To see the other types of publications on this topic, follow the link: SEA Statistical energy analysis.

Dissertations / Theses on the topic 'SEA Statistical energy analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'SEA Statistical energy analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lafont, Thibault. "Statistical vibroacoustics : study of SEA assumptions." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0003/document.

Full text
Abstract:
La méthode SEA (Statistical Energy Analysis) est une approche statistique de la vibroacoustique permettant de décrire les systèmes complexes en termes d'échanges d'énergies vibratoires et acoustiques. En moyennes et hautes fréquences, cette méthode se présente comme une alternative aux méthodes déterministes (coût des calculs dû au grand nombre de modes, de degrés de liberté, unicité de la solution) Néanmoins, son utilisation requiert la connaissance et le respect d'hypothèses fortes qui limitent son domaine d'application. Dans ce mémoire, les fondements de la SEA ont été examinés afin de discuter chaque hypothèse. Le champ diffus, l'équipartition de l’énergie modale, le couplage faible, l'influence des modes non résonants et l'excitation rain-on-the-roof sont les cinq hypothèses qui ont été abordées. Sur la base d'exemples simples (oscillateurs couplés, plaques couplées), les équivalences et leurs influences sur la qualité des résultats ont été étudiées pour contribuer à la clarification des hypothèses nécessaires à l'application de la SEA ct pour borner son domaine de validité SEA
Statistical energy analysis is a statistical approach of vibroacoustics which allows to describe complex systems in terms of vibrational or acoustical energies. ln the high frequency range, this method constitutes an alternative to bypass the problems which can occur when applying deterministic methods (computation cost due to the large number of modes, the large number of degrees of freedom and the unicity of the solution). But SEA has numerous assumptions which are sometimes forgotten or misunderstood ln this thesis, foundations of SEA have been examined in order to discuss each assumption. Diffuse field, modal energy equipartition, weak coupling, the influence of non-resonant modes and the rain on the roof excitation are the five look up hypotheses. Based on simple examples (coupled oscillators, coupled plates), the possible equivalences and their influence on the quality of the results have been discussed to contribute to the clarification of the useful SEA assumptions and to mark out it's the validity domain
APA, Harvard, Vancouver, ISO, and other styles
2

Connelly, Terence. "Structural vibration transmission in ships using statistical energy analysis." Thesis, Heriot-Watt University, 1999. http://hdl.handle.net/10399/1234.

Full text
Abstract:
This thesis presents the results of an investigation into the application of statistical energy analysis (SEA) to predict structure-borne noise transmission in ship structures. The first three chapters introduce the problems of noise and vibration in ships; the previous research on the application of SEA to ships; the basic theory of SEA and the experimental measurement techniques and procedures used to gather data The main body of this thesis presents a wave transmission model for the hull frame joint which is commonly encountered on the hull, bulkheads and deck plates of ship structures. The wave model allows the transmission coefficients to be calculated for hull frame joints which can be used in the coupling loss factor equations of SEA models. The joint model has been verified against measured data taken on a simple two subsystem single joint laboratory structures and a large complex 38 plate test structure with multiple joints intended to represent a 1/10' scale model of a hull section. In addition to the laboratory structures, the SEA modelling of sections of a ship is presented for a large ribbed deck plate, a section of the ship superstructure and a section of the ships hull. The results from the SEA models are compared with measured attenuation data taken on the respective ship sections. A large amount of damping data has been gathered on the test and ship structures and an equation for the internal steel based on data gathered by other researchers has been verified. It has been shown in this thesis that SEA can be applied to ships. Better agreement is found with real structures in contrast to the poor results presented for SEA when applied to simple one dimensional structures. The level of detail of the model is important as a coarse model yields better predictions of vibration level. As with all models the results are sensitive to the damping level and it is necessary to include bending, longitudinal and transverse wave types in any SEA model to obtain the best prediction. It was also found that the flange plates can be neglected from the frame joint model without compromising the accuracy.
APA, Harvard, Vancouver, ISO, and other styles
3

Bashir, Hussam. "Calculation of Wave Propagation for Statistical Energy Analysis Models." Thesis, Uppsala universitet, Tillämpad mekanik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267928.

Full text
Abstract:
This thesis investigates the problems of applying Statistical Energy Analysis (SEA) tomodels that include solid volumes. Three wave types (Rayleigh waves, Pressure wavesand Shear waves) are important to SEA and the mathematics behind them is explainedhere. The transmission coefficients between the wave types are needed for energytransfer in SEA analysis and different approaches to solving the properties of wavepropagation on a solid volume are discussed. For one of the propagation problems, asolution, found in Momoi [6] is discussed, while the other problem remains unsolveddue to the analytical difficulties involved.
APA, Harvard, Vancouver, ISO, and other styles
4

Lopez, Rémy. "Adaptation des méthodes “statistical energy analysis” (sea) aux problèmes d'électromagnétisme en cavités." Toulouse 3, 2006. http://www.theses.fr/2006TOU30045.

Full text
Abstract:
Modéliser des phénomènes électromagnétiques par des méthodes déterministes requiert une division du volume étudié en éléments discrets dont la taille est de l'ordre du dixième de la longueur d'onde. La demande en ressource informatique augmente donc avec la fréquence. De plus, compte tenu de la complexité des problèmes et des incertitudes sur les données d'entrées, il devient illusoire de réaliser un calcul déterministe pour chaque variable analysée. De nouvelles méthodes, dites énergétiques, sont développées pour étudier les systèmes grands devant la longueur d'onde. Elles permettent d'estimer statistiquement la valeur du champ à l'intérieur d'un système. Une de ces techniques, la Statistical Energy Analysis (SEA), développée en acoustique, est transposée ici en électromagnétisme. La SEA permet de décrire les échanges d'énergies entre les différents systèmes composant une structure. L'énergie de chaque système dépend des notions de mode de résonance, de perte et de couplage. Les paramètres liés à ces notions sont évalués analytiquement et numériquement. Une méthode de sous structuration automatique est également présentée Les résultats obtenus semblent confirmer l'intérêt de cette méthode
Modeling electromagnetic phenomena by deterministic methods requires a subdivision of the volume under study into a number of discrete elements with sizes of the order of tenth of the wavelength. So, the demand for computer resources significantly grows with increasing frequencies. Moreover, taking into account the complexity of the problems and the uncertainties on the input data, it becomes illusory to make a deterministic calculation for each studied variable. New methods, called energetic methods, were developed to study systems large in front of the wavelength. They allow to estimate statistically the value of the field inside a system One of these methods, the Statistical Energy Analysis (SEA), developed in acoustic, is transposed here in electromagnetism. The SEA allows to describe the exchanges of energy between the different systems of a structure. The energy of each system depends on the concepts of mode of resonance, loss and coupling. The parameters linked with these concepts are assessed by analytical formulae and numerical simulations. An automatic sub structuring method is also presented. The results obtained seem to confirm the interest of this method
APA, Harvard, Vancouver, ISO, and other styles
5

Kiremitci, Utku. "Interior And Exterior Noise Analysis Of A Single Engine Propeller Aircraft Using Statistical Energy Analysis Method." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610558/index.pdf.

Full text
Abstract:
Two different Statistical Energy Analysis (SEA) models of a single turbo-prop engine propeller aircraft have been developed to predict the interior and exterior noise levels. The commercial software VA One is used for the analysis. First model is a pure SEA model developed with ribbed plates on the aircraft exterior. Second model is a hybrid model which employs finite element (FE) modeling of aircraft components with low modal density. These models have been analyzed for three different flight conditions, namely, take-off, cruise and climb for three different damping loss factors in each condition. Wind tunnel measurements are used to estimate the turbulent boundary layer (TBL) information on the surface of the aircraft. Propeller noise together with TBL loading are then used as the excitation for the models. Flow paths of energy are identified and cabin interior noise levels are predicted for the developed models. Results of analyses are comparatively evaluated.
APA, Harvard, Vancouver, ISO, and other styles
6

Yilmazel, Canan. "Analysis Of High Frequency Behavior Of Plate And Beam Structures By Statistical Energy Analysis Method." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605133/index.pdf.

Full text
Abstract:
Statistical Energy Analysis (SEA) is one of the methods in literature to estimate high frequency vibrations. The inputs required for the SEA power balance equations are damping and coupling loss factors, input powers to the subsystems. In this study, the coupling loss factors are derived for two and three plates joined with a stiffener system. Simple formulas given in the literature for coupling loss factors of basic junctions are not used and the factors are calculated from the expressions derived in this study. The stiffener is modelled as line mass, Euler beam, and open section channel having double and triple coupling. Plate is modelled as Kirchoff plate. In the classical SEA approach the joint beam is modelled as another subsystem. In this study, the beam is not a separate subsystem but is used as the characteristics of the joint and to calculate the coupling loss factor between coupled plates. Sensitivity of coupling loss factors to system parameters is studied for different beam approaches. The derived coupling loss factors and input powers are used to calculate the subsystem energies by SEA. The last plate is joined to the first one to simulate the fuselage structure. A plate representing floor structure and acoustic volume are also added. The different modelling types are assessed by applying pressure wave excitation. It is shown that deriving the parameters as given in this study increases the efficiency of the SEA method.
APA, Harvard, Vancouver, ISO, and other styles
7

Totaro, Nicolas. "Caractérisation de sources aérodynamiques et sous-structuration pour la méthode SEA." Phd thesis, INSA de Lyon, 2004. http://tel.archives-ouvertes.fr/tel-00780668.

Full text
Abstract:
La méthode SEA (Statistical Energy Analysis) permet de prévoir les échanges d'énergie entre sous-systèmes d'une structure lorsque celle-ci est soumise à une excitation. La SEA est théoriquement très simple à mettre en place et permet de faire des variations paramétriques sur un modèle de la structure en phase de conception. Cette méthode est utilisée de manière pertinente dans le domaine du bâtiment mais peine à s'implanter dans le secteur des transports où les systèmes étudiés sont beaucoup plus complexes. Plusieurs difficultés apparaissent dans ces cas de figure et empêchent une modélisation correcte de la structure. La première difficulté vient de la nécessité de découper la structure en sous-systèmes respectant les hypothèses de la SEA. Ce découplage, presque trivial dans le bâtiment, devient particulièrement complexe dans le cas d'une caisse de voiture par exemple. L'estimation des puissances injectées par les sources dans la structure est une deuxième difficulté. En effet, les énergies des sous-systèmes sont directement proportionnelles à la puissance injectée. Ainsi, une mauvaise estimation de la puissance entraîne une erreur sur les échanges d'énergies. Le but de ce travail de thèse est double. Dans la première partie, une modèle de puissance injectée dans une plaque rectangulaire soumise à une couche limite turbulente (CLT) établie. Ce modèle simple permet de souligner l'influence des différents paramètres agissant sur la puissance injectée et d'estimer avec le temps de calcul très faible la puissance injectée par bande de fréquence. Une validation expérimentale est aussi exposée. Dans la deuxième partie, une méthode de sous-structuration automatique d'une structure en sous-systèmes SEA est proposée. Elle est basée sur l'analyse et la classification de fonctions de transfert énergétiques simulées par éléments finis. Un algorithme de classification permet de diviser la base de données en N sous-systèmes (N allant de 2 à Nmax). Un indice, validé sur des assemblages simples, indique la sous-structuration optimale pour une application SEA. Des applications industrielles, démontrant l'applicabilité de la méthode à des structures complexes, seront présentées.
APA, Harvard, Vancouver, ISO, and other styles
8

Sy, Djibril. "Modélisation et optimisation des performances acoustiques d'un tablier d'automobile en alliage de magnésium." Mémoire, Université de Sherbrooke, 2010. http://savoirs.usherbrooke.ca/handle/11143/1589.

Full text
Abstract:
Résumé : Ce projet fait partie du projet MFERD (Magnésium Front End Research and Development) qui vise à développer les technologies permettant de rendre les alliages de Magnésium (Mg) comme un principal matériau structural pour les voitures (aujourd'hui essentiellement constituées d'acier quatre fois plus lourd que le Mg) afin d'en réduire leur masse pour des raisons environnementales et sécuritaires. Dans ce travail de maîtrise nous avons regardé la partie acoustique dans le cas d'un tablier (structure métallique derrière le tableau de bord) en magnésium. En effet, le confort acoustique à l'intérieur des voitures est devenu un argument de marketing d'une grande importance. Le tablier en séparant le compartiment moteur, source de bruit, de l'habitacle, joue un rôle important dans l'isolation acoustique de l'intérieur de la voiture. Ainsi le passage d'un tablier en acier à un tablier en Mg ne doit pas entraîner une baisse de performance. Dans ce travail, nous avons d'abord effectué une revue de la littérature sur les types de traitements acoustiques utilisés dans l'industrie automobile ainsi que des différentes techniques de leur modélisation. Nous avons ensuite comparé les performances acoustiques du tablier en Mg sur lequel on a appliqué des traitements classiques (à une couche, deux couches et trois couches) à celles des tabliers en acier et en aluminium et ce, à masse surfacique, raideur et/ou fréquences de résonnances égales. Finalement nous avons optimisé différents concepts de traitements acoustiques innovants appliqués sur le tablier en Mg en vue d'avoir des performances acoustiques semblables ou supérieures à celles du tablier en acier classique. L'optimisation s'est faite à partir d'un modèle SEA (Statitical Energy Analysis) couplé à un code d'optimisation basé sur un algorithme génétique||Abstract : This work is part of the MFERD (Magnesium Front End Research and Development) project which goal is to develop enabling technologies for the use of magnesium alloys as a principal structural material for cars (mainly made in steel which is four time heavier than magnesium) in order to reduce their mass for both, environmental and security concerns. In this work we have focused on the acoustic part, in the case of a magnesium alloy dash panel. The dash board, by separating the engine compartment from the interior cabin, plays a critical role in the insulation of the car interior. Since the acoustic comfort inside the car has become a marketing argument of great importance, the passage from steel to magnesium dash panel should not deteriorate acoustic performances. In this work, we first conducted a literature review on the types of acoustic treatments used in the automotive industry as well as various techniques of their modeling. We then compared the acoustic performances of a Mg dash with attached traditional acoustic treatments (single-layer, two layers and three layers) to those of a steel and aluminum dash panels with the same mass density, stiffness and/or frequency of resonances. Finally, we optimized different concepts of innovative sound packages applied on the Mg dash panel to achieve a noise performance similar or superior to those of a conventional steel dash. The optimization was done using a SEA (Statitical Energy Analysis) model, coupled with an optimization code based on a genetic algorithm.
APA, Harvard, Vancouver, ISO, and other styles
9

Ramalingam, Srinivasan. "SIMULATION AND EXPERIMENTAL VALIDATION OF AIRBORNE AND STRUCTURE-BORNE NOISE TRANSMISSION IN HVAC PLENUMS." UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/6.

Full text
Abstract:
This research demonstrates the usage of numerical acoustics to model sound and vibrational energy propagation in HVAC ducts and plenums. Noise and vibration in HVAC systems propagates along three primary paths that can be classified as airborne direct, airborne indirect and structure-borne. The airborne direct path was simulated using acoustic FEM with special boundary conditions to handle the diffuse acoustic field loading and the baffled termination. The insertion loss for a number of different plenum geometries was compared to published measurement results. Results were in good agreement both below and above the cutoff frequency. Additionally, the airborne indirect path, often termed breakout noise by the HVAC community, was assessed using Statistical Energy Analysis (SEA). This path was examined experimentally by placing a loudspeaker inside the air handler and measuring the sound power transmitted through the walls. SEA results compared favorably with the measured results in one-third octave bands even at low frequencies. Finally, the structure-borne path was considered by exciting the walls of the aforementioned air handler using an electromagnetic shaker. The panel vibration and the sound power radiated from the panels were measured. Results were compared with the SEA with good agreement provided that SEA loss factors were determined experimentally.
APA, Harvard, Vancouver, ISO, and other styles
10

Maxit, Laurent. "Extension et reformulation du modèle SEA par la prise en compte de la répartition des énergies modales." Phd thesis, INSA de Lyon, 2000. http://tel.archives-ouvertes.fr/tel-00777764.

Full text
Abstract:
Résumé Dans cette thèse, on propose une approche permettant d'étendre le domaine de validité de la méthode SEA (Statistical Energy Analysis). Elle repose sur une double formulation modale et une reformulation du modèle SEA en ne posant pas l'hypothèse d'équirépartition des énergies modales. La double formulation modale qui est décrite dans le cas général du couplage de systèmes continus tridimensionnels, consiste en une décomposition modale non standard faisant intervenir une double formulation contrainte-déplacement. Les équations modales obtenues sont alors en cohérence avec le modèle supposé de la SEA et se caractérisent à partir des modes des sous-systèmes découplés. Le modèle SmEdA qui découle de la reformulation de la SEA permet d'améliorer la qualité de la prédiction, notamment quand le recouvrement modal est faible ou quand les sous-systèmes sont excités localement. Un des points forts de l'approche proposée est qu'elle peut être facilement associée à une démarche SEA. Il est possible d'appliquer le modèle SmEdA uniquement pour les couplages des sous-systèmes où une amélioration de la prédiction peut être présumée obtenue, et utiliser le modèle SEA pour les autres couplages. L'application du modèle SmEdA à des structures industrielles est possible grâce à l'utilisation de modèles Eléments Finis des sous-systèmes. En supposant l'hypothèse d'équirépartition respectée, il découle de cette approche une nouvelle technique de calcul des facteurs de perte par couplage SEA. Celle-ci ne requière que le calcul des modes des sous-systèmes découplés par Éléments Finis. Les facteurs SEA sont alors obtenus par identification des coefficients des équations modales, sans les résoudre.
APA, Harvard, Vancouver, ISO, and other styles
11

Chronopoulos, Dimitrios. "Prediction of the vibroacoustic response of aerospace composite structures in a broadband frequency range." Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00787864.

Full text
Abstract:
During its mission, a launch vehicle is subject to broadband, severe, aeroacoustic and structure-borne excitations of various provenances, which can endanger the survivability of the payload and the vehicles electronic equipment, and consequently the success of the mission. Aerospace structures are generally characterized by the use of exotic composite materials of various configurations and thicknesses, as well as by their extensively complex geometries and connections between different subsystems. It is therefore of crucial importance for the modern aerospace industry, the development of analytical and numerical tools that can accurately predict the vibroacoustic response of large, composite structures of various geometries and subject to a combination of aeroacoustic excitations. Recently, a lot of research has been conducted on the modelling of wave propagation characteristics within composite structures. In this study, the Wave Finite Element Method (WFEM) is used in order to predict the wave dispersion characteristics within orthotropic composite structures of various geometries, namely flat panels, singly curved panels, doubly curved panels and cylindrical shells. These characteristics are initially used for predicting the modal density and the coupling loss factor of the structures connected to the acoustic medium. Subsequently the broad-band Transmission Loss (TL) of the modelled structures within a Statistical Energy Analysis (SEA) wave-context approach is calculated. Mainly due to the extensive geometric complexity of structures, the use of Finite Element(FE) modelling within the aerospace industry is frequently inevitable. The use of such models is limited mainly because of the large computation time demanded even for calculations in the low frequency range. During the last years, a lot of researchers focus on the model reduction of large FE models, in order to make their application feasible. In this study, the Second Order ARnoldi (SOAR) reduction approach is adopted, in order to minimize the computation time for a fully coupled composite structural-acoustic system, while at the same time retaining a satisfactory accuracy of the prediction in a broadband sense. The system is modelled under various aeroacoustic excitations, namely a diffused acoustic field and a Turbulent Boundary Layer (TBL) excitation. Experimental validation of the developed tools is conducted on a set of orthotropic sandwich composite structures. Initially, the wave propagation characteristics of a flat panel are measured and the experimental results are compared to the WFEM predictions. The later are used in order to formulate an Equivalent Single Layer (ESL) approach for the modelling of the spatial response of the panel within a dynamic stiffness matrix approach. The effect of the temperature of the structure as well as of the acoustic medium on the vibroacoustic response of the system is examined and analyzed. Subsequently, a model of the SYLDA structure, also made of an orthotropic sandwich material, is tested mainly in order to investigate the coupling nature between its various subsystems. The developed ESL modelling is used for an efficient calculation of the response of the structure in the lower frequency range, while for higher frequencies a hybrid WFEM/FEM formulation for modelling discontinuous structures is used.
APA, Harvard, Vancouver, ISO, and other styles
12

Libardi, Ana Lúcia. "Vibração em estruturas acopladas sujeitas a excitações em altas freqüencias." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-12022016-141655/.

Full text
Abstract:
Este trabalho baseia-se no estudo e aplicação da Análise Estatística de Energia (SEA). Tal técnica é amplamente empregada nos estudos de vibrações em altas freqüências, dominadas por altas densidades modais e oferecendo toda a solução para o modelo em termos de parâmetros estatísticos. Aplica-se SEA tanto a modelos teóricos e numéricos quanto a modelos experimentais. Qualquer uma das duas abordagens descrita anteriormente tem como objetivo a obtenção dos parâmetros SEA, conhecidos por fator de perda por dissipação interna, fator de perda por acoplamento e densidade modal. Para o estudo e aplicação experimental da técnica SEA utiliza-se o Método de Injeção de Potência, sendo este aplicado a estruturas acopladas do tipo viga, numa configuração em T e estruturas acopladas do tipo placa que formam uma caixa. O estudo numérico e analítico também faz parte deste trabalho, tendo como base o desenvolvimento de uma formulação para vigas relativamente espessas, mostrando a influência geométrica na transmissão da vibração entre subsistemas. Comparações também são feitas entre os resultados obtidos experimentalmente na caixa e na viga T com os obtidos analiticamente e computacionalmente e em ambos os casos estes apresentaram uma boa correlação. Por fim, uma estrutura composta por uma cavidade acústica é estudada e um aparato o para injeção de potência é construído com base no estudo em altas freqüências.
This work is based in the study and application of the Statistical Energy Analysis (SEA), which is applied to high frequencies vibrations characterized by high modal densities and the solution, is given in statistical terms. This analysis is used in numerical, analytical and experimental models and the principal objective is the estimative of the SEA parameters, known by damping loss factors, coupling loss factors and modal densities. The experimental model is based on the Power Injection Method (PIM), and this was applied in coupled structures, like beam type, that was coupled in a T-beam configuration and the other type of coupling was studied in a box type structure. An analytical model was developed in this thesis, it was based on the Timoshenko beam formulation and the possible geometrical effects were studied. The results obtained as experimentally as numerically or analytically were compared and showed a good agreement. Finally, an acoustic cavity was studied and a new display was constructed to inject power in the cavity and a high frequency study was performed.
APA, Harvard, Vancouver, ISO, and other styles
13

Dixon, Mark J. "Statistical analysis of extreme sea levels." Thesis, Lancaster University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Parnell, Andrew Christopher. "The statistical analysis of former sea level." Thesis, University of Sheffield, 2005. http://etheses.whiterose.ac.uk/10284/.

Full text
Abstract:
This thesis provides the first template for estimating relative sea level curves and their associated uncertainties. More specifically, the thesis estimates the changing state of sea level in the Humber estuary, UK, over the course of the Holocene. These estimates are obtained through Bayesian methods involving Gaussian processes. Part of the task involves collating data sources from both archaeologists and geologists which have been collected during frequent study of the region. A portion of the thesis is devoted to studying the nature of the data, and the adjustment of the archaeological information so it can be used in a format suitable for estimating former sea level. The Gaussian processes are used to model sea-level change via a correlation function which assumes that data points close together in time and space should be at a similar elevation. This assumption is relaxed by incorporating non-stationary correlation functions and aspects of anisotropy. A sequence of models are fitted using Markov chain Monte Carlo. The resultant curves do not pre-suppose a functional form, and give a comprehensive framework for accounting for their uncertainty. A further complication is introduced as the temporal explanatory variables are stochastic: they arise as radiocarbon dates which require statistical calibration. The resulting posterior date densities are irregular and multi-modal. The spatio-temporal Gaussian process 2 model takes account of such irregularities via Monte Carlo simulation. The resultant sea-level curves are scrutinised at a number of locations around the Humber over a selection of time periods. It is hoped that they can provide insight into other areas of sea-level research, and into a broader palaeoclimate framework.
APA, Harvard, Vancouver, ISO, and other styles
15

Keane, A. J. "Statistical energy analysis of engineering structures." Thesis, Brunel University, 1988. http://bura.brunel.ac.uk/handle/2438/5204.

Full text
Abstract:
This thesis examines the fundamental equations of the branch of linear oscillatory dynamics known as Statistical Energy Analysis (SEA). The investigation described is limited to the study of two, point coupled multi-modal sub-systems which form the basis for most of the accepted theory in this field. Particular attention is paid to the development of exact classical solutions against which simplified approaches can be compared. These comparisons reveal deficiencies in the usual formulations of SEA in three areas, viz., for heavy damping, strong coupling between sub-systems and for systems with non-uniform natural frequency distributions. These areas are studied using axially vibrating rod models which clarify much of the analysis without significant loss of generality. The principal example studied is based on part of the structure of a modem warship. It illustrates the simplifications inherent in the models adopted here but also reveals the improvements that can be made over traditional SEA techniques. The problem of heavy damping is partially overcome by adopting revised equations for the various loss factors used in SEA. These are shown to be valid provided that the damping remains proportional so that inter-modal coupling is not induced by the damping mechanism. Strong coupling is catered for by the use of a correction factor based on the limiting case of infinite coupling strength, for which classical solutions may be obtained. This correction factor is used in conjunction with a new, theoretically based measure of the transition between weakly and strongly coupled behaviour. Finally, to explore the effects of non-uniform natural frequency distributions, systems with geometrically periodic and near-periodic parameters are studied. This important class of structures are common in engineering design and do not posses the uniform modal statistics commonly assumed in SEA. The theory of periodic structures is used in this area to derive more sophisticated statistical models that overcome some of these limitations.
APA, Harvard, Vancouver, ISO, and other styles
16

Straka, Martin. "Výpočtové modelování vysokofrekvenčního hluku v kabině letounu EV-55M." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230560.

Full text
Abstract:
This thesis describes methods of high frequency noise and vibrations computation of cabin part of EV–55M (aircraft developed by Evektor Kunovice). There is a brief summary of methods used for determining high frequency noise and vibrations in the first part of the thesis. Detailed explanation is given for Statistical Energy Analysis (SEA) which is nowadays the most dominant method in this area. The energy balance equation is derived in this chapter and SEA parameters such as modal density, damping loss factor, coupling loss factor and power input are introduced here. Next part deals with main noise sources of propeller driven and jet aircraft and passive and active noise controls are discussed. Practical part of this thesis deals with modeling aircraft EV–55M fuselage using VA One SEA module. Two models were created. First of them is only an outside fuselage with aircraft flooring and the second one is extended by interior trim panels and is applicable for simulation of noise control treatments. Computational modeling is accompanied by experimental measurement of passive noise control material characteristics. Postprocessing of information obtained from impedance tube measurement was performed in FOAM – X. Determined characteristics of porous material were used as inputs to VA One and reduction of sound pressure level in fuselage cavities by using noise control treatment was found. In conclusion there is a summary of noise transmission paths from sources to interior cavity and some treatments of them are simulated
APA, Harvard, Vancouver, ISO, and other styles
17

Chohan, Ghulam Yasin. "Statistical energy analysis of nonconservative dynamical systems." Thesis, University of Southampton, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shorter, Philip. "Combining finite elements and statistical energy analysis /." Online version, 1998. http://bibpurl.oclc.org/web/23511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ritchie, M. A. "Statistical analysis of coherent monostatic and bistatic radar sea clutter." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1397655/.

Full text
Abstract:
Radar sea clutter analysis has been an important area of radar research for many years. Very limited research has been carried out on coherent monostatic sea clutter analysis and even less on bistatic sea clutter. This has left a significant gap in the global scientific knowledge within this area. This thesis describes research carried out to analyse, quantify and model coherent sea clutter statistics from multiple radar sources. The ultimate goal of the research is to improve maritime radars' ability to compensate for clutter and achieve effective detection of targets on or over the sea surface. The first analyses used monostatic data gathered during the fight trials of the Thales Searchwater 2000 AEW radar. A further sea clutter trials database from CSIR was then used to investigate the variation of clutter statistics with look angle and grazing angle. Finally simultaneous monostatic and bistatic sea clutter data recorded in South Africa using the S-band UCL radar system NetRAD were analysed. No simultaneous monostatic and bistatic coherent analysis has ever been reported before in the open literature. The datasets recorded included multiple bistatic angles at both horizontal and vertical polarisations. Throughout the analysis real data have been compared to accepted theoretic models of sea clutter. An additional metric of comparison was investigated relating to the area of information theoretic techniques. Information theory is a significant subject area, and some concepts from it have been applied in this research. In summary this research has produced quantifiable and novel results on the characteristics of sea clutter statistics as a function of Doppler. Analysis has been carried out on a wide range of monostatic and bistatic data. The results of this research will be extremely valuable in developing sea clutter suppression algorithms and thus improving detection performance in future maritime radar designs.
APA, Harvard, Vancouver, ISO, and other styles
20

Garrigues, Laurent. "Statistical analysis and forecasting of sea ice conditions in Canadian waters." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19621.

Full text
Abstract:
Historical data of sea ice concentration in Canadian waters are analysed using projections methods (Principal Component Analysis, Singular Value Decomposition, Canonical Correlation Analysis and Projection on Latent Structures) to identify the main patterns of evolution in the sea ice cover. Three different areas of interest are studied: (1) the Gulf of St Lawrence, (2) the Beaufort Sea and (3) the Labrador Sea down to the east coast of Newfoundland. Forcing parameters that drive the evolution of the sea ice cover such as surface air temperature and wind field are also analysed in order to explain some of the variability observed in the sea ice field. Only qualitative correlations have been identified, essentially because of the singular nature of the sea ice concentration itself and the accuracy of available data. However, several statistical models based on identified patterns have been developed showing forecasting skills far better than those of the persistence assumption, which currently remains one of the best 'model' available. Forecasts are tested over periods of time ranging from a few days to several weeks. Some of these models constitute innovative approaches in the context of statistical sea ice forecasting. Some others models have been developed using a probabilistic approach. These models provide forecasts in terms of sea ice severity (low-medium-high), which is often accurate enough for navigation purposes for the three areas of interest. Forecasting skills of these models are also better than the persistence assumption. Finally, an existing dynamic sea-ice model has been adapted and used to predict sea ice conditions in the Gulf of St Lawrence during the Winter season 1992-1993. Simulations provided by this model are compared to the forecasts of different statistical models over the same period of time.
APA, Harvard, Vancouver, ISO, and other styles
21

Skittides, Christina. "Statistical modelling of wind energy using Principal Component Analysis." Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/2930.

Full text
Abstract:
The statistical method of Principal Component Analysis (PCA) is developed here from a time-series analysis method used in nonlinear dynamical systems to a forecasting tool and a Measure-Correlate-Predict (MCP) and then applied to wind speed data from a set of Met. Office stations from Scotland. PCA for time-series analysis is a method to separate coherent information from noise of measurements arising from some underlying dynamics and can then be used to describe the underlying dynamics. In the first step, this thesis shows that wind speed measurements from one or more weather stations can be interpreted as measurements originating from some coherent underlying dynamics, amenable to PCA time series analysis. In a second step, the PCA method was used to capture the underlying time-invariant short-term dynamics from an anemometer. These were then used to predict or forecast the wind speeds from some hours ahead to a day ahead. Benchmarking the PCA prediction against persistence, it could be shown that PCA outperforms persistence consistently for forecasting horizons longer than around 8 hours ahead. In the third stage, the PCA method was extended to the MCP problem (PCA-MCP) by which a short set of concurrent data from two sites is used to build a transfer function for the wind speed and direction from one (reference) site to the other (target) site, and then apply that transfer function for a longer period of data from the reference site to predict the expected wind speed and direction at the target site. Different to currently used MCP methods which treat the target site wind speed as the independent variable and the reference site wind speed as the dependent variable, the PCA-MCP does not impose that link but treats the two sites as joint observables from the same underlying coherent dynamics plus some independent variability for each site. PCA then extracts the joint coherent dynamics. A key development step was then to extend the identification of the joint dynamics description into a transfer function in which the expected values at the target site could be inferred from the available measurements at the reference site using the joint dynamics. This extended PCA-MCP was applied to a set of Met. Office data from Scotland and benchmarked a standard linear regression MCP method. For the majority of cases, the error of the resource prediction in terms of wind speed and wind direction distributions at the target site was found to be between 10% and 50% of that made using the standard linear regression. The target mean absolute error was also found to be only the 29% of the linear regression one.
APA, Harvard, Vancouver, ISO, and other styles
22

Ezanno, Philippe. "Vibration localization and statistical energy analysis in coupled systems." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-06112009-063056/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Benfenati, Francesco Maria. "Statistical analysis of oceanographic extreme events." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19885/.

Full text
Abstract:
Condizioni ambientali estreme del mare possono avere un forte impatto sulla navigazione e/o sul successo di operazioni di salvataggio. Le tecniche statistiche sono cruciali per quantificare la presenza di eventi estremi e monitorarne variazioni di frequenza e intensità. Gli eventi estremi "vivono" nella coda di una funzione distribuzione di probabilità (PDF), per questo è importante studiare la PDF in punti lontani diverse deviazioni standard dalla media. L’altezza significativa dell’onda (SWH) è il parametro solitamente usato per valutare l’intensità degli stati del mare. L’analisi degli estremi nella coda di una distribuzione richiede lunghe serie temporali per stime ragionevoli della loro intesità e e frequenza. Dati osservativi (i.e. dati storici da boe), sono spesso assenti e vengono invece utilizzate ricostruzioni numeriche delle onde, con il vantaggio che l’analisi di eventi estremi diventa possibile su una vasta area. Questa tesi vuole condurre un’analisi preliminare delle variazioni spaziali dei valori estremi della SWH nel Mediterraneo. Vengono usati dati orari dal modello del Med-MFC (dal portale del CMEMS), una ricostruzione numerica di onde per il Mediterraneo, che sfrutta il modello "WAM Cycle 4.5.4", coprendo il periodo 2006-2018, con risoluzione spaziale 0.042° (~ 4km). In particolare, consideriamo dati di 11 anni (dal 2007 al 2017), concentrandoci sulle regioni del Mar Ionio e del Mar Iberico. La PDF della SWH è seguita piuttosto bene dall’andamento di una curva Weibull a 2 parametri sia durante l’inverno (Gennaio) che durante l’estate (Luglio), con difetti per quanto riguarda il picco e la coda della distribuzione. A confronto, la curva a 3 parametri Weibull Esponenziata sembra essere più appropriata, anche se non è stato trovato un metodo per dimostrare che sia un fit migliore. Alla fine, viene proposto un metodo di stima del rischio basato sul periodo giornaliero di ritorno delle onde più alte di un certo valore di soglia, ritenute pericolose.
APA, Harvard, Vancouver, ISO, and other styles
24

Mangisa, Siphumlile. "Statistical analysis of electricity demand profiles." Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1011548.

Full text
Abstract:
An electricity demand profile is a graph showing the amount of electricity used by customers over a unit of time. It shows the variation in electricity demand versus time. In the demand profiles, the shape of the graph is of utmost importance. The variations in demand profiles are caused by many factors, such as economic and en- vironmental factors. These variations may also be due to changes in the electricity use behaviours of electricity users. This study seeks to model daily profiles of energy demand in South Africa with a model which is a composition of two de Moivre type models. The model has seven parameters, each with a natural interpretation (one parameter representing minimum demand in a day, two parameters representing the time of morning and afternoon peaks, two parameters representing the shape of each peak, and two parameters representing the total energy per peak). With the help of this model, we trace change in the demand profile over a number of years. The proposed model will be helpful for short to long term electricity demand forecasting.
APA, Harvard, Vancouver, ISO, and other styles
25

Yap, Fook Fah. "Statistical Energy Analysis of structural vibration : analytical and computational investigations." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Steel, J. A. "Structural vibration transmission in framed buildings using statistical energy analysis." Thesis, Heriot-Watt University, 1990. http://hdl.handle.net/10399/889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Platten, Michael Francis. "Sound and vibration transmission in aircraft using statistical energy analysis." Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fraser, Grant. "Structure borne sound in motor-vehicles using statistical energy analysis." Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/1285.

Full text
Abstract:
This Thesis is about the application of Statistical Energy Analysis (SEA) to the study of noise and vibration in motor vehicles. Methods for predicting the transmission of structural waves between body panels in motor cars are given. A complex joint technique based on the wave dynamic stiffness approach is discussed in detail. This technique can account for the complexities of the joint structures found in motor vehicles. Transmission of vibration energy between panels connected by a curved section of panel has been investigated using the complex joint modelling technique. Wave Intensity Analysis(WIA) and SEA were used to calculate the coupled panel vibration levels based on transmission coefficients calculated using the complex joint techniques. Energy Level Differences (ELDs) were measured for comparison with predicted results using laboratory models. SEA failed to accurately predict the ELDs except at low frequencies. However WIA was able to predicted the ELDs with reasonable accuracy using an existing expression for transmission at a panel corner joint. Two SEA models of a small passenger car have also been constructed. One assumes simpler joint configurations when calculating transmission coefficients and the other uses the complex joint technique. Panel ELDs were measured using a small passenger car. The SEA model using the complex joint method gives better agreement with measured ELDs than did the model using the simpler joints. saloon Sound Pressure Level (SPL) as a result of engine noise was measured. Both SEA models of the vehicle gave good agreement between measured and predicted Saloon SPL. A noise problem associated with exhaust misalignment is also investigated.
APA, Harvard, Vancouver, ISO, and other styles
29

Mohammed, Adnan Dawood. "A study of uncertainty in applications of statistical energy analysis." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Whitehead, Andile. "Statistical-thermodynamical analysis, using Tsallis statistics, in high energy physics." Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/13391.

Full text
Abstract:
Includes bibliographical references.
Obtained via the maximisation of a modified entropy, the Tsallis distribution has been used to fit the transverse momentum distributions of identified particles from several high energy experiments. We propose a form of the distribution described in Cleymans and Worku, 2012, and show it to be thermodynamically consistent. Transverse momenta distributions and fits from ALICE, ATLAS, and CMS using both Tsallis and Boltzmann distributions are presented.
APA, Harvard, Vancouver, ISO, and other styles
31

Suzuki, Yohichi. "Free energy landscape of dipolar system : statistical and dynamical analysis." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nanopoulos, Andrew. "Valuation of wind energy projects and statistical analysis of wind power." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74932.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 221-225).
As energy becomes an increasingly important issue for generations to come, it is crucial to develop tools for valuing and understanding energy projects from an economic perspective since ultimately only economically viable solutions will be pushed forward. A model is developed for valuing a generic offshore floating wind farm from a corporate finance perspective. The model is used to value the project based on multiple valuation metrics and to generate sensitivity analyses on multiple important technical, cost and financial parameters. It is found that offshore wind projects can be economically viable under current conditions contingent on high annual mean wind speed and government support. In addition, it is also found that financial parameters prove to be equally or even more important than technical parameters in affecting the overall project value. Furthermore, the wind speed and power output are modeled using a mean reverting Ornstein - Uhlenbeck process whereby it is found that while wind speed is positively autocorrelated, the averaging period plays an important role in determining the nature and extent of the autocorrelation. Finally, the valuation is extended and generalized to a Black-Scholes option based valuation of any project whose underlying asset follows a mean reverting process, whereby a model is developed to find the debt and equity values under the assumption of time independence. The tools developed for this purpose can prove to be useful in other applications besides energy, such as shipping and commodities, as the underlying characteristics of energy projects are often similar across other markets.
by Andrew Nanopoulos.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
33

Robinson, Matthew. "Prediction of sound and vibration response using transient statistical energy analysis." Thesis, University of Liverpool, 2012. http://livrepository.liverpool.ac.uk/5493/.

Full text
Abstract:
Transient sounds generated from structure-borne and airborne excitation are very common in buildings and cause the majority of disturbances in dwellings. The maximum sound pressure level corresponds well with annoyance and disturbance and current guidelines use this descriptor to describe the threshold for sleep disturbance. Hence this thesis addresses a need for methods to quantify transient sound sources and prediction models that can determine maximum sound pressure levels due to these sound sources. Statistical Energy Analysis (SEA) provides a framework that describes sound radiation and structure-borne sound transmission in buildings. SEA is used in this thesis as a basis on which to develop Transient Statistical Energy Analysis (TSEA) for building acoustics. The TSEA power balance describes energy exchange between subsystems in the time domain and is controlled by the time interval. Limits for the time interval are proposed based upon energy decay and path statistics of the source subsystem. New methods are proposed for measuring and quantifying the transient power input from airborne and structure-borne excitation. Detailed analysis is also used to quantify the signal processing errors, due the time-weighted level detector and filters, associated with the measurement of maximum levels. The use of steady-state SEA coupling loss factors in TSEA for sound radiation and structure-borne sound transmission is validated through good agreement in comparisons of measurements and predictions of maximum sound and vibration levels. This validation is extended to complex transient sources that have been incorporated into TSEA, such as the ISO rubber ball, transients overlaying stationary noise and airborne transients. Case studies of heavyweight buildings show that accurate predictions of maximum sound pressure and vibration levels are given if Ns ≥ 1 and Mav ≥ 0.5. TSEA has also been validated for the prediction of structural decay curves, numerical experiments have been carried out to quantify the error in the estimation of the total loss factor and to develop an improvement to the evaluation of decay curves.
APA, Harvard, Vancouver, ISO, and other styles
34

Buchanan, William. "Statistical Analysis of Wind Data and Modeling Regulating Reserves." ScholarWorks @ UVM, 2012. http://scholarworks.uvm.edu/graddis/33.

Full text
Abstract:
The desire to reduce dependence on fossil fuels is resulting in numerous policy incentives for increased renewable energy sources within the power grid. Because wind generation is arguably the most affordable per MWh of the renewable energy sources it is growing nearly as quickly as conventional generation techniques. Due to this significant increase in wind penetration levels, numerous largescale wind integration studies have been produced to determine the reliability impacts of large-scale wind power. Using data from two large US wind interconnection studies, this thesis provides evidence that mesoscale meteorological models under-predict the variability in wind data particularly on short time scales, indicating that data from mesoscale meteorological models need to be used with caution for some types of analyses. These types of analyses include most notably regulating reserves, which are used to rebalance supply and demand on a second-by-second bias. This thesis will also describe and evaluate a new method for jointly quantifying the amount of spinning and regulating reserves required to meet reliability requirements within a balancing area with significant amounts of wind power using high resolution wind data. The method is based on jointly minimizing dispatch costs and reserve allocations, across two time scales (seconds to minutes, and minutes to hours) to satisfy North American Electric Reliability Corporation (NERC) Area Control Error (ACE) requirements.
APA, Harvard, Vancouver, ISO, and other styles
35

Beshara, Maha. "Energy flows in structures with compliant nonconservative couplings." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vijayaraghavan, Rajesh. "Statistical estimation of strain energy release rate of delaminated composites." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4965.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains xv, 133 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 126-133).
APA, Harvard, Vancouver, ISO, and other styles
37

Yayladere, Cavcar Bahar. "Prediction Of Noise Transmission In A Submerged Structure By Statistical Energy Analysis." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615067/index.pdf.

Full text
Abstract:
The aim of this study is to develop a sound transmission model that can be used to predict the vibration and noise levels of a submerged vessel. The noise transmitted from the mechanical vibrations of the hull of a submarine and the turbulent boundary layer excitation on the submarine are investigated. A simplified physical model of the submarine hull including the effects of bulkheads, end enclosures, ring stiffeners and fluid loading due to the interaction of the surrounding medium is presented in the study. An energy approach, i.e., Statistical Energy Analysis (SEA) is used for the analysis because the characterization of the hull of the structure can be done by a very large number of modes over the frequency range of interest and the deterministic analysis methods such as finite element and boundary element methods are limited to low frequency problems. The application consists of the determination of SEA subsystems and the parameters and the utilization of power balance equations to estimate the energy ratio levels of each subsystem to the directly excited subsystem. Through the implementation of SEA method, the sound pressure levels of the hull of the structure are obtained. In terms of military purposes, the sound levels of the submarine compartments are vital in the aspects of the preserving of submarine stealth.
APA, Harvard, Vancouver, ISO, and other styles
38

Smith, Jeremy Richard Denham. "Statistical energy analysis of marine structures with periodic and near-periodic components." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hung, Aaron. "ENERGY EFFICIENCY AND STATISTICAL ANALYSIS OF BUILDINGS AT CASE WESTERN RESERVE UNIVERSITY." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1446477944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gotthardsson, Björn. "Analysis and Evaluation of the Wavebox Wave Energy Converter." Thesis, Uppsala universitet, Elektricitetslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-149364.

Full text
Abstract:
Increasing attention to climate change in combination with ever-growing energy consumption worldwide has boosted the demand for new green energy sources. Wave power is developing in many different branches to become part of the new era of electricity production. This thesis deals with a wave power system in its primary stages of development. The system was investigated in order to estimate its potential to produce electric power from sea waves. It is a system consisting of a moored buoy to which the energy is transferred when the wave tilts the buoy in the pitch direction. Due to the increased pitch angle, an amount of liquid contained inside the buoy is allowed to flow via ramps to an upper container, from where it flows down through a hydroelectric turbine. A computer program was used to calculate the properties of the buoy in sea waves. Another program was written in MATLAB to simulate the movements in sea waves and from a set of given parameters calculate the power output. A brief economic study was made to determine if the power output was large enough for the concept to be of financial interest to any future investors. The results show that the wave power system produced 0.9 kW in a wave climate equal to that off the coast of Hanstholm, Denmark, and 1.6 kW in a wave climate off the coast of San Diego, USA. The economic study shows that the power output needed to be improved by a factor of at least five to have a chance of being economically viable. A number of enhancements were suggested to increase the power output of the system, and further investigation could be of use to improve the concept. The created computer simulation model, as well as the results in this thesis could be valuable in any future research on the concept.
APA, Harvard, Vancouver, ISO, and other styles
41

Park, Woo Sun. "The sources of variability in the statistical energy analysis of two rectangular plates." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ghinet, Sebastian. "Statistical energy analysis of the transmission loss of sandwich and laminate composite structures." Thèse, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/1770.

Full text
Abstract:
The present study emerges from a present industry need for accurate and fast numerical modeling approaches to estimate the vibro-acoustic behaviours of multilayered composite and viscoelastic treatments configurations.The structure is modeled using a wave approach applied to various multilayer configurations such as: symmetrical laminate composite, symmetrical sandwich composite and general symmetrical or unsymmetrical laminate or sandwich composite as well as viscoelastic treatments. Three behavioural modeling approaches are investigated: smeared laminate, discrete layer sandwich and general discrete layer laminate. Smeared laminate approach is devoted to symmetrical laminate composite panels and uses equivalent elastic properties computed by smearing out the layers' properties through the panel's thickness. Discrete layer sandwich approach is devoted to symmetrical sandwich composite panels and uses individual displacement fields for each layer. Classical assumptions of thick skins sandwich panels are adopted. General discrete laminate approach accommodates both laminate and sandwich composite panels of symmetrical or unsymmetrical layout. Individual displacement fields are used for each layer. These three behavioural modeling approaches are applied in the present work to flat and curved panel configurations as well as laminated beams. Dispersion relations are developed for each configuration and solved in a generalized polynomial eigenvalue problem context. These solutions are used in a SEA framework to compute the group velocity, the modal density, the radiation efficiency as well as the resonant and non-resonant contributions to the transmission coefficient. Moreover, the dispersion relations are used to develop general expressions to compute the ring frequency and the critical frequencies. In the context of viscoelastic treatments modeling the mechanical impedance, the input mobility, the deformation energy as well as the equivalent loss factor are computed for several boundary conditions.The presented approaches are successfully validated with experimental results and previously published theories. In addition to their proven accuracy, the proposed approaches are quick and general.
APA, Harvard, Vancouver, ISO, and other styles
43

Li, Wei. "Numerical Modelling and Statistical Analysis of Ocean Wave Energy Converters and Wave Climates." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305870.

Full text
Abstract:
Ocean wave energy is considered to be one of the important potential renewable energy resources for sustainable development. Various wave energy converter technologies have been proposed to harvest the energy from ocean waves. This thesis is based on the linear generator wave energy converter developed at Uppsala University. The research in this thesis focuses on the foundation optimization and the power absorption optimization of the wave energy converters and on the wave climate modelling at the Lysekil wave converter test site. The foundation optimization study of the gravity-based foundation of the linear wave energy converter is based on statistical analysis of wave climate data measured at the Lysekil test site. The 25 years return extreme significant wave height and its associated mean zero-crossing period are chosen as the maximum wave for the maximum heave and surge forces evaluation. The power absorption optimization study on the linear generator wave energy converter is based on the wave climate at the Lysekil test site. A frequency-domain simplified numerical model is used with the power take-off damping coefficient chosen as the control parameter for optimizing the power absorption. The results show a large improvement with an optimized power take-off damping coefficient adjusted to the characteristics of the wave climate at the test site. The wave climate modelling studies are based on the wave climate data measured at the Lysekil test site. A new mixed distribution method is proposed for modelling the significant wave height. This method gives impressive goodness of fit with the measured wave data. A copula method is applied to the bivariate joint distribution of the significant wave height and the wave period. The results show an excellent goodness of fit for the Gumbel model. The general applicability of the proposed mixed-distribution method and the copula method are illustrated with wave climate data from four other sites. The results confirm the good performance of the mixed-distribution and the Gumbel copula model for the modelling of significant wave height and bivariate wave climate.
APA, Harvard, Vancouver, ISO, and other styles
44

Spyrou, Maria S. "Multi-scale analysis of the energy performance of supermarkets." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19598.

Full text
Abstract:
The retail sector accounts for more than 3% of the total electricity consumption in the UK and approximately 1% of total UK CO2 emissions. The overarching aim of this project was to understand the energy consumption of the Tesco estate (the market leader), identify best practice, and find ways to identify opportunities for energy reduction. The literature review of this work covered the topic of energy consumption in the retail sector, and reviewed benchmarks for this type of buildings from the UK, Europe and the US. Related data analysis techniques used in the industry or presented in the literature were also reviewed. This revealed that there are many different analysis and forecasting techniques available, and that they fall into two different categories: techniques that require past energy consumption data in order to calculate the future consumption, such as statistical regression, and techniques that are able to estimate the energy consumption of buildings, based on the specific building's characteristics, such as thermal simulation models. These are usually used for new buildings, but they could also be used in benchmarking exercises, in order to achieve best practice guides. Gaps in the industry knowledge were identified, and it was suggested that better analytical tools would enable the industry to create more accurate energy budgets for the year ahead leading to better operating margins. Benchmarks for the organisation's buildings were calculated. Retail buildings in the Tesco estate were found to have electrical intensity values between 230 kWh/m2 and 2000 kWh/m2 per year. Still the average electrical intensity of these buildings in 2010-11 was found to be less than the calculated UK average of the 2006-07 period. The effect of weather on gas and electricity consumption was investigated, and was found to be significant (p < 0.001). There was an effect related to the day-of-the-week, but this was found to be more related to the sales volume on those days. Sales volume was a proxy that was used to represent the number of customers walking through the stores. The built date of the building was also considered to be an interesting factor, as the building regulations changed significantly throughout the years and the sponsor did not usually carry out any fabric work when refurbishing the stores. User behaviour was also identified as an important factor that needed to be investigated further, relating to both how the staff perceives and manages the energy consumption in their work environment, as well as how the customers use the refrigeration equipment. Following a statistical analysis, significant factors were determined and used to create multiple linear regression models for electricity and gas demands in hypermarkets. Significant factors included the sales floor area of the store, the stock composition, and a factor representing the thermo-physical characteristics of the envelope. Two of the key findings are the statistical significance of operational usage factors, represented by volume of sales, on annual electricity demand and the absence of any statistically significant operational or weather related factors on annual gas demand. The results suggest that by knowing as little as four characteristics of a food retail store (size of sales area, sales volume, product mix, year of construction) one can confidently calculate its annual electricity demands (R2=0.75, p < 0.001). Similarly by knowing the size of the sales area, product mix, ceiling height and number of floors, one can calculate the annual gas demands (R2=0.5, p < 0.001). Using the models created, along with the actual energy consumption of stores, stores that are not as energy efficient as expected can be isolated and investigated further in order to understand the reason for poor energy performance. Refrigeration data from 10 stores were investigated, including data such as the electricity consumption of the pack, outside air temperature, discharge and suction pressure, as well as percentage of refrigerant gas in the receiver. Data mining methods (regression and Fourier transforms) were employed to remove known operational patterns (e.g. defrost cycles) and seasonal variations. Events that have had an effect on the electricity consumption of the system were highlighted and faults that had been identified by the existing methodology were filtered out. The resulting dataset was then analysed further to understand the events that increase the electricity demand of the systems in order to create an automatic identification method. The cases analysed demonstrated that the method presented could form part of a more advanced automatic fault detection solution; potential faults were difficult to identify in the original electricity dataset. However, treating the data with the method designed as part of this work has made it simpler to identify potential faults, and isolate probable causes. It was also shown that by monitoring the suction pressure of the packs, alongside the compressor run-times, one could identify further opportunities for electricity consumption reduction.
APA, Harvard, Vancouver, ISO, and other styles
45

Burston, Joanna. "Stochastic model of extreme coastal water levels, New South Wales, Australia." Phd thesis, School of Geosciences, 2008. http://hdl.handle.net/2123/4033.

Full text
Abstract:
Thesis (Ph. D.)--University of Sydney, 2008.
Title from title screen (viewed February 12, 2009). Includes graphs and tables. Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Geosciences, Faculty of Science. Includes bibliographical references. Also available in print form.
APA, Harvard, Vancouver, ISO, and other styles
46

Sandberg, Erik. "Energy and scrap optimisation of electric arc furnaces by statistical analysis of process data." Licentiate thesis, Luleå, 2005. http://epubl.luth.se/1402-1757/2005/21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lednik, Dusan. "The application of Transient Statistical Energy Analysis and wave propagation approach to coupled structures." Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

James, Philippe Pierre. "A technique for the assessment of strength of coupling between statistical energy analysis subsystems." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kurtoglu, Ilker. "Acoustically Induced Stress Analysis Of Center Fuselage Skin Panels Of A Basic Training Aircraft Using Statistical Energy Analysis." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610698/index.pdf.

Full text
Abstract:
Two sample statistical energy analysis (SEA) models are generated for a section of the fuselage panel of an aircraft, namely the uniform panel model which includes the frames and stringers, and the ribbed panel model in which the frames and stringers are smeared into the skin. Turbulent boundary layer (TBL) excitation is used as the primary acoustic excitation source. Stress levels are estimated from the average velocity data of the panels. The stress results are found comply with those obtained by the AGARD method. Effect of radiation from panels to exterior and interior of the sample skin panel as well as the pressurization of the skin panels are investigated separately to analyze their effects on the stress levels. The method is then used in the analysis of center fuselage skin panels on a basic training aircraft. Two models are generated for the aircraft analysis, namely the complete aircraft model and the simplified model which excludes the wings and the empennage. In addition to TBL, propeller noise is used as the primary acoustic excitation source. The effects of the wings and the empennage on the stress levels in the center fuselage skin panels are also investigated along with the radiation from panels to the exterior and interior of the aircraft and pressurization of the pilot cabin.
APA, Harvard, Vancouver, ISO, and other styles
50

Barbagallo, Mathias. "Statistical energy analysis and variational principles for the prediction of sound transmission in multilayered structures." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118427.

Full text
Abstract:
Multilayered structures have many application in industry and society: they have peculiar properties and serve a variety of purposes, like structural support, thermal insulation, vibrational and acoustic isolation. This thesis concerns the prediction of sound transmission in multilayered structures. Two problems are herein investigated: the transmission of energy through structures and the transmission of energy along structures. The focus of the analysis is on the mid to high frequency range. To predict sound transmission in these structures, statistical energy analysis (SEA) is used.SEA models are devised for the prediction of the sound reduction index for two kinds of multilayered structures, double-walls used in buildings and trim-panels in vehicles; the double-walls comprise an air cavity in between flat plasterboard or glass plates, whereas the trim-panels a porous layer in between curved aluminium and rubber layers. The SEA models are based upon the wave-types carrying energy. The novelty in these SEAs is an element describing the waves in the air cavity, or in the porous layer, fully coupled to the mass-impeded external layers. Compared to measurements, the proposed SEA performs well: for double-walls, it performs better than previous models; for trim-panels, it is an original result. The parameters of the new SEA element, such as modal density, are derived from the coupling equations describing the fully coupled waves. For double-walls, these equations are derived via Newton's laws. For trim-panels, a variational approach based upon a modified Hamilton's principle valid for non-conservative systems is preferred, because it is a powerful machinery for deriving equations of motion and coupling conditions of a medium as complex as the porous layer. The modified Hamilton's principle for non-conservative systems is based upon a self-adjoint functional analogous to the Lagrangian, inspired by Morse and Feshbach's construction. A self-adjoint variational principle for Biot's equations in the displacement formulation is devised. An equivalent mixed formulation is obtained changing the coordinates of the displacement formulation via Lagrange multipliers. From this mixed formulation, the Lagrangian for a porous material with a limp frame is derived, which yields the continuity of the total displacement of the porous layer. Lagrange multipliers help to obtain the correct coupling functionals between a porous material and a solid. The Lagrange multipliers introducing the continuity of the frame and the solid displacements equal the traction of the in-vacuo frame, thus disappearing if the latter is limp. Measurements to gather material parameters for a Biot model of the porous layer have been conducted.The effects of spatial energy decay in the transmission along structures predicted by SEA is studied: a major effect is the increased relevance of indirect coupling loss factors between SEA elements. This may jeopardize the usefulness of SEA at higher frequencies.

QC 20130218

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography