To see the other types of publications on this topic, follow the link: SEC61 protein.

Dissertations / Theses on the topic 'SEC61 protein'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 34 dissertations / theses for your research on the topic 'SEC61 protein.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Meyer, Hellmuth-Alexander. "Identifizierung und Charakterisierung evolutionär konservierter Komponenten des Protein-Translokationsapparates im Endoplasmatischen Retikulum." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2001. http://dx.doi.org/10.18452/14625.

Full text
Abstract:
Im Gegensatz zur den monomeren Leaderpeptidasen der bakteriellen Plasmamembran bestehen die eukaryotischen Signalpeptidasen der ER-Membran aus einem heteromeren Protein-Komplex. In der Hefe S. cerevisiae setzt sich die Signalpeptidase aus den vier Membranproteinen Sec11p, Spc1p, Spc2p und Spc3p zusammen. Neben der zur prokaryontischen Leaderpeptidase homologen Untereinheit Sec11p wird auch Spc3p benötigt um die Spaltungsfunktion in der Zelle auszuüben. Die Deletion von SPC3 führt zu einer lethalen Akkumulation von sekretorischen Vorstufenproteinen in vivo, sowie zum Verlust der Spaltungsaktivität in vitro. Spc1p und Spc2p sind nicht essentiell für die Hefe. Für Spc2p konnte jedoch gezeigt werden, daß die Signalpeptidase über die Spc2p Untereinheit mit den b-Untereinheiten des Sec61-Komplexes und des Ssh1-Komplexes interagiert. Vermutlich wird es so dem Komplex ermöglicht, während des Translokationsprozesses engen Kontakt zu der im Translokationskanal befindlichen Signalsequenz aufzunehmen. Im zweiten Teil der Arbeit wurden neue Komponenten aus der ER Membran von Säugern aufgereinigt. Dabei wurde ein ribosomenfreier Sec61-Komplex entdeckt, der mit zwei weiteren Membranproteinen assoziiert ist. Die beiden neuen Membranproteine weisen Homologien zu essentiellen Untereinheiten des postranslational aktiven Sec-Komplexes der Hefe S. cerevisiae auf. Die Rolle des neu entdeckten Säugerkomplexes während der Proteintranslokation ist noch unbekannt, in der Arbeit werden mögliche Funktionen des Komplexes diskutiert.
In contrast to the monomer leaderpeptidase of the prokaryotic plasmamembrane, the eukaryotic signalpeptidase of the ER-membrane is a heteromer protein complex. In yeast the signalpeptidase consist of the four subunits Sec11p, Spc1p, Spc2p and Spc3p. Additional to Sec11p also Spc3p is essential for cell growth and cell life. The depletion of Spc3p cause lethal accumulation of precursor proteins in vivo and lost of cleavage activity in vitro. Spc1p and Spc2p are not essential for the cell. We show here, that the Spc2p subunit interacts with the ß-subunits of the Sec61- and the Ssh1-complex. These data implicate that Spc2p facilitates the interactions between different components of the translocation site. In yeast, efficient protein transport across the endoplasmic reticulum (ER) membrane may occurco-translationally or post-translationally. The latter process is mediated by a membrane protein complex that consists of the Sec61p complex and the Sec62p-Sec63p subcomplex. In contrast, in mammalian cells protein translocation is almost exclusively co-translational. This transport depends on the Sec61 complex, which is homologous to the yeast Sec61p complex and has been identified in mammals as a ribosome-bound pore-forming membrane protein complex. We report here the existence of ribosome-free mammalian Sec61 complexes that associate with two ubiquitous proteins of the ER membrane. According to primary sequence analysis both proteins display homology to the yeast proteins Sec62p and Sec63p and are therefore named Sec62 and Sec63, respectively. The probable function of the mammalian Sec61-Sec62-Sec63 complex is discussed with respect to its abundance in ER membranes, which, in contrast to yeast ER membranes, apparently lack efficient post-translational translocation activity.
APA, Harvard, Vancouver, ISO, and other styles
2

Finke, Kerstin. "Untersuchung paraloger SEC61-Gene und -Proteine in Eukaryoten." Doctoral thesis, [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958209375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Eunyong. "Mechanistic Studies of SecY-Mediated Protein Translocation in Intact Escherichia coli Cells." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10172.

Full text
Abstract:
During the synthesis of secretory and membrane proteins, polypeptides move through a universally conserved protein-conducting channel, formed by the Sec61/SecY complex that is located in the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. The channel operates in two different modes depending on its binding partners. In co-translational translocation, a pathway found in all organisms, the channel associates with a translating ribosome. In post-translational translocation, the channel cooperates with either the Sec62–Sec63 complex in eukaryotes or the SecA ATPase in bacteria. Despite tremendous progress in our understanding of protein translocation over the past decades, many questions about its mechanism remain to be answered. These include (1) how the channel maintains the membrane barrier for small molecules while transporting large proteins, (2) what is the functional implication of channel oligomerization, and (3) how the channel interacts with binding partners and polypeptide substrates during translocation. To address these questions, we developed a novel in vivo method to generate both co- and post-translation translocation intermediates in intact Escherichia coli cells, such that polypeptide chains are only partially translocated through the channel. Using this method, we first demonstrated that a translocating polypeptide itself blocks small molecules from passing through an open SecY channel. A hydrophobic pore ring surrounding the polypeptide chain is vital for maintaining the membrane barrier during translocation. Next, we examined the importance of SecY oligomerization in protein translocation. Crosslinking experiments showed that SecY molecules interact with each other in native membranes, but that this self-association is greatly decreased upon insertion of polypeptide substrates. We also showed that SecY mutants that cannot form oligomers are still functional in vivo. Collectively, our data indicate that a single copy of SecY is sufficient for protein translocation. Finally, we isolated an intact co-translational translocation intermediate from E. coli cells and analyzed its structure by cryo-electron microscopy. An initial map shows a translating ribosome containing all three tRNAs is bound to one copy of the SecY channel. Analysis of a large dataset is ongoing in order to understand the structural basis of how the channel interacts with the ribosome and translocating nascent chain.
APA, Harvard, Vancouver, ISO, and other styles
4

Kelkar, Anshuman. "Fucntional analysis of Sec61beta, a component of the Sec61 protein translocation channel at the endoplasmic reticulum." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11811219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Raden, David. "Interaction Between Ribosome-Nascent Chain and sec61 Complexes and Their Role in the Translocation of Proteins Across the Endoplasmic Reticulum Membrane: a Thesis." eScholarship@UMMS, 2000. http://escholarship.umassmed.edu/gsbs_diss/257.

Full text
Abstract:
Proteins with RER-specific signal sequences are cotranslationally translocated across the rough endoplasmic reticulum through a proteinaceous channel composed of oligomers of the Sec61 complex. The Sec61 complex also binds ribosomes with high affinity. The dual function of the Sec61 complex necessitates a mechanism to prevent signal sequence-independent binding of ribosomes to the translocation channel. We have examined the hypothesis that the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC) respectively act as positive and negative regulatory factors to mediate the signal sequence-specific attachment of the ribosome-nascent chain complex (RNC) to the translocation channel. Here, SRP-independent translocation of a nascent secretory polypeptide was shown to occur in the presence of endogenous wheat germ or rabbit reticulocyte NAC. Furthermore, SRP markedly enhanced RNC binding to the translocation channel irrespective of the presence of NAC. Binding of RNCs, but not SRP-RNCs, to the Sec61 complex is competitively inhibited by 80S ribosomes. Thus, the SRP dependent targeting pathway provides a mechanism for delivery of RNCs to the translocation channel that is not inhibited by the non-selective interaction between the ribosome and the Sec61 complex. The Sec61 complex, serving as both the high affinity ribosome receptor and the translocation channel, is performing two very different functions which presumably requires different activity domains within the Sec61 complex. To define regions of the Sec61 complex that are involved in ribosome binding and translocation promotion, ribosome-stripped microsomes were subjected to limited digestions using proteases with different cleavage specificities. Protein immunoblot analysis using antibodies specific for the N and C-terminus of Sec61α was used to map the location of proteolysis cleavage sites. We observed a striking correlation between a loss of ribosome binding activity and the digestion of the C-terminal tail or cytoplasmic loop 8 of Sec61α. The proteolyzed microsomes were assayed for SRP-independent translocation activity to determine whether ribosome binding to the Sec61 complex is a prerequisite for nascent chain transport. Microsomes that do not bind ribosomes with high affinity at physiological ionic strength remain active in SRP-independent translocation indicating that ribosome binding and translocation promotion are separable activities of the Sec61 complex. Translocation promoting activity was most severely inhibited by cleavage of cytosolic loop 6, indicating that this segment is a critical determinant for this function of the Sec61 complex.
APA, Harvard, Vancouver, ISO, and other styles
6

Boekel, Carolina. "Integration and topology of membrane proteins." Doctoral thesis, Stockholm : Department of Biochemistry and Biophysics, Stockholm University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cheng, Zhiliang. "Posttargeting Events in Cotranslational Translocation Through the Sec61 Complex: a Thesis." eScholarship@UMMS, 2006. https://escholarship.umassmed.edu/gsbs_diss/1.

Full text
Abstract:
The cytoplasmic surface of Sec61p is the binding site for the ribosome and has been proposed to interact with the signal recognition particle receptor during targeting of the ribosome nascent chain complex to the translocation channel. Point mutations in cytoplasmic loops six (L6) and eight (L8) of yeast Sec61p cause reductions in growth rates and defects in translocation of nascent polypeptides that utilize the cotranslational translocation pathway. Sec61 heterotrimers isolated from the L8 sec61 mutants have a greatly reduced affinity for 80S ribosomes. Cytoplasmic accumulation of protein precursors demonstrates that the initial contact between the large ribosomal subunit and the Sec61 complex is important for efficient insertion of a nascent polypeptide into the translocation pore. In contrast, point mutations in L6 of Sec61p inhibit cotranslational translocation without significantly reducing the ribosome binding activity, indicating that the L6 and L8 sec61 mutants impact different steps in the cotranslational translocation pathway. Integral membrane proteins are cotranslationally inserted into the endoplasmic reticulum via the protein translocation channel, which mediates the translocation of lumenal domains, retention of cytosolic domains and integration of transmembrane spans into the phospholipid bilayer. We analyzed the in vivo kinetics of integration of model membrane proteins in Saccharomyces cerevisiae using ubiquitin translocation assay reporters. A signal anchor sequence from a type II membrane protein gates the translocon pore less rapidly than a cleavable signal sequence from a secretory protein. Transmembrane spans and lumenal domains are exposed to the cytosol during integration of a poly topic membrane protein. The conformational changes in the translocon that permit opening of the lumenal and lateral channel gates occur less rapidly than elongation of the nascent polypeptide. Cytosolic exposure of transmembrane spans and lumenal domains poses a challenge to the fidelity of membrane protein integration.
APA, Harvard, Vancouver, ISO, and other styles
8

Falke, Kristian. "Ein 3D-Modell des Ribosomen-gebundenen OST-Sec61-Translokons." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16595.

Full text
Abstract:
Gleich einem Etikett dient die N-Glykokosylierung vom Ribosom neu synthetisierter Proteine durch die Oligosaccharyltransferase (OST) bei der kotranslationalen Translokation in das Endoplasmatische Retikulum (ER) als Startpunkt vielschichtiger Prozessierungen. Bisher fehlte der strukturelle Nachweis, dass die OST als mit dem Ribosom assoziierten Membranprotein (RAMP) Bestandteil des auf dem proteinleitenden Kanal, dem Sec61-Komplex, basierenden Translokons ist. In dieser Arbeit berichten wir von der kryoelektronenmikroskopischen 3D-Struktur eines definierten OST-Sec61-Ribosom-Komplexes aus Saccharomyces cerevisiae bei 15,4 Å Auflösung. Dazu wurden die Komponenten (OST, Sec61 und Ribosomen mit naszierender Proteinkette) affinitätschromatographisch gereinigt und das Bindungsverhalten mit 80S-Ribosomen in vitro untersucht. Die OST band mit einer KD von 12,8 nM hochaffin und spezifisch an den bekannten Sec61-Ribosomen-Komplex. Dieser in vitro rekonstituierte trimere Komplex zeigte eine neuartige eng an das Ribosom anschließende Translokonstruktur mit zwei bisher unbekannten ribosomalen Verbindungen, einer einzigen dezentralen porenförmigen Vertiefung und zusätzlichen luminalen Bereichen. Durch das Docken eines Sec61-Homologs in einer alternativen Bindeposition sowie das Docken eines Stt3p-Homologs (der katalytischen Untereinheit der OST) und mit Hilfe der mittels (Kryo-)Negativkontrastierung gewonnenen 3D-Struktur der OST konnten Hybridmodelle erstellt werden. Daraus wurde unter Einbeziehung von bekannten molekularbiologisch gewonnenen Interaktionsdaten das 3D-Modell eines aktiven Ribosomen-gebundenen OST-Sec61-Translokons entwickelt.
Like a label, N-glycosylation by the oligosaccharyltransferase (OST) of newly synthesized proteins emerging from the ribosome while being cotranslationally translocated into the endoplasmic reticulum (ER) provides a starting point for a multitude of processes. Hitherto no structural proof has been presented, that the OST as a ribosome associated membrane protein (RAMP) is a constituent of the translocon, based at its core on the protein conducting channel (Sec61-complex). In this work we report on the 3D-structure of a defined OST-Sec61-ribosome complex from Saccharomyces cerevisiae by cryo-electron microscopy at 15.4 Å resolution. Thereto, the components (OST, Sec61, ribosome nascent chain complexes) have been purified by affinity chromatography and the binding of 80S-ribosomes has been checked in vitro. The OST bound with high affinity by a KD of 12.8 nM specifically to the established Sec61-ribosome complex. This trimeric complex reconstituted in vitro exhibits a new kind of tightly bound ribosomal translocon showing two hitherto unknown connections to the ribosome, a single off-center pore-like indentation and an additional luminal domain. By docking of a Sec61 homologue at an alternative binding position plus the docking of a Stt3p homologue (the catalytic subunit of the OST) and by means of the 3D-structure of the OST using the (cryo-)negative staining technique, hybrid models could be created. Consequently, integrating known interaction data from molecular biology experiments has been used to develop a 3D-model of an active ribosome-bound OST-Sec61-translocon.
APA, Harvard, Vancouver, ISO, and other styles
9

Brewer, Daniel Niron. "Elucidation of the Role of the Exocyst Subunit Sec6p in Exocytosis: A Dissertation." eScholarship@UMMS, 2009. https://escholarship.umassmed.edu/gsbs_diss/446.

Full text
Abstract:
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicles are targeted to sites of exocytosis on the plasma membrane in part by a conserved multi-subunit protein complex termed the exocyst. In addition to tethering vesicles to the plasma membrane, the exocyst complex and components therein may also add a layer of regulation by directly controlling assembly of the SNARE complex, which is required for membrane fusion, as well as other regulatory factors such as Sec1p. In the past, we have shown that Sec6p interacts with Sec9p in vivo and that that interaction retards binary SNARE complex formation in a SNARE assembly assay. Though many interactions have been mapped using in vitro methods, confirming them in vivoand placing them into the context of a complete model that accounts for all observed interactions (and lack of interactions) has proven difficult. In order to address these problems, I have studied the interactions between Sec6p and other factors involved in exocytosis at the plasma membrane via in vivo methods. My hypothesis was that Sec6p interaction with Sec9p and subsequent inhibition of SNARE complex assembly in vitro was an intermediate state and Sec6p was part of a set of cofactors that accelerated SNARE complex assembly in vivo. To test this hypothesis I showed that the interaction between the plasma membrane t-SNARE Sec9p and the yeast exocyst subunit Sec6p can be observed in vivoand designed point mutations to disrupt that interaction. Interestingly, I also showed that Sec6p:Sec9p interaction involves the free pool of Sec6p rather than the exocyst bound fraction of Sec6p. Point mutations in the N-terminal domain of Sec6p result in temperature sensitive growth and secretion defects, without loss of Sec6p-Sec9p interaction. However, at the non-permissive temperature, the exocyst subunits Sec5p, Sec10p and Sec15p are mislocalized and are absent from the exocyst complex. The resulting subcomplex, containing Sec3p, Sec8p, Exo70p and Exo84p, remains stably assembled and localized at sites of polarized secretion. This subcomplex is likely due to disruption of interaction between Sec6p and Sec5p, and may be similar to that observed at restrictive temperatures in the sec6-54temperature sensitive mutant. Additionally, one of the sec6 temperature sensitive mutants displays a loss of binding to the yeast regulatory protein Sec1p. In vitro binding studies indicate a direct interaction between Sec1p and the free pool of the wild-type Sec6p protein, suggesting close interplay between Sec6p and Sec1p in the regulation of SNARE complexes. A coherent model which incorporates all these interactions has continued to be elusive. However, the results I have found do suggest several hypotheses which should prove testable in the future.
APA, Harvard, Vancouver, ISO, and other styles
10

Dubuke, Michelle L. "The Exocyst Subunit Sec6 Interacts with Assembled Exocytic Snare Complexes: A Dissertation." eScholarship@UMMS, 2015. https://escholarship.umassmed.edu/gsbs_diss/868.

Full text
Abstract:
In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and to the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multi-subunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in other trafficking pathways. Contrary to these other pathways, our lab previously suggested that the exocyst subunit Sec6, a component of the exocytosis-specific tethering complex, inhibited Sec9:Sso1 SNARE complex assembly due to interactions in vitro with the SNARE protein Sec9 (Sivaram et al., 2005). My goal for this project was to test the hypothesis that Sec6 inhibited SNARE complex assembly in vivo. I therefore chose to generate Sec6:Sec9 loss-of-binding mutants, and study their effect both in vitro and in vivo. I identified a patch of residues on Sec9 that, when mutated, are sufficient to disrupt the novel Sec6-SNARE interaction. Additionally, I found that the previous inhibitory role for Sec6 in SNARE assembly was due to a data mis-interpretation; my re-interpretation of the data shows that Sec6 has a mild, if any, inhibitory effect on SNARE assembly. My results suggest a potential positive role for Sec6 in SNARE complex assembly, similar to the role observed for other tether-SNARE interactions.
APA, Harvard, Vancouver, ISO, and other styles
11

Dubuke, Michelle L. "The Exocyst Subunit Sec6 Interacts with Assembled Exocytic Snare Complexes: A Dissertation." eScholarship@UMMS, 2012. http://escholarship.umassmed.edu/gsbs_diss/868.

Full text
Abstract:
In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and to the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multi-subunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in other trafficking pathways. Contrary to these other pathways, our lab previously suggested that the exocyst subunit Sec6, a component of the exocytosis-specific tethering complex, inhibited Sec9:Sso1 SNARE complex assembly due to interactions in vitro with the SNARE protein Sec9 (Sivaram et al., 2005). My goal for this project was to test the hypothesis that Sec6 inhibited SNARE complex assembly in vivo. I therefore chose to generate Sec6:Sec9 loss-of-binding mutants, and study their effect both in vitro and in vivo. I identified a patch of residues on Sec9 that, when mutated, are sufficient to disrupt the novel Sec6-SNARE interaction. Additionally, I found that the previous inhibitory role for Sec6 in SNARE assembly was due to a data mis-interpretation; my re-interpretation of the data shows that Sec6 has a mild, if any, inhibitory effect on SNARE assembly. My results suggest a potential positive role for Sec6 in SNARE complex assembly, similar to the role observed for other tether-SNARE interactions.
APA, Harvard, Vancouver, ISO, and other styles
12

Furgason, Melonnie Lynn Marie. "VPS45p as a Model System for Elucidation of SEC1/MUNC18 Protein Function: A Dissertation." eScholarship@UMMS, 2008. https://escholarship.umassmed.edu/gsbs_diss/425.

Full text
Abstract:
Vesicular trafficking, the movement of vesicles between organelles and the plasma membrane for secretion, consists of multiple highly regulated processes. Many protein families function as specificity and regulatory determinants to ensure correct vesicle targeting and timing of trafficking events. The SNARE proteins dock and fuse vesicles to their target membranes. Sec1/Munc18 (SM) proteins regulate membrane fusion through interactions with the SNAREs—SM proteins have been shown to act as both inhibitors and stimulators of SNARE assembly and membrane fusion. However, the details of these SM protein functions are not understood. Constructing a model of SM protein function has been challenging due to the various modes of interactions reported between SM proteins and their SNAREs. SM proteins interact with their cognate SNAREs and SNARE complexes through several distinct modes. The most conserved mode is an interaction with the syntaxin N-peptide; other modes of binding, such as the syntaxin closed conformation, are hypothesized to be specific for specialized cell types. In order to elucidate the general function of SM proteins, I investigated the function of the endosomal SM protein Vps45p by analyzing its interactions with its cognate syntaxin Tlg2p and its role in SNARE assembly. I had two main hypotheses: that the Tlg2p N-peptide does not solely mediate the interaction between Vps45p and Tlg2p; and that Vps45p functions to stimulate SNARE complex assembly. I systematically mapped the interaction between Vps45p and Tlg2p using various Tlg2p truncations containing the different domains of Tlg2p and discovered a second binding site on Tlg2p that corresponds to the closed conformation. The neuronal SM-syntaxin pair interacts in a similar manner, indicating that this interaction mode is conserved. To characterize the closed conformation binding mode further, and determine its relationship to the N-peptide binding mode, I developed a quantitative fluorescent electrophoretic mobility shift assay. Results indicate that these two sites do not bind simultaneously and that the N-peptide binding modulates the closed conformation affinity. Furthermore, I monitored the effect of Vps45p on SNARE complex assembly using size exclusion chromatography. Under the conditions tested, Vps45p did not appear to stimulate SNARE complex assembly. The work presented here addresses several puzzling issues in the field and significantly contributes to the construction of a new mechanistic model for SM protein function. In this new model, the SM protein is recruited to the membrane by its interaction with the syntaxin N-peptide. The SM protein then binds the syntaxin closed conformation thus inhibiting SNARE complex assembly. Upon dissociation of the SM protein from the closed conformation, an event perhaps regulated by the SM protein, syntaxin opens and interacts with the other SNAREs to form a SNARE complex. Fusion ensues, stimulated by the SM protein.
APA, Harvard, Vancouver, ISO, and other styles
13

Finke, Kerstin [Verfasser], Siegfried [Gutachter] Prehn, Tom A. [Gutachter] Rapoport, and Wolfgang [Gutachter] Lockau. "Untersuchung paraloger SEC61-Gene und -Proteine in Eukaryoten / Kerstin Finke ; Gutachter: Siegfried Prehn, Tom A. Rapoport, Wolfgang Lockau." Berlin : Humboldt-Universität zu Berlin, 1999. http://d-nb.info/1206195150/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Martelli, Junior Hercilio. "Estudo da sintese proteica de Hsp47 e Sec61'alfa' durante a translação/ translocação de moleculas de colageno tipo I em fibroblastos de fibromatose gengival hereditaria." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/289625.

Full text
Abstract:
Orientador: Luciano Resende Ferreira
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-07-27T08:14:21Z (GMT). No. of bitstreams: 1 MartelliJunior_Hercilio_M.pdf: 3416342 bytes, checksum: 1e4781599e6c56d26cf0a8c2c2bb6f6e (MD5) Previous issue date: 2000
Resumo: Fibromatose Gengival Hereditária (FGH) representa uma condição oral incomum (1:750.000), caracterizada por um aumento gengival fibrótico generalizado. Manifesta-se como entidade clínica isolada ou como parte de síndromes, produzindo excessiva quantidade de colágeno e outras moléculas da matriz extra-celular. Hsp47 é uma chaperone residente no retículo endoplasmático (RE) que liga especificamente a moléculas de colágeno, enquanto Sec61 a representa uma proteína transmembrânica com ativa participação na condução de cadeias polipeptídicas nascentes para o lúmen do RE. Este trabalho descreve a participação das proteínas Hsp47 e Sec61? em culturas de fibroblastos provenientes de uma única família portadora de FGH e de pacientes com gengiva normal (GN) nos eventos de translação/translocação de colágeno tipo I. Ensaios de Western blot mostraram uma produção aumentada de Hsp47 em fibroblastos de FGH, comparado a fibroblastos de GN em condições de homeostasia e em situações de estresse térmico. Além disso, foi demonstrado produção de Sec61? nas linhagens celulares, FGH e GN, porém sem diferenças nos padrões de produção. A maior produção de Hsp47 pode estar envolvida na proteção da degradação intra reticular de colágeno, podendo ser um dos fatores responsáveis pela fibrose característica desta doença. Embora os mecanismos biológicos responsáveis pela FGH sejam ainda desconhecidos, o conhecimento da participação destas proteínas na regulação da biosíntese de colágeno pode ser importante para o entendimento de condições genéticas, como a FGH
Abstract: Study of the sinthesis of Hsp47 and Sec61??during the events of translacions/translocations of collagen type I in fibroblasts from hereditary gingival fibromatosis Hereditary Gingival Fibromatosis (HGF) represents an uncommon oral condition (l :750,000) characterized fibrous gingival enlargement. HGF can manifest as an isolated clinical entity or as part of a syndrome. The gingiva of patients with HGF produce excessive amount of collagen and other extracellular matrix. Hsp47 is an endoplasmic reticulun (ER) resident chaperone which binds specifically to collagen molecules, and Sec61? represents a transmembranous protein with active role in conducting of nascent polypeptide chain into the ER. This study describes the role of Hsp47 and Sec61? during the events of translationltranslocation of collagen type I in fibroblasts from patients with HGF and patients presenting normal gingiva (NG). Western blot assays demonstrated an increased production of Hsp47 in fibroblasts HGF as compared to NG cells under stress and unstressed conditions. In addition, Sec61? was evenly found in both cell types showing no marked variations in quantity in both stressed or unstressed situations. The more increased production of Hsp47 may related to a collagen degradation protective mechanism inside the ER. This can be one of the factors responsible for the fibrous features of HGF. Although the exact biological mechanisms involved in HGF are still unknown, the study of these ER proteins role in regulating collagen biosynthesis may be important for understanding hereditary conditions such as HGF
Mestrado
Mestre em Biologia e Patologia Buco-Dental
APA, Harvard, Vancouver, ISO, and other styles
15

Neuhof, Andrea. "Early steps in cotranslational translocation of proteins across the ER membrane." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2000. http://dx.doi.org/10.18452/14859.

Full text
Abstract:
Sekretorische Proteine und Proteine der Kompartimente des sekretorischen Transportweges müssen die Membran des Endoplasmatischen Retikulums überqueren, um an ihren Wirkungsort zu gelangen. In der vorliegenden Arbeit wurden frühe Schritte des kotranslationalen Transports von Proteinen durch die ER-Membran untersucht. Signalsequenzen leiten diese Proteine als ribosomengebundene Intermediate an die ER-Membran. Die Ribosomen binden dort an den Sec61p-Komplex, der als Ribosomenrezeptor wirkt und gleichzeitig den proteinleitenden Kanal in der Membran bildet. Die Assoziation von Ribosomen mit dem Sec61p-Komplex verläuft in zwei Phasen. Die initiale Bindung ist sensitiv gegenüber hohen Salzkonzentrationen. Die Ribosomenbindung wird salzresistent, wenn die naszierende Kette in den Kanal inseriert und der Sec61p-Komplex die Signalsequenz erkennt. Sowohl Ribosomen ohne naszierende Kette als auch Ribosomen, die Proteine ohne Signalsequenzen synthetisieren, sind nur zur initialen salz-sensitiven Bindung an den Sec61p-Komplex fähig. Signalsequenzen interagieren im Cytosol mit SRP (engl.: Signal Recognition Particle). In dieser Arbeit wurde gezeigt, daß Signalsequenzen außerdem von Calmodulin gebunden werden. SRP und Calmodulin scheinen für die Interaktion mit Signalsequenzen einen ähnlichen Mechanismus zu benutzen, der wiederum mit der Signalsequenzerkennung durch den Sec61p-Komplex verwandt ist. Alle Ribosomen, unabhängig davon ob und welches Protein sie translatieren, können mit dem Sec61p-Komplex interagieren und daher um Bindungsplätze an der ER-Membran kompetitieren. Wenn SRP an die Signalsequenz einer naszierenden Kette gebunden ist, erhalten diese Ribosomen jedoch einen Vorteil in der Kompetition. Nur sie können Ribosomen ohne naszierende Kette oder Ribosomen, die ein cytosolisches Protein translatieren, vom Sec61p-Komplex verdrängen und sich selbst dann einen Translokationsort sichern, wenn alle Bindingsplätze an der Membran besetzt sind. In der vorliegenden Arbeit wurden dreidimensionale Strukturen von Komplexen aus Ribosom und proteinleitendem Translokationskanal vorgestellt, die der ersten und zweiten Phase der Ribosomenbindung entsprechen. Überraschenderweise unterscheiden sich diese beiden Stadien strukturell nicht. In beiden Fällen existieren definierte Verbindungen zwischen Ribosom und Kanal, die eine Lücke von etwa 20 Angström zwischen dem Ribosom und der Membranoberfläche überbrücken. Die Lücke stellt eine Verbindung zum Cytosol her, die eventuell dazu dient, naszierende Ketten ins Cytosol zu entlassen, wenn diese nicht ins Lumen des ER transportiert werden sollen. Weiterhin zeigen wir, daß der Kanal in nativen Membranen größer ist als der Kanal, der nur aus gereinigtem Sec61p-Komplex besteht. Dieser größere Kanal besitzt eine zusätzliche lumenale Domäne, die von der Oligosaccharyltransferase oder vom TRAP-Komplex gebildet wird.
The first step in the secretory pathway is the translocation of proteins across the membrane of the endoplasmic reticulum (ER). In this thesis project, early stages of cotranslational protein translocation in mammalian cells were studied. Proteins following the secretory pathway are targeted to the ER as ribosome-nascent chain complexes by their N-terminal hydrophobic signal sequences. The nascent chain is translocated across the ER membrane through a hydrophilic channel formed by the Sec61p complex, which also functions as the ribosome receptor. The initial binding of ribosomes to the ER membrane is salt-sensitive. After insertion of the nascent chain into the translocation channel and signal sequence recognition by the Sec61p complex, the ribosome is bound in a salt-resistant manner. The membrane binding of ribosomes lacking nascent chains and of ribosomes carrying nascent chains without signal sequences is always salt-sensitive. It is known that in the cytosol, the signal sequence binds to the signal recognition particle (SRP). Here we show that another cytosolic factor, the small regulatory protein calmodulin, can interact with signal sequences. Our data suggest that both SRP and calmodulin use a similar mechanism for substrate binding and recognition. In fact, this mechanism may be related to signal sequence recognition by the Sec61p complex. Previously the question has been raised of how efficient targeting of ribosome-nascent chain complexes (RNCs) carrying a signal sequence is possible when all ribosomes, regardless of the presence or nature of a nascent chain, can bind to the Sec61p complex. We demonstrate that all ribosomes compete for common binding sites at the ER membrane and that SRP functions as a positive effector to give RNCs carrying a signal sequence an advantage over other ribosomes. RNCs with a signal sequence and bound SRP can displace ribosomes without a nascent chain and ribosomes synthesizing cytosolic proteins from the membrane and can therefore secure a translocation site even when all ribosome binding sites at the ER membrane are occupied. A structural analysis by single particle cryo electron microscopy revealed that ribosome-translocation channel complexes do not differ in the salt-sensitive or the salt-resistant stage of ribosome binding to the ER membrane. Furthermore our data show that the ribosome is linked to the translocation channel by a discrete number of connections. Even in the presence of a translocating nascent chain the ribosome-membrane junction is not completely sealed towards the cytosol. Instead, a sizable gap exists between the ribosome and the surface of the membrane that may allow nascent polypeptide chains to enter the cytosol when their translocation across the ER membrane is prevented. We also show that translocation channels derived from native microsomes are larger than channels derived from purified Sec61p complex. These larger channels contain a wider central pore and an additional lumenal domain, which is formed by the oligosaccharyl transferase or by the TRAP complex.
APA, Harvard, Vancouver, ISO, and other styles
16

Theis, Melanie [Verfasser], and Richard [Akademischer Betreuer] Zimmermann. "Untersuchungen des humanen Sec62-Proteins beim Proteintransport in das endoplasmatische Retikulum / Melanie Theis. Betreuer: Richard Zimmermann." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1053982720/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Xiang. "Molecular dissection of the Sec62/63p complex, a member of protein translocation machinery of the endoplasmic reticulum membrane /." Karlsruhe : Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, 2005. http://bibliothek.fzk.de/zb/berichte/FZKA7163.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Xian. "Molecular dissection of the Sec62/63p complex, a member of protein translocation machinery of the endoplasmic reticulum membrane." Karlsruhe : FZKA, 2005. http://bibliothek.fzk.de/zb/berichte/FZKA7163.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Carpp, Lindsay Nicole. "The role of the yeast Sec1/Munc18 protein, Vps45p, in the assembly of its cognate snare complex." Thesis, University of Glasgow, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gonsberg, Anika [Verfasser], Jörg [Gutachter] Tatzelt, and Christian [Gutachter] Herrmann. "Der Einfluss der Sekundärstruktur sekretorischer Proteine auf Sec61/Y-mediierten Proteintransport / Anika Gonsberg ; Gutachter: Jörg Tatzelt, Christian Herrmann ; Fakultät für Chemie und Biochemie." Bochum : Ruhr-Universität Bochum, 2018. http://d-nb.info/1152077929/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Elia, Francesco [Verfasser], and Karin [Akademischer Betreuer] Römisch. "The N-terminus of Sec61p plays key roles in ER protein import and ERAD / Francesco Elia ; Betreuer: Karin Römisch." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2017. http://d-nb.info/1140760726/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Xian [Verfasser]. "Molecular dissection of the Sec62/63p complex, a member of protein translocation machinery of the endoplasmic reticulum membrane / Forschungszentrum Karlsruhe GmbH, Karlsruhe. Xian Wang." Karlsruhe : FZKA, 2005. http://d-nb.info/977282295/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Plath, Kathrin. "Zum Mechanismus der Translokation von Proteinen in das Endoplasmatische Retikulum der Hefe." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 1999. http://dx.doi.org/10.18452/14445.

Full text
Abstract:
In der Hefe Saccharomyces cerevisiae können Proteine entweder co- oder posttranslational durch die Membran des Endoplasmatischen Retikulum transportiert werden. Sie besitzen eine Signalsequenz, die sie zu einem hydrophilen Kanal in der Membran bringt, durch den der Transport erfolgt. Die zentrale Komponente des Translokationsapparates in der Membran ist der aus den Untereinheiten Sec61p, Sbh1p und Sss1p bestehende Sec61p-Komplex. Beim Proteintransport wirkt der Sec61p-Komplex zusammen mit anderen Faktoren: Im cotranslationalen Transport geht er eine feste Bindung mit Ribosomen ein; der posttranslationale Transport erfordert die Assoziation mit dem tetrameren Sec62/63p-Komplex unter Bildung des sogenannten Sec-Komplexes. In der vorliegenden Arbeit wurde die Struktur des Sec61p-Komplexes durch Elektronenmikroskopie analysiert. Er liegt in Detergenzlösung in ringförmigen Strukturen mit einem Durchmesser von ~82Å und einer zentralen Pore von ~21Å vor. Jeder Ring besteht aus drei oder vier heterotrimeren Sec61p-Komplexen. Die oligomeren Ringstrukturen des Sec61p-Komplexes entsprechen vermutlich proteinleitenden Kanälen der Membran des Endoplasmatischen Retikulum. In Membranen wird ihre Bildung durch die Bindung von Ribosomen oder die Interaktion mit dem Sec62/63p-Komplex induziert. Eine dreidimensionale Struktur, die durch Kryo-Elektronenmikroskopie erhalten wurde, zeigt, daß das Ribosom so an den Sec61p-Komplex bindet, daß der Tunnel im Ribosom, durch den die naszierende Polypeptidkette das Ribosom verläßt, genau in die zentrale Pore des Sec61p-Oligomers mündet. Es existiert also ein kontinuierlicher Kanal, der sich vom Peptidyltransferase-Zentrum im Ribosom durch die zentrale Pore des Sec61p-Oligomers erstreckt, durch den naszierende Polypeptidketten cotranslational direkt in das Lumen des Endoplasmatischen Retikulum transportiert werden könnten. In dieser Arbeit wurde ein dem Sec61p-Komplex verwandter heterotrimerer Komplex in der Membran des Endoplasmatischen Retikulum identifiziert, der aus den Untereinheiten Ssh1p, Sbh2p und Sss1p besteht. Sss1p ist beiden trimeren Komplexen gemein; Ssh1p und Sbh2p sind homolog zu Sec61p bzw. Sbh1p. Durch Deletion von Ssh1p und Sbh2p wurde gezeigt, daß der Ssh1p-Komplex wie der Sec61p-Komplex am Transport von Proteinen in das Endoplasmatische Retikulum beteiligt ist. Der Ssh1p-Komplex ist mit membrangebundenen Ribosomen assoziiert und bildet in Detergenzlösung oligomere Ringstrukturen, aber interagiert nicht mit dem Sec62/63p-Komplex. Wir postulieren daher, daß der Ssh1p-Komplex ausschließlich den cotranslationalen Transport von Proteinen vermittelt. Beim posttranslationalen Transport interagiert das vollständig synthetisierte Modellsubstrat Prepro-Alphafaktor mit vielen cytosolischen Proteinen. Die cytosolischen Chaperone Hsp70 und TRiC konnten als Interaktionspartner identifiziert werden. Bei der Bindung des Prepro-Alphafaktors an die Membran werden die cytosolischen Proteine freigesetzt. Wir verwendeten einen Photoquervernetzungsansatz, um zu untersuchen, wie die Signalsequenz des Prepro-Alphafaktors im Bindungsschritt durch den Sec-Komplex erkannt wird. Die Signalsequenz-bindungsstelle wird hauptsächlich von Sec61p gebildet und befindet sich an der Grenzfläche zur Lipiddoppelschicht. Die gebundene Signalsequenz ist in einer helikalen Struktur fixiert und wird auf gegenüberliegenden Seiten von den Transmembrandomänen 2 und 7 des Sec61p umgeben. Sec62p und Sec71p, zwei Untereinheiten des Sec62/63p-Komplexes, flankieren gemeinsam eine Seite der Signalsequenzhelix, befinden sich aber in größerer Entfernung zur Signalsequenz als Sec61p. Es wird ein Modell vorgeschlagen, das beschreibt, wie die Bindung der Signalsequenz den Translokationskanal für den Transport öffnen könnte.
Protein transport across the membrane of the endoplasmic reticulum occurs either co- or posttranslationally in the yeast Saccharomyces cerevisiae. In both cases, polypeptides are directed to a translocation apparatus in the membrane by virtue of their signal sequences and then transported across the lipid bilayer through a protein-conducting channel. The major component of the protein translocation apparatus in the membrane is the heterotrimeric Sec61p complex consisting of the subunits Sec61p, Sbh1p and Sss1p. During translocation the Sec61p complex associates with other factors: In the cotranslational mode it interacts with ribosomes, whereas in the posttranslational mode it associates with the tetrameric Sec63/62p complex to form the so-called Sec complex. Here, we have analyzed the structure of the Sec61p complex by electron microscopy. In detergent this complex forms ring-like structures with a diameter of about 82Å and a central pore of about 21Å. Each ring contains 3 or 4 heterotrimeric Sec61p complexes. In membranes the formation of ring structures of the Sec61p complex is induced by its association with ribosomes or the Sec62/63p complex. We propose that the ring-like Sec61p oligomers represent protein-conducting channels of the endoplasmic reticulum membrane. A 3-dimensional structure of the ribosome-Sec61p complex obtained by electron-cryo-microscopy and single particle reconstruction showed, that the central pore of the Sec61p oligomer aligns precisely with the exit of a tunnel traversing the large ribosomal subunit that forms the passageway for the nascent chain. Thus, in cotranslational translocation a continuous channel extending from the ribosome through the Sec61p oligomer could guide the nascent chain directly into the lumen of the endoplasmic reticulum. Furthermore, we have discovered a trimeric protein complex in the yeast endoplasmic reticulum membrane that is structurally related to the Sec61p complex. This so-called Ssh1p complex consists of Ssh1p, a distant relative of Sec61p, of Sbh2p, a homolog of the Sbh1p subunit of the Sec61p complex, and of Sss1p, a component common to both trimeric complexes. In contrast to Sec61p, Ssh1p is not essential for cell viability, but it is required for normal growth rates. Sbh1p and Sbh2p individually are also not essential for cell viability, but cells lacking both proteins are impaired in their growth at elevated temperature and accumulate precursors of secretory proteins in the cytosol. Like the Sec61p complex, the Ssh1p complex forms ring-like structures in detergent and interacts with membrane-bound ribosomes, but it does not associate with the Sec62/63p complex. We therefore postulate that the Ssh1p complex functions exclusively in the cotranslational pathway of protein translocation. In the posttranslational transport process the newly synthesized translocation substrate prepro-a-factor associates with a large number of cytosolic proteins including the chaperones Hsp70 and TRiC. Upon binding of prepro-a-factor to the Sec complex all cytosolic proteins are released. Using a photo-crosslinking approach and a unique mapping technique we have investigated, how the signal sequence of prepro-a-factor is recognized by the Sec complex during the binding step. The signal sequence contacts primarily the multispanning membrane protein Sec61p. The bound signal sequence adopts a helical structure that interacts on opposite sides with transmembrane domains 2 and 7 of Sec61p, respectively. Sec62p and Sec71p, two subunits of the Sec62/63p complex, contact one side of the signal sequence, but are further away than Sec61p. Our data show, that the signal sequence binding site is located at the interface of the protein channel and the lipid bilayer. We suggest that binding of the signal sequence could open the channel for polypeptide transport.
APA, Harvard, Vancouver, ISO, and other styles
24

Klemmer, Birgit [Verfasser], and Gerhard [Akademischer Betreuer] Unteregger. "Untersuchungen zur pathophysiologischen Funktion des Sec62-Proteins bei der Entwicklung von bösartigen Tumoren des Menschen und seiner Bedeutung als Tumor- und Prognosemarker / Birgit Klemmer. Betreuer: Gerhard Unteregger." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2013. http://d-nb.info/105278187X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kelkar, Anshuman [Verfasser]. "Functional analysis of Sec61β [Sec-61-beta], a component of the Sec61 protein translocation channel at the endoplasmic reticulum / presented by Anshuman Kelkar." 2005. http://d-nb.info/974969249/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hashizume, Kristina Kaori. "Probing the universal role of Sec1/Munc18 proteins by mutagenesis of yeast Sec1." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Finke, Kerstin [Verfasser]. "Untersuchung paraloger SEC61-Gene und -Proteine in Eukaryoten / von Kerstin Finke (geb. Voss)." 1999. http://d-nb.info/958209375/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Scott, Brenton L. "Regulation of SNARE-mediated membrane fusion by Sec1/Munc18 (SM) proteins." Thesis, 2005. http://hdl.handle.net/1911/18813.

Full text
Abstract:
The intricate temporal and spatial regulation of membrane fusion is critical for all living organisms. Fusion of two opposing membranes occurs in a wide range of processes. These include intracellular transportation, cell-to-cell fusion and viral fusion. In all known cases, the SNARE proteins (Soluble NSF attachment protein receptors) (Sollner et al., 1993; Whiteheart et al., 1993) have been shown to be required for vesicular membrane fusion within cells and sufficient to drive membrane fusion in vitro (Nickel et al., 1999; Parlati et al., 1999; Weber et al., 1998). While SNAREs combine in specific combinations to drive highly specific membrane fusion, it is clear that SNARE proteins do not act independently to regulate the entire fusion process. Many regulatory proteins from different families have been identified that interact with individual SNARE proteins and SNARE complexes, yet the precise role of many of these remains unclear. One such group of regulatory proteins is the Sec1/Munc18 (SM) family. Sec1 proteins are likely to be critical players in membrane trafficking. My work has focused on the role of the yeast Sec1p in post-Golgi secretion in Saccharomyces cerevisiae. To analyze Sec1p function in vitro, I have utilized a well-characterized SNARE-mediated membrane fusion assay. For this application, conditions were optimized to allow for specific protein-protein interactions to be tested. Conditions for expression and purification of the previously elusive recombinant Sec1p are documented. In addition, an overexpressing Sec1p yeast strain was generated. Sec1p interactions with SNARE proteins that mediate post-Golgi secretion were then tested. I found that recombinant Sec1p binds strongly to the t-SNARE complex (Sso1p;Sec9c) as well as to the fully assembled ternary-SNARE complex (Sso1p;Sec9c/Snc2p), and also weakly to free Sso1p. I tested the ability of Sec1p to regulate fusion in the fusion assay. Concentration dependent stimulation of membrane fusion is observed when Sec1p is associated with the SNARE proteins. The binding and fusion data strongly argue that Sec1p directly stimulates SNARE-mediated membrane fusion. With this new information, specific binding modes of neuronal-Sec1 are currently being investigated further in yeast, Drosophila and mammalian SNARE systems.
APA, Harvard, Vancouver, ISO, and other styles
29

Burkhardt, Pawel. "Vergleichende Untersuchungen zur Regulation der SNARE-Komplexbildung durch Sec1/Munc18-Proteine." Doctoral thesis, 2009. http://hdl.handle.net/11858/00-1735-0000-0006-B671-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rivera, Monroy Jhon Erick. "Role of WRB protein in cardiac function." Thesis, 2017. http://hdl.handle.net/11858/00-1735-0000-0023-3EE2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Burkhardt, Pawel [Verfasser]. "Vergleichende Untersuchungen zur Regulation der SNARE-Komplexbildung durch Sec1-, Munc18-Proteine / vorgelegt von Pawel Burkhardt." 2009. http://d-nb.info/1004994524/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Iraheta, Raul Emilio. "Sec1p/Munc18 (SM) proteins and their role in regulating secretion in Saccharomyces cerevisiae and Caenorhabditis elegans a comparative approach." Doctoral thesis, 2012. http://hdl.handle.net/11858/00-1735-0000-000D-F0CC-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Maršíková, Jana. "Úloha Hac1p při morfogenezi kvasinkových kolonií." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-323653.

Full text
Abstract:
On solid surfaces wild strains of Saccharomyces cerevisiae form biofilm-like, structured colonies enabling them to survive long-term in hostile environments in the wild. However, the molecular mechanisms underlying the spatio-temporal development of colonies and their resistance to hostile conditions are still largely unknown. In this study, we analyzed the effect of the HAC1 gene on the colony morphology of wild strains of S. cerevisiae. The transcription factor Hac1p activates the unfolded protein response (UPR), which leads to activation of the expression of genes encoding components of the protein secretory pathway, and genes involved in stress responses in the endoplasmic reticulum (ER). The impact of HAC1 deletion is significant even under non-stress conditions and causes a radical reduction of structured colony architecture in hac1∆ strains derived from two wild S. cerevisiae strains (PORT and BR-F-Flo11p-GFP) and one laboratory ΣSh strain forming semi-fluffy or fluffy colonies. The hac1∆ strains exhibit a decreased vegetative growth rate, reduced cell attachment to the agar and an ineffective cell-cell adhesion resulting in decreased flocculation. The hac1∆ strains derived from BR-F-Flo11p-GFP contain a low level of Flo11p surface adhesin which is considered very important for the proper...
APA, Harvard, Vancouver, ISO, and other styles
34

"Estudo da sintese proteica de Hsp47 e Sec61'alfa' durante a translação/ translocação de moleculas de colageno tipo I em fibroblastos de fibromatose gengival hereditaria." Tese, Biblioteca Digital da Unicamp, 2000. http://libdigi.unicamp.br/document/?code=vtls000214680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography