the scramjet engine is examined. This study is carried out with consideration of uncertainty parameters. Two parameters of the combustion chamber efficiency and heating value of fuel are considered as uncertainty parameters. Using Monte Carlo numerical simulation method, the functional curves of the scramjet engine were investigated, and Analysis is done. According to the use of uncertainty parameters, first, a brief explanation of the uncertainty illustrates according to calculate using their functions and the Monte Carlo method. Also, the uncertain effects on the functional charts are analyzed considering the variable taking into account each of the uncertainty parameters. According to the obtained results, it was determined that the uncertain effect of the combustion chamber is negligible compared to the heating value of the fuel, the number of different points of 100,200 and 300 is similar to each other, and according to the extracted functional charts With regard to the uncertainties, it was observed that the least compression efficiency and special fuel consumption would have the greatest effect from the uncertainties.
APA, Harvard, Vancouver, ISO, and other styles
9

Taha, A. A., S. N. Tiwari, and T. O. Mohieldin. "Combustion Characteristics of Ethylene in Scramjet Engines." Journal of Propulsion and Power 18, no. 3 (May 2002): 716–18. http://dx.doi.org/10.2514/2.5989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

TOMIOKA, Sadatake, Tetsuo HIRAIWA, Tomoyuki KISHIDA, and Hiroyuki YAMASAKI. "Evaluation of Vitiation Effects in Scramjet Engines." TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN 7, ists26 (2009): Pa_47—Pa_52. http://dx.doi.org/10.2322/tstj.7.pa_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Scramjet engines"

1

Maddalena, Luca. "Investigations of Injectors for Scramjet Engines." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/28683.

Full text
Abstract:
An experimental study of an aerodynamic ramp (aeroramp) injector was conducted at Virginia Tech. The aeroramp consisted of an array of two rows with two columns of flush-wall holes that induce vorticity and enhance mixing. For comparison, a single-hole circular injector with the same area angled downstream at 30 degrees was also examined. Test conditions involved sonic injection of helium heated to 313 K, to safely simulate hydrogen into a Mach 4 air cross-stream with average Reynolds number 5.77 e+7 per meter at a jet to freestream momentum flux ratio of 2.1. Sampling probe measurements were utilized to determine the local helium concentration. Pitot and cone-static pressure probes and a diffuser thermocouple probe were employed to document the flow. The main results of this work was that the mixing efficiency value of this aeroramp design which was optimized at Mach 2.4 for hydrocarbon fuel was only slightly higher than that of the single-hole injector at these flow conditions and the mass-averaged total pressure loss parameter showed that the aero-ramp and single-hole injectors had the same overall losses. The natural extension of the investigation was then to look in detail at two major physical phenomena that occurs in a complex injector design such the Aeroramp: the jet-shock interaction and the interaction of the vortical structures produced by the jets injection into a supersonic cross flow. Experimental studies were performed to investigate the effects of impinging shocks on injection of heated helium into a Mach 4 crossflow. It was found that the addition of a shock behind gaseous injection into a Mach 4 crossflow enhances mixing only if the shock is closer to the injection point where the counter-rotating vortex pair (always associated with transverse injection in a crossflow) is not yet formed, and the deposition of baroclinic generated of vorticity is the highest. The final investigation concerned with the interaction of the usual vortex structure produced by jet injection into a supersonic crossflow and an additional axial vortex typical of those that might be produced by the inlet of a scramjet or the forebody of a vehicle to be controlled by jet interaction phenomena. The additional axial vortices were generated by a strut-mounted, diamond cross-section wing mounted upstream of the injection location. The wing was designed to produce a tip vortex of a strength comparable to that of one of the typical counter-rotating vortex pair (CVP) found in the plume of a jet in a crossflow. The profound interaction of supersonic vortices supported by a quantitative description and characterization of the flowfield has been demonstrated.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, Christian Max [Verfasser]. "Investigation of the isolator flow of scramjet engines / Christian Max Fischer." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1059796627/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cocks, Peter. "Large eddy simulation of supersonic combustion with application to scramjet engines." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239344.

Full text
Abstract:
This work evaluates the capabilities of the RANS and LES techniques for the simulation of high speed reacting flows. These methods are used to gain further insight into the physics encountered and regimes present in supersonic combustion. The target application of this research is the scramjet engine, a propulsion system of great promise for efficient hypersonic flight. In order to conduct this work a new highly parallelised code, PULSAR, is developed. PULSAR is capable of simulating complex chemistry combustion in highly compressible flows, based on a second order upwind method to provide a monotonic solution in the presence of high gradient physics. Through the simulation of a non-reacting supersonic coaxial helium jet the RANS method is shown to be sensitive to constants involved in the modelling process. The LES technique is more computationally demanding but is shown to be much less sensitive to these model parameters. Nevertheless, LES results are shown to be sensitive to the nature of turbulence at the inflow; however this information can be experimentally obtained. The SCHOLAR test case is used to validate the reacting aspects of PULSAR. Comparing RANS results from laminar chemistry and assumed PDF combustion model simulations, the influence of turbulence-chemistry interactions in supersonic combustion is shown to be small. In the presence of reactions, the RANS results are sensitive to inflow turbulence, due to its influence on mixing. From complex chemistry simulations the combustion behaviour is evaluated to sit between the flamelet and distributed reaction regimes. LES results allow an evaluation of the physics involved, with a pair of coherent vortices identified as the dominant influence on mixing for the oblique wall fuel injection method. It is shown that inflow turbulence has a significant impact on the behaviour of these vortices and hence it is vital for turbulence intensities and length scales to be measured by experimentalists, in order for accurate simulations to be possible.
APA, Harvard, Vancouver, ISO, and other styles
4

Zinnecker, Alicia M. "Modeling for Control Design of an Axisymmetric Scramjet Engine Isolator." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354215841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miki, Kenji. "Simulation of magnetohydrodynamics turbulence with application to plasma-assisted supersonic combustion." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/26605.

Full text
Abstract:
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Menon Suresh; Committee Co-Chair: Jagoda Jeff; Committee Member: Ruffin Stephen; Committee Member: Thorsten Stoesser; Committee Member: Walker Mitchell. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
6

Moura, Augusto Fontan. "A computational study of the airflow at the intake region of scramjet engines." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2973.

Full text
Abstract:
This work is part of the research and development, at the Institute for Advanced Studies (IEAv), of the first Brazilian hypersonic vehicle prototype, the 14-X airplane. As this vehicle will be propelled by scramjet (supersonic combustion ramjet) engines, this work presents detailed two-dimensional CFD analyses of the airflow in the intake system of such engines based on the 14-XB scramjet geometry and the expected flight conditions. The main objective is to study the airflow in the intake of the 14-XB at nominal flight condition and also for some off-design flight conditions and geometry using numerical methods and models available in the Fluent code. Off-design values of the vehicle velocity, angle of attack and altitude as well as of the angle of the inlet compression ramp and the number of inlet compression ramps were chosen to show how these changes impact the overall intake airflow. In this study are presented results for the airflow in the entire intake system and of specific flow variables at the engine combustor entrance, as well as calculation results of some intake performance parameters. Both, wall temperature and free stream flow turbulence effects on the intake airflow have also been analyzed. Investigation of viscous flow modeling and of the effects of temperature-dependent air properties has also been performed. Inviscid flow calculations have been performed to serve as a comparison basis for the viscous flow effects and as preliminary information of the airflow. A model validation analysis of the k-kl-? and Transition SST transition models has shown that both models can calculate BL and shock wave interactions (SWBLI) quite well, although, the k-kl-? is better to calculate the separation region whereas the Transition SST is superior to predict the reattachment point. Wall temperature has shown to affect quite significantly SWBLI while viscous flow modeling has shown to have an important impact on the intake airflow with some degradation of the intake system performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Najafiyazdi, Alireza. "Theoretical and numerical analysis of supersonic inlet starting by mass spillage." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111524.

Full text
Abstract:
Supersonic inlet starting by mass spillage is studied theoretically and numerically in the present thesis. A quasi-one-dimensional, quasi-steady theory is developed for the analysis of flow inside a perforated inlet. The theory results in closed-form relations applicable to flow starting by the mass spillage technique in supersonic and hypersonic inlets.
The theory involves three parameters to incorporate the multi-dimensional nature of mass spillage through a wall perforation. Mass spillage through an individual slot is studied to determine these parameters; analytical expressions for these parameters are derived for both subsonic and supersonic flow conditions. In the case of mass spillage from supersonic flows, the relations are exact. However, due to the complexity of flow field, the theory is an approximation for subsonic flows. Therefore, a correction factor is introduced which is determined from an empirical relation obtained from numerical simulations.
A methodology is also proposed to determine perforation size and distribution to achieve flow starting for a given inlet at a desired free-stream Mach number. The problem of shock stability inside a perforated inlet designed with the proposed method is also discussed.
The method is demonstrated for some test cases. Time-realistic CFD simulations and experimental results in the literature confirm the accuracy of the theory and the reliability of the proposed design methodology.
APA, Harvard, Vancouver, ISO, and other styles
8

Del, Rio Francesco. "Distortion mechanism in supersonic combustion ramjet engines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
Il mio lavoro di tesi è stato incentrato sulla progettazione e la realizzazione di un prototipo di isolator (componente necessaria per il funzionamento dei motori scramjet, utilizzati per velivoli aerospaziali ipersonici) in grado di generare tramite un opportuno dispositivo il meccanismo fluidodinamico che in letteratura viene definito "distortion mechanism". Tramite la tecnica fotografica denominata Schlieren, la quale sfrutta i gradienti di densità all’interno del fluido in esame, ho fotografato le onde di shock generate dal meccanismo suddetto, rendendo così possibile la comprensione del comportamento di queste onde e delle loro interazioni con il boundary layer, con le pareti, ma soprattutto dell’influenza che esse hanno sulle prestazioni di un eventuale propulsore. Da qui è partita una analisi sulle interazioni shock-shock e shock-boundary layer: quest’ultimo fenomeno è di grande interesse in quanto si è notato che non solo viene attivato un meccanismo di distorsione dell’onda stessa, ma che addirittura si manifesta la separazione dello strato limite, generando complessi fenomeni fluidodinamici e termodinamici i quali decrementano l’efficienza non solo dell’isolator bensì del motore stesso.È stato infine previsto come le onde di shock che si propagavano nell’isolator avrebbero potuto affliggere il mixing e la combustione nell’ultimo stage del prototipo, evidenziando le conseguenze che avrebbero generato sull’efficienza generale del ciclo termodinamico. Per concludere il mio lavoro di tesi ho sviluppato alcuni tools in ambiente Matlab utili per poter calcolare le proprietà termodinamiche di un fluido che entra in un inlet di uno scramjet. Per motivi di complessità del problema e per la non assoluta certezza dei fenomeni fluidodinamici e termodinamici che realmente accadono in questi motori (in 3-D), le equazioni utilizzate all’interno del codice sono utili per un’analisi di un fluido quasi monodimensionale.
APA, Harvard, Vancouver, ISO, and other styles
9

Yanson, Logan M. "Effects of Liquid Superheat on Droplet Disruption in a Supersonic Stream." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-042905-151247/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Malo-Molina, Faure Joel. "Numerical study of innovative scramjet inlets coupled to combustors using hydrocarbon-air mixture." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33906.

Full text
Abstract:
To advance the design of hypersonic vehicles, high-fidelity multi-physics CFD is used to characterize 3-D scramjet flow-fields in two novel streamline traced configurations. The two inlets, Jaws and Scoop, are analyzed and compared to a traditional rectangular inlet used as a baseline for on/off-design conditions. The flight trajectory conditions selected are Mach 6 and a dynamic pressure of 1,500 psf (71.82 kPa). Analysis of these hypersonic inlets is performed to investigate distortion effects downstream with multiple single cavity combustors acting as flame holders, and several fuel injection strategies. The best integrated scramjet inlet/combustor design is identified. The flow physics is investigated and the integrated performance impact of the two innovative scramjet inlet designs is quantified. Frozen and finite rate chemistry is simulated with 13 gaseous species and 20 reactions for an Ethylene/air finite-rate chemical model. In addition, URANS and LES modeling are compared to explore overall flow structure and to contrast individual numerical methods. The flow distortion in Jaws and Scoop is similar to some of the distortion in the traditional rectangular inlet, despite design differences. The baseline and Jaws performance attributes are stronger than Scoop, but Jaws accomplishes this while eradicating the cowl lip interaction, and lessening the total drag and spillage penalties. The innovative inlets work best on-design, whereas for off-design, the traditional inlet is best. Early pressure losses and flow distortions in the isolator aid the mixing of air and fuel, and improve the overall efficiency of the system. Although the trends observed with and without chemical reactions are similar, the former yields roughly 10% higher mixing efficiency and upstream reactions are present. These show a significant impact on downstream development. Unsteadiness in the combustor increases the mixing efficiency, varying the flame anchoring and combustion pressure effects upstream of the step.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Scramjet engines"

1

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch, ed. Heat pipe cooling for scramjet engines. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Silverstein, Calvin C. Heat pipe cooling for scramjet engines. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schetz, Joseph A. Studies in scramjet flowfields. [S.l.]: American Institute of Aeronautics and Astronautics, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

T, Curran E., and Murthy S. N. B, eds. Scramjet propulsion. Reston, Va: American Institute of Aeronautics and Astronautics, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sislian, Jean Pascal. Inviscid on-design propulsive characteristics of hypersonic shock-induced combustion ramjets. North York, Ont: Institute for Aerospace Studies, University of Toronto, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. National Aeronautics and Space Administration., ed. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wittenberg, H. Some fundamentals on the performance of ramjets with subsonic and supersonic combustion. Rijswijk, The Netherlands: TNO Prins Maurits Laboratory, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

O'Neill, Mary Kae L. Optimized scramjet integration on a waverider. Washington, D. C: American Institute of Aeronautics and Astronautics, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. National Aeronautics and Space Administration., ed. A first scramjet study. [Washington, DC: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Scramjet engines"

1

El-Sayed, Ahmed F. "Pulsejet, Ramjet, and Scramjet Engines." In Fundamentals of Aircraft and Rocket Propulsion, 315–401. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6796-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ogawa, H., S. Mölder, E. V. Timofeev, and R. R. Boyce. "Startability and Mach Reflection Hysteresis of Shortened Busemann Intakes for Axisymmetric Scramjet Engines." In 29th International Symposium on Shock Waves 1, 641–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16835-7_102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bordoloi, Namrata, Krishna Murari Pandey, and Gautam Choubey. "A Review on the Selection of Materials and Heat Transfer Properties in Scramjet Engines." In Lecture Notes in Mechanical Engineering, 125–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6470-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Babu, V. "Ramjet and Scramjet Engine." In Fundamentals of Propulsion, 135–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79945-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jose, Riyan Cyriac, Rhitik Raj, Yogesh Dewang, and Vipin Sharma. "A Review on Scramjet Engine." In Lecture Notes in Mechanical Engineering, 539–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0159-0_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar, Ajay. "Numerical Simulation of Scramjet Engine Flowfield." In Hypersonic Flows for Reentry Problems, 89–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77922-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arjun, P., and S. R. Nagaraja. "Unstart Phenomenon in a Scramjet Engine Isolator." In Recent Advances in Thermofluids and Manufacturing Engineering, 195–204. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4388-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Masuya, Goro, Nobuo Chinzei, and Yoichiro Miki. "Scramjet Engine Tests at Mach 4 and 6." In Fluid Mechanics and Its Applications, 147–62. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5432-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rowan, S., T. Komuro, K. Sato, and K. Itoh. "Combustion performance of a scramjet engine with inlet injection." In Shock Waves, 553–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Du, Jinfeng, Chun Guan, Yuchun Chen, Haomin Li, and Zhihua Wang. "Analysis of Overall Performance of Multi-stage Combustor Scramjet Engine." In Lecture Notes in Electrical Engineering, 1835–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_147.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Scramjet engines"

1

Varshney, Mehul, and MF Baig. "Unstart Control in Scramjet Engines." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Wei, Zhen-guo Wang, Shi-bin Luo, Jun Liu, Zhi-xun Xia, Jing Lei, Liang Jin, et al. "Overview of Fuel Injection Techniques for Scramjet Engines." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45064.

Full text
Abstract:
As one of the most promising hypersonic propulsion systems for hypersonic vehicles, the scramjet engine has drawn an ever increasing attention of researchers worldwide. At present, one of the most important issues to be dealt with is how to improve the fuel penetration and mixing efficiency and make the flame stable in supersonic flows. Further, how to reduce the structural weight of the engines is an urgent issue that needs to be considered. The ongoing research efforts on fuel injection techniques in the scramjet engine are described, mainly the cavity flame holder, the backward facing step, the strut injection and the cantilevered ramp injection, and the flow field characteristics and research efforts related to these fuel injection techniques are summarized and compared. Finally, a promising fuel injection technique is discussed, namely a combination of different injection techniques, and the combination of the cantilevered ramp injector and the cavity flame holder is proposed. This is because it can not only stabilize the flame, but also shorten the length of the combustor, thus lighten the weight of the scramjet engines.
APA, Harvard, Vancouver, ISO, and other styles
3

WIETING, ALLAN. "Shock interference heating in scramjet engines." In 2nd International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-5238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Agresta, Antonio, Roberto Andriani, Fausto Gamma, and Antonella Ingenito. "Air vitiation effects in scramjet engines." In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Jiwen, and Michael Brown. "Radiative Heating in Hydrocarbon-fueled Scramjet Engines." In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brilliant, Howard. "Analysis of scramjet engines using exergy methods." In 31st Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Battista, Francesco, Luigi Cutrone, Stefano Amabile, and Giulano Ranuzzi. "Supersonic Combustion Models Application for Scramjet Engines." In 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-7207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Varshney, Mehul, Mohd Danish Ansari, Mirza F. Baig, and Ishan Sharma. "Control of Unstart Phenomenon in Scramjet Engines." In 2018 Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-4536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burkardt, Leo A., and Leo C. Franciscus. "RAMSCRAM: A Flexible RAMJET/SCRAMJET Engine Simulation Program." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-323.

Full text
Abstract:
With the resurgence of interest in high supersonic and hypersonic flight there is a need to simulate airbreathing engines which may be used in this flight regime. To meet this requirement the RAMSCRAM code was developed. The code calculates one-dimensional flow properties at each component interface and the overall performance of the engine. It uses equilibrium thermodynamics which accounts for dissociation and allows for any fuel or combination of fuels. The program can simulate ramjet, scramjet, rocket, and ducted rocket engines.
APA, Harvard, Vancouver, ISO, and other styles
10

Mitani, Tohru, Kan Kobayashi, Tetsuo Hiraiwa, Sadatake Tomioka, and Goro Masuya. "Evaluation of internal aerodynamic performance in scramjet engines." In 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1885.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Scramjet engines"

1

McRae, D. S., and Jack R. Edwards. Dynamic Computational Analyses of Complete Scramjet Engine Modules. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada399718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, Shaeng-Tao J., Chang-Kee Kim, and Zeng-Chan Zhang. Simulation of High-Speed Cavity Flows in a Scramjet Engine by the Space-Time CESE Method. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada439707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Noone, Emily, and Lydia Harriss. Hypersonic missiles. Parliamentary Office of Science and Technology, June 2023. http://dx.doi.org/10.58248/pn696.

Full text
Abstract:
This POSTnote looks at hypersonic missile technologies, efforts to develop them, potential applications, and the possible challenges they may present for missile defence and global stability. Key Points: • Hypersonic missiles combine speeds of over five times the speed of sound with significant manoeuvrability during flight. • Their manoeuvrability enables them to change trajectory during flight, making their flight-path and target difficult to predict. • They fly at lower altitudes than ballistic missiles, which means that they may be harder to track at long distances with some surface-based sensors, such as certain radar. • There are two main types of hypersonic missile: hypersonic glide vehicles (HGVs) and hypersonic cruise missiles (HCMs). • HGVs are mounted onto rocket boosters for launch and may be accelerated to speeds of Mach 20 or more. The glider then separates from the booster and flies unpowered in the Earth’s upper atmosphere at altitudes of 30-80 km, before diving towards the target. • HCMs typically have a ramjet or scramjet engine that enables them to reach hypersonic speeds at altitudes of 20-40 km. • China and Russia have reportedly deployed hypersonic missiles that could deliver conventional or nuclear weapons. The US is testing multiple hypersonic technologies. • The AUKUS agreement between the UK, US and Australia includes developing hyper-sonic and counter-hypersonic technologies. • Developing hypersonic missiles requires significant research and development challenges to be overcome, contributing to their high development and manufacturing costs. • The speed, manoeuvrability and altitude of hypersonic missiles may challenge existing missile defences, although their uses and effectiveness are still being assessed. • Defence analysts disagree about the potential implications of hypersonic missiles for global peace and stability. Some suggest they could increase the risk of conflict escalation, while others say that they will not alter the strategic balance between nuclear powers. • Arms control, export controls and other measures may help limit potential harm to peace and stability, but these approaches face challenges.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography