Journal articles on the topic 'SE(3) equivariant graph neural network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SE(3) equivariant graph neural network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bånkestad, Maria, Kevin M. Dorst, Göran Widmalm, and Jerk Rönnols. "Carbohydrate NMR chemical shift prediction by GeqShift employing E(3) equivariant graph neural networks." RSC Advances 14, no. 36 (2024): 26585–95. http://dx.doi.org/10.1039/d4ra03428g.
Full textRoche, Rahmatullah, Bernard Moussad, Md Hossain Shuvo, and Debswapna Bhattacharya. "E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction." PLOS Computational Biology 19, no. 8 (2023): e1011435. http://dx.doi.org/10.1371/journal.pcbi.1011435.
Full textHan, Rong, Wenbing Huang, Lingxiao Luo, et al. "HeMeNet: Heterogeneous Multichannel Equivariant Network for Protein Multi-task Learning." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 1 (2025): 237–45. https://doi.org/10.1609/aaai.v39i1.32000.
Full textLiu, Jie, Michael J. Roy, Luke Isbel, and Fuyi Li. "Accurate PROTAC-targeted degradation prediction with DegradeMaster." Bioinformatics 41, Supplement_1 (2025): i342—i351. https://doi.org/10.1093/bioinformatics/btaf191.
Full textZeng, Wenwu, Liangrui Pan, Boya Ji, Liwen Xu, and Shaoliang Peng. "Accurate Nucleic Acid-Binding Residue Identification Based Domain-Adaptive Protein Language Model and Explainable Geometric Deep Learning." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 1 (2025): 1004–12. https://doi.org/10.1609/aaai.v39i1.32086.
Full textWang, Hanchen, Defu Lian, Ying Zhang, et al. "Binarized graph neural network." World Wide Web 24, no. 3 (2021): 825–48. http://dx.doi.org/10.1007/s11280-021-00878-3.
Full textChen, Zhiqiang, Yang Chen, Xiaolong Zou, and Shan Yu. "Continuous Rotation Group Equivariant Network Inspired by Neural Population Coding." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (2024): 11462–70. http://dx.doi.org/10.1609/aaai.v38i10.29027.
Full textZeyu, Wang, Zhu Yue, Li Zichao, Wang Zhuoyue, Qin Hao, and Liu Xinqi. "Graph Neural Network Recommendation System for Football Formation." Applied Science and Biotechnology Journal for Advanced Research 3, no. 3 (2024): 33–39. https://doi.org/10.5281/zenodo.12198843.
Full textZhou, Yuchen, Hongtao Huo, Zhiwen Hou, and Fanliang Bu. "A deep graph convolutional neural network architecture for graph classification." PLOS ONE 18, no. 3 (2023): e0279604. http://dx.doi.org/10.1371/journal.pone.0279604.
Full textKang, Shuang, Lin Shi, and Zhenyou Zhang. "Knowledge Graph Double Interaction Graph Neural Network for Recommendation Algorithm." Applied Sciences 12, no. 24 (2022): 12701. http://dx.doi.org/10.3390/app122412701.
Full textDiaz, Ivan, Mario Geiger, and Richard Iain McKinley. "Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data." Machine Learning for Biomedical Imaging 2, May 2024 (2024): 834–55. http://dx.doi.org/10.59275/j.melba.2024-7189.
Full textGu, Yaowen, Jiao Li, Hongyu Kang, Bowen Zhang, and Si Zheng. "Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning." Molecules 28, no. 16 (2023): 5982. http://dx.doi.org/10.3390/molecules28165982.
Full textMi, Jia, Chang Li, Han Wang, et al. "USPDB: A novel U-shaped equivariant graph neural network with subgraph sampling for protein-DNA binding site prediction." Expert Systems with Applications 291 (October 2025): 128554. https://doi.org/10.1016/j.eswa.2025.128554.
Full textFastiuk, Y., and N. Huzynets. "OPTIMIZATION OF THE ALGORITHM FLOW GRAPH WIDTH IN NEURAL NETWORKS TO REDUCE THE USE OF PROCESSOR ELEMENTS ON SINGLE-BOARD COMPUTERS." Computer systems and network 6, no. 2 (2024): 228–38. https://doi.org/10.23939/csn2024.02.228.
Full textFastiuk, Y., and N. Huzynets. "OPTIMIZATION OF THE ALGORITHM FLOW GRAPH WIDTH IN NEURAL NETWORKS TO REDUCE THE USE OF PROCESSOR ELEMENTS ON SINGLE-BOARD COMPUTERS." Computer systems and network 6, no. 2 (2024): 232–41. https://doi.org/10.23939/csn2024.02.232.
Full textShumovskaia, Valentina, Kirill Fedyanin, Ivan Sukharev, Dmitry Berestnev, and Maxim Panov. "Linking bank clients using graph neural networks powered by rich transactional data." International Journal of Data Science and Analytics 12, no. 2 (2021): 135–45. http://dx.doi.org/10.1007/s41060-021-00247-3.
Full textPei, Hongbin, Taile Chen, Chen A, et al. "HAGO-Net: Hierarchical Geometric Massage Passing for Molecular Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 13 (2024): 14572–80. http://dx.doi.org/10.1609/aaai.v38i13.29373.
Full textYou, Jiaxuan, Jonathan M. Gomes-Selman, Rex Ying, and Jure Leskovec. "Identity-aware Graph Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10737–45. http://dx.doi.org/10.1609/aaai.v35i12.17283.
Full textSong, Jaeyoung, and Kiyun Yu. "Framework for Indoor Elements Classification via Inductive Learning on Floor Plan Graphs." ISPRS International Journal of Geo-Information 10, no. 2 (2021): 97. http://dx.doi.org/10.3390/ijgi10020097.
Full textSuárez-Varela, José, Miquel Ferriol-Galmés, Albert López, et al. "The graph neural networking challenge." ACM SIGCOMM Computer Communication Review 51, no. 3 (2021): 9–16. http://dx.doi.org/10.1145/3477482.3477485.
Full textYang, Shuai, Yueqin Zhang, and Zehua Zhang. "Runoff Prediction Based on Dynamic Spatiotemporal Graph Neural Network." Water 15, no. 13 (2023): 2463. http://dx.doi.org/10.3390/w15132463.
Full textMa, Chen, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, and Mark Coates. "Memory Augmented Graph Neural Networks for Sequential Recommendation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5045–52. http://dx.doi.org/10.1609/aaai.v34i04.5945.
Full textLiu, Tianrui, Qi Cai, Changxin Xu, et al. "Rumor Detection with A Novel Graph Neural Network Approach." Academic Journal of Science and Technology 10, no. 1 (2024): 305–10. http://dx.doi.org/10.54097/farmdr42.
Full textLi, Zimu, Zihan Pengmei, Han Zheng, Erik Thiede, Junyu Liu, and Risi Kondor. "Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism." Machine Learning: Science and Technology, May 10, 2024. http://dx.doi.org/10.1088/2632-2153/ad4a04.
Full textZhong, Yang, Hongyu Yu, Mao Su, Xingao Gong, and Hongjun Xiang. "Transferable equivariant graph neural networks for the Hamiltonians of molecules and solids." npj Computational Materials 9, no. 1 (2023). http://dx.doi.org/10.1038/s41524-023-01130-4.
Full textBatzner, Simon, Albert Musaelian, Lixin Sun, et al. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-29939-5.
Full textPezzicoli, Francesco Saverio, Guillaume Charpiat, and François Pascal Landes. "Rotation-equivariant graph neural networks for learning glassy liquids representations." SciPost Physics 16, no. 5 (2024). http://dx.doi.org/10.21468/scipostphys.16.5.136.
Full textYin, Shi, Xinyang Pan, Xudong Zhu, et al. "Towards Harmonization of SO(3)-Equivariance and Expressiveness: a Hybrid Deep Learning Framework for Electronic-Structure Hamiltonian Prediction." Machine Learning: Science and Technology, October 30, 2024. http://dx.doi.org/10.1088/2632-2153/ad8d30.
Full textTianqi, Wu. "Atomic protein structure refinement using all-atom graph representations and SE(3)–equivariant graph neural networks." July 14, 2022. https://doi.org/10.5281/zenodo.6944580.
Full textFrey, Nathan C., Ryan Soklaski, Simon Axelrod, et al. "Neural scaling of deep chemical models." Nature Machine Intelligence, October 23, 2023. http://dx.doi.org/10.1038/s42256-023-00740-3.
Full textHao, Zichun, Raghav Kansal, Javier Duarte, and Nadezda Chernyavskaya. "Lorentz group equivariant autoencoders." European Physical Journal C 83, no. 6 (2023). http://dx.doi.org/10.1140/epjc/s10052-023-11633-5.
Full textRoche, Rahmatullah, Bernard Moussad, Md Hossain Shuvo, Sumit Tarafder, and Debswapna Bhattacharya. "EquiPNAS: improved protein–nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks." Nucleic Acids Research, January 28, 2024. http://dx.doi.org/10.1093/nar/gkae039.
Full textPakornchote, Teerachote, Annop Ektarawong, and Thiparat Chotibut. "StrainTensorNet: Predicting crystal structure elastic properties using SE(3)-equivariant graph neural networks." Physical Review Research 5, no. 4 (2023). http://dx.doi.org/10.1103/physrevresearch.5.043198.
Full textKoker, Teddy, Keegan Quigley, Eric Taw, Kevin Tibbetts, and Lin Li. "Higher-order equivariant neural networks for charge density prediction in materials." npj Computational Materials 10, no. 1 (2024). http://dx.doi.org/10.1038/s41524-024-01343-1.
Full textSheriff, Killian, Yifan Cao, and Rodrigo Freitas. "Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks." npj Computational Materials 10, no. 1 (2024). http://dx.doi.org/10.1038/s41524-024-01393-5.
Full textWang, Yanli, and Jianlin Cheng. "Reconstructing 3D chromosome structures from single-cell Hi-C data with SO(3)-equivariant graph neural networks." NAR Genomics and Bioinformatics 7, no. 1 (2025). https://doi.org/10.1093/nargab/lqaf027.
Full textFlorian, Hinz, Amr Mahmoud, and Markus Lill. "Prediction of Molecular Field Points using SE(3)-Transformer Model." Machine Learning: Science and Technology, July 11, 2023. http://dx.doi.org/10.1088/2632-2153/ace67b.
Full textMa, Yuxing, Hongyu Yu, Yang Zhong, Shiyou Chen, Xingao Gong, and Hongjun Xiang. "Transferable machine learning approach for predicting electronic structures of charged defects." Applied Physics Letters 126, no. 4 (2025). https://doi.org/10.1063/5.0242683.
Full textLi, Fenglei, Qiaoyu Hu, Yongqi Zhou, Hao Yang, and Fang Bai. "DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras." Briefings in Bioinformatics 25, no. 5 (2024). http://dx.doi.org/10.1093/bib/bbae358.
Full textKim, Jihoo, Yoonho Jeong, Won June Kim, Eok Kyun Lee, and Insung S. Choi. "MolNet_Equi: A Chemically Intuitive, Rotation‐Equivariant Graph Neural Network." Chemistry – An Asian Journal, November 12, 2023. http://dx.doi.org/10.1002/asia.202300684.
Full textCremer, Julian. "Equivariant Graph Neural Networks for Toxicity Prediction." February 8, 2023. https://doi.org/10.26434/chemrxiv-2023-9kb55.
Full textBihani, Vaibhav, Sajid Mannan, Utkarsh Pratiush, et al. "EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations." Digital Discovery, 2024. http://dx.doi.org/10.1039/d4dd00027g.
Full textChatterjee, Suman, Sergio Sánchez Cruz, Robert Schöfbeck, and Dennis Schwarz. "Rotation-equivariant graph neural network for learning hadronic SMEFT effects." Physical Review D 109, no. 7 (2024). http://dx.doi.org/10.1103/physrevd.109.076012.
Full textJiang, Chi, Yi Zhang, Yang Liu, and Jing Peng. "Tensor improve equivariant graph neural network for molecular dynamics prediction." Computational Biology and Chemistry, March 2024, 108053. http://dx.doi.org/10.1016/j.compbiolchem.2024.108053.
Full textJahin, Md Abrar, Md Akmol Masud, Md Wahiduzzaman Suva, M. F. Mridha, and Nilanjan Dey. "Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics." IEEE Transactions on Artificial Intelligence, 2025, 1–11. https://doi.org/10.1109/tai.2025.3554461.
Full textWen, Mingjian, Matthew K. Horton, Jason M. Munro, Patrick Huck, and Kristin A. Persson. "An equivariant graph neural network for the elasticity tensors of all seven crystal systems." Digital Discovery, 2024. http://dx.doi.org/10.1039/d3dd00233k.
Full textShen, Guanghao, Ziqi Zhang, Zhaohong Deng, et al. "ASCE-PPIS: A Protein-Protein Interaction Sites Predictor Based on Equivariant Graph Neural Network with Fusion of Structure-Aware Pooling and Graph Collapse." Bioinformatics, July 24, 2025. https://doi.org/10.1093/bioinformatics/btaf423.
Full textYi, Yiqiang, Xu Wan, Kangfei Zhao, Le Ou-Yang, and Peilin Zhao. "Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction." IEEE Journal of Biomedical and Health Informatics, 2024, 1–13. http://dx.doi.org/10.1109/jbhi.2024.3383245.
Full textDong, Luqi, Xuanlin Zhang, Ziduo Yang, Lei Shen, and Yunhao Lu. "Accurate piezoelectric tensor prediction with equivariant attention tensor graph neural network." npj Computational Materials 11, no. 1 (2025). https://doi.org/10.1038/s41524-025-01546-0.
Full textChen, Chen, Xiao Chen, Alex Morehead, Tianqi Wu, and Jianlin Cheng. "3D-equivariant graph neural networks for protein model quality assessment." Bioinformatics, January 13, 2023. http://dx.doi.org/10.1093/bioinformatics/btad030.
Full text