Academic literature on the topic 'Second degree equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Second degree equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Second degree equation"
Kesavan, S. "On the general equation of the second degree." Resonance 20, no. 7 (July 2015): 643–62. http://dx.doi.org/10.1007/s12045-015-0222-3.
Full textOskolkov, K. "Schrödinger equation and oscillatory Hilbert transforms of second degree." Journal of Fourier Analysis and Applications 4, no. 3 (May 1998): 341–56. http://dx.doi.org/10.1007/bf02476032.
Full textBerezkina, N. S., I. P. Martynov, and V. A. Pron’ko. "Classes of Painlevé type second-order differential equation of the second degree." Differential Equations 36, no. 1 (January 2000): 39–46. http://dx.doi.org/10.1007/bf02754161.
Full texthadj ali, B. Ben, and M. Mejri. "Algebraic equation and symmetric second degree forms of class two." Integral Transforms and Special Functions 28, no. 9 (July 5, 2017): 682–701. http://dx.doi.org/10.1080/10652469.2017.1345903.
Full textRoitenberg, V. Sh. "ON POLYNOMIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER ON A CIRCLE WITHOUT SINGULAR POINTS." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 12, no. 4 (2020): 33–40. http://dx.doi.org/10.14529/mmph200404.
Full textGuan‐quan, Zhang, Zhang Shu‐lun, Wang Ying‐xiang, and Liu Chau‐ying. "A new algorithm for finite‐difference migration of steep dips." GEOPHYSICS 53, no. 2 (February 1988): 167–75. http://dx.doi.org/10.1190/1.1442451.
Full textZhao, Mi, Huifang Li, Shengtao Cao, and Xiuli Du. "An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems." Engineering Computations 36, no. 1 (December 19, 2018): 161–77. http://dx.doi.org/10.1108/ec-07-2018-0312.
Full textKebede, Tesfaye. "Second Degree Refinement Jacobi Iteration Method for Solving System of Linear Equation." International Journal of Computing Science and Applied Mathematics 3, no. 1 (March 1, 2017): 5. http://dx.doi.org/10.12962/j24775401.v3i1.2114.
Full textHalburd, R. G. "Elementary exact calculations of degree growth and entropy for discrete equations." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2201 (May 2017): 20160831. http://dx.doi.org/10.1098/rspa.2016.0831.
Full textHe, Tieshan, Yimin Lu, Youfa Lei, and Fengjian Yang. "Nontrivial Periodic Solutions for Nonlinear Second-Order Difference Equations." Discrete Dynamics in Nature and Society 2011 (2011): 1–14. http://dx.doi.org/10.1155/2011/153082.
Full textDissertations / Theses on the topic "Second degree equation"
Silva, Fabiano Luiz da. "As diferentes estratÃgias de resoluÃÃo das equaÃÃes algÃbricas atà o terceiro grau." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15501.
Full textThe aim of this paper is to present explanations and solving strategies of algebraic equations of the first, second and third degrees, since the relative teaching on the resolutions of these equations has been restricted practically the presentation of solving formula and the relationships between its coefficients and its roots. In this way we try to demonstrate and even justify all forms presented to solve equations to the third degree by purely algebraic or geometric methods, but also exemplify all methods that were displayed in order to meet the expectations of readers, so the text was produced in simple language, accessible to teachers and students. In this context, it is expected that this work proposal stimulate the mathematics teachers of Basic Education to perform this differentiated approach to algebraic equations in question, since it is believed that with this approach occur positive reflexes in the teaching and learning of equations and of Mathematics.
Kuroiwa, Elisabete Tiyoko Nishimura [UNESP]. "Uma abordagem peculiar da equação do segundo grau no ensino fundamental e médio." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/145534.
Full textRejected by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: No campo “Versão a ser disponibilizada online imediatamente” foi informado que seria disponibilizado o texto completo porém no campo “Data para a disponibilização do texto completo” foi informado que o texto completo deverá ser disponibilizado apenas 24 meses após a defesa. Caso opte pela disponibilização do texto completo apenas 24 meses após a defesa selecione no campo “Versão a ser disponibilizada online imediatamente” a opção “Texto parcial”. Esta opção é utilizada caso você tenha planos de publicar seu trabalho em periódicos científicos ou em formato de livro, por exemplo e fará com que apenas as páginas pré-textuais, introdução, considerações e referências sejam disponibilizadas. Se optar por disponibilizar o texto completo de seu trabalho imediatamente selecione no campo “Data para a disponibilização do texto completo” a opção “Não se aplica (texto completo)”. Isso fará com que seu trabalho seja disponibilizado na íntegra no Repositório Institucional UNESP. Por favor, corrija esta informação realizando uma nova submissão. Agradecemos a compreensão. on 2016-12-09T12:07:02Z (GMT)
Submitted by ELISABETE TIYOKO NISHIMURA KUROIWA null (elisabetekuroiwa@gmail.com) on 2016-12-09T13:30:59Z No. of bitstreams: 1 Etnk final-0612.pdf: 5570112 bytes, checksum: c516d7327410c5df3ee89056060e3cde (MD5)
Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-12-12T13:11:45Z (GMT) No. of bitstreams: 1 kuroiwa_etn_me_prud.pdf: 5570112 bytes, checksum: c516d7327410c5df3ee89056060e3cde (MD5)
Made available in DSpace on 2016-12-12T13:11:45Z (GMT). No. of bitstreams: 1 kuroiwa_etn_me_prud.pdf: 5570112 bytes, checksum: c516d7327410c5df3ee89056060e3cde (MD5) Previous issue date: 2016-11-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Há cerca de 2000 a.C, com o desenvolvimento do conhecimento matemático, a equação do 2º grau tem mostrado sua aplicabilidade principalmente em problemas de medidas, áreas e repartição de herança, pois, o Alcorão prescrevia uma divisão de herança de acordo com a idade. Além das circunstancias descritas acima, há uma infinidade de situações problema que envolve a resolução de uma equação deste tipo. Ao longo de minha jornada como docente, observei as dificuldades encontradas pelos discentes, que não conseguem aplicá-las e resolvê-las. Procuramos uma abordagem diferenciada para priorizar a aprendizagem, sanar suas dificuldades e efetivar a resolução. Assim, o objetivo deste trabalho consiste no auxílio aos professores na importante tarefa de ensinar, esclarecer, fundamentar e sedimentar os conceitos e as resoluções da equação do 2º grau, promovendo aprendizagem efetiva, com maior interação e cumplicidade ajudando-os em seus questionamentos, providenciando a retomada e a aquisição de saberes com suas intervenções propícias e auxiliando-os a encontrar as respostas às suas indagações. Para isto utilizamos a Metodologia de Resolução de Problemas, como ferramenta viável para a demonstração da fórmula de Bháskara, proporcionando uma motivação em sua construção, possibilitando ao aluno, maior envolvimento, participação e interação com manejo de material concreto. Essa metodologia proporciona maior interação entre o professor e os alunos auxiliando-os e estimulando-os com questionamento e intervenções convenientes. Iniciamos com uma abordagem histórica em ordem cronológica, de acordo com os conhecimentos desenvolvidos, bem como sua contextualização teórica, envolvendo inclusive os diversos métodos de resolução, através dos tempos, bem como seus exemplos. Apresentamos uma aplicação em sala de aula, com levantamento diagnóstico para verificar os conhecimentos dos estudantes, aplicabilidade e resoluções desta equação, sendo posteriormente feita uma reavaliação para verificar o nível de aprendizado, mostrando de maneira geral o método e a metodologia proposta.
There are about 2000 B.C with the development of mathematical knowledge, the 2nd degree equation has shown its applicability especially in problems of measures, areas and division of inheritance, as the Qur'an prescribed a division of inheritance according to age. In addition to the circumstances described above, there are plenty of situations that involve problem solving an equation of this kind. Along my journey as a teacher, I noted the difficulties encountered by students who can not apply them and solve them. We seek a differentiated approach to prioritize learning, solve their problems and carry out the resolution. The objective of this work is to assist teachers in the important task of teaching, clarify, justify and consolidate the concepts and resolutions of the 2nd degree equation, promoting effective learning, with greater interaction and complicity helping them in their inquiries, arranging the recovery and the acquisition of knowledge with its favorable interventions and helping them find answers to their questions. For this we use the Troubleshooting Methodology as a viable tool for demonstrating the formula Bháskara, providing a motivation in their construction, allowing the student to greater involvement, participation and interaction with management of concrete material. This methodology provides greater interaction between teacher and students helping them and encouraging them to questioning and appropriate interventions. We begin with a historical approach in chronological order, according to the developed knowledge and its theoretical context, including the various methods of resolution, through the ages, as well as their examples. We present an application in the classroom, with diagnosis survey to check students' knowledge, applicability and resolutions of this equation, a reassessment later being done to check the level of learning, showing generally the method and the proposed methodology.
3107510001F5
Kuroiwa, Elisabete Tiyoko Nishimura. "Uma abordagem peculiar da equação do segundo grau no ensino fundamental e médio /." São José do Rio Preto, 2016. http://hdl.handle.net/11449/145534.
Full textResumo: Há cerca de 2000 a.C, com o desenvolvimento do conhecimento matemático, a equação do 2º grau tem mostrado sua aplicabilidade principalmente em problemas de medidas, áreas e repartição de herança, pois, o Alcorão prescrevia uma divisão de herança de acordo com a idade. Além das circunstancias descritas acima, há uma infinidade de situações problema que envolve a resolução de uma equação deste tipo. Ao longo de minha jornada como docente, observei as dificuldades encontradas pelos discentes, que não conseguem aplicá-las e resolvê-las. Procuramos uma abordagem diferenciada para priorizar a aprendizagem, sanar suas dificuldades e efetivar a resolução. Assim, o objetivo deste trabalho consiste no auxílio aos professores na importante tarefa de ensinar, esclarecer, fundamentar e sedimentar os conceitos e as resoluções da equação do 2º grau, promovendo aprendizagem efetiva, com maior interação e cumplicidade ajudando-os em seus questionamentos, providenciando a retomada e a aquisição de saberes com suas intervenções propícias e auxiliando-os a encontrar as respostas às suas indagações. Para isto utilizamos a Metodologia de Resolução de Problemas, como ferramenta viável para a demonstração da fórmula de Bháskara, proporcionando uma motivação em sua construção, possibilitando ao aluno, maior envolvimento, participação e interação com manejo de material concreto. Essa metodologia proporciona maior interação entre o professor e os alunos auxiliando-os e estimulando-os com questionamento... (Resumo completo, clicar acesso eletrônico abaixo)
Mestre
Fernandes, Marcos Vinicius Ferreira. "Métodos históricos utilizados para a resolução de uma equação do segundo grau." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/4468.
Full textIn this work we attempt to answer the question: Can the methods that great mathematicians have used for almost 4 thousand years of history be helpful in the learning process? With a few years of experience in 2nd degree equations, we realize that as soon as the students learn the popular and well-known Bháskara formula (continue...).
Neste trabalho procuramos responder ao questionamento: Os métodos que grandes Matemáticos usaram no decorrer de quase 4 mil anos de história podem auxiliar no aprendizado? Com alguns anos de experiência no ensino de equações do 2º grau, percebemos que assim que os alunos aprendem a popularmente conhecida fórmula de Bháskara, , qualquer outro esforço no sentido de justificar ou discutir uma equação da forma , é feito em vão (continua...).
Oliveira, Josà Adriano dos Santos. "Sobre seÃÃes cÃnicas." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14712.
Full textO estudo realizado nesta dissertaÃÃo, busca apresentar as seccÃes cÃnicas, dando Ãnfase a uma abordagem por meio de uma geometria sintÃtica e elementar, onde o trabalho à desenvolvido da seguinte forma: inicia-se com uma abordagem histÃrica, assim como a sua relaÃÃo com o cone circular; em seguida, à feito um estudo sintÃtico sobre as cÃnicas, exclusivamente, no plano; apresenta-se algumas superfÃcies quÃdricas; a equaÃÃo geral do segundo grau à apresentada como uma representaÃÃo algÃbrica de uma cÃnica e sÃo mostradas diversas situaÃÃes, onde as cÃnicas surgem de forma, curiosamente, natural, alÃm das inÃmeras aplicaÃÃes prÃticas em diversas Ãreas do conhecimento.
The study in this dissertation, seeks to present the conic sections, emphasizing an approach by means of a synthetic and elementary geometry, where the work is carried out as follows: begins with a historical approach, as well as their relationship with the circular cone; then itâs done a synthetic study on the conical exclusively on the plan; It presents some quadric surfaces; the general equation of the second degree is presented as an algebraic representation of a conic and are shown several situations where the conical arise so, curiously, natural, in addition to numerous practical applications in various fields of knowledge.
Santos, Leonardo Silva. "Uma abordagem histórica e metodológica dos métodos de resolução de equação do 2º grau desenvolvidos por Al-Khwarizmi." Universidade Estadual da Paraíba, 2017. http://tede.bc.uepb.edu.br/jspui/handle/tede/2978.
Full textApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2018-04-10T15:10:34Z (GMT) No. of bitstreams: 1 PDF - Leonardo Silva Santos.pdf: 45329037 bytes, checksum: c76adf0a7ddebac7a4d99073c6981919 (MD5)
Made available in DSpace on 2018-04-10T15:10:34Z (GMT). No. of bitstreams: 1 PDF - Leonardo Silva Santos.pdf: 45329037 bytes, checksum: c76adf0a7ddebac7a4d99073c6981919 (MD5) Previous issue date: 2017-03-09
Faced with all problems related to the teaching and learning of Algebra, this work proposes the elaboration and application of a methodological didactic alternative that seeks to give meaning to the teaching and learning process of the methods of resolution of equations of the second degree. Thus, the present work presents the results of the application in a class of 9th year of elementary school of a sequence of activities mediated by the History of Mathematics, which approaches the methods of solving the equation of the second degree developed by Al - Khwarizmi . In order to do so, we sought to investigate the effects of the applied activities, so that the students perceived the construction of the methods while interacting wit h the activities, making the study of this topic more significant. As a methodological approach was used the qualitative research, being characterized as an action type research, with interventions in the classroom. The instruments used for data collection were: questionnaire, sequence of activities in light of the History of Mathematics, observation, logbook, final evaluation and interview. The analysis of the results confirm the objectives of the study, indicating that a methodology based on the development of teaching activities supported in constructivism and mediated by the History of Mathematics provides meaningful learning for the student, since most of the students performed and obtained good results in the applied activities.
Diante de toda problemática relativa ao ensino e aprendizagem da Álgebra, este trabalho propõe a elaboração e aplicação de uma alternativa didática metodológica que busca dar significado ao processo de ensino e aprendizagem dos métodos de resolução de equações do 2º grau. Sendo assim, o presente trabalho, apresenta os resultados da aplicação em uma turma de 9º ano do ensino fundamental, de uma sequência de atividades mediadas pela História da Matemática, a qual aborda os métodos de resolução da equação do 2º grau desenvolvidos por Al-Khwarizmi. Para tanto, buscou-se investigar, os efeitos das atividades aplicadas, de modo que os estudantes percebessem a construção dos métodos ao passo que interagiam com as atividades, tornando o estudo deste tópico mais significativo. Como abordagem metodológica foi utilizada a pesquisa qualitativa, sendo caracterizada como uma pesquisa do tipo ação, com intervenções na sala de aula. Os instrumentos utilizados para a coleta de dados foram: questionário, sequência de atividades à luz da História da Matemática, observação, diário de bordo, avaliação final e entrevista. A análise dos resultados confirmam os objetivos do estudo, indicando que uma metodologia baseada no desenvolvimento de atividades de ensino apoiadas no construtivismo e mediada pela História da Matemática proporciona aprendizado significativo para o aluno, pois a maioria dos alunos realizou e obteve bons resultados nas atividades aplicadas.
BAPOUNGUE-LISSOUCK, LIONEL. "Sur la resolubilite de certaines equations diophantiennes du second degre." Caen, 1989. http://www.theses.fr/1989CAEN2005.
Full textNoubiagain, Chomchie Fanny Larissa. "Contributions to second order reflected backward stochastic differentials equations." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1016/document.
Full textThis thesis deals with the second-order reflected backward stochastic differential equations (2RBSDEs) in general filtration. In the first part , we consider the reflection with a lower obstacle and then extended the result in the case of an upper obstacle . Our main contribution consists in demonstrating the existence and the uniqueness of the solution of these equations defined in the general filtration under weak assumptions. We replace the uniform regularity by the Borel regularity(through analytic measurability). The dynamic programming principle for the robust stochastic control problem is thus demonstrated under weak assumptions, that is to say without regularity on the generator, the terminal condition and the obstacle. In the standard Backward Stochastic Differential Equations (BSDEs) framework, there is a symmetry between lower and upper obstacles reflection problem. On the contrary, in the context of second order BSDEs, this symmetry is no longer satisfy because of the nonlinearity of the expectation under which our robust stochastic non-dominated stochastic control problem is defined. In the second part , we get a numerical approximation scheme of a class of second-order reflected BSDEs. In particular we show the convergence of our scheme and we test numerically the results
Olteanu, Constanta. "”Vad skulle x kunna vara?” : andragradsekvation och andragradsfunktion som objekt för lärande." Doctoral thesis, Umeå University, Mathematics, Technology and Science Education, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1363.
Full textAlgebraic equations and functions play an important role in various mathematical topics, including algebra, trigonometry, linear programming and calculus. Accordingly, various documents, such as the most recent Swedish curriculum (Lpf 94) for upper secondary school and the course syllabi in mathematics, specify what the students should learn in Mathematics Course B. They should be able to solve quadratic equations and apply this knowledge in solving problems, explain the properties of a function, as well as be able to set up, interpret and use some nonlinear functions as models for real processes. To implement these recommendations, it is crucial to understand the students’ way of experiencing quadratic equations and functions, and describe the meaning these have for the students in relation to the possibility they have to their experience of them.
The aim of this thesis is to analyse, understand and explain the relation between the handled and learned content, which consists of second-degree equations and quadratic functions, in classroom practice. This means that content is the research object and not the teacher’s conceptions or knowledge of, or about this content. This restriction implies that the handled and learned contents are central in this study and will be analysed from different perspectives.
The study includes two teachers and 45 students in two different classes. The data consist of video-recordings of lessons, individual sessions, interviews and the teachers’/researcher’s review of the individual sessions. The students’ tests also constituted an important part of the data collection.
When analysing the data, concepts relating to variation theory have been used as analytical tools. Data have been analysed in respect of the teachers’ focus on the lesson content, which aspects are ignored and which patterns of dimensions of variations are constituted when the contents are handled by the teachers in the classroom. Also, data have been analysed in respect of the students’ focus when they solve different exercises in a test situation. It can be shown that the meaning of parameters, the unknown quantity in an equation and the function’s argument change several times when the teacher presents the content in the classroom and when the students solve different exercises. It can also be shown that the teachers and the students develop complicated patterns of variation during the lessons and that the ways in which the teachers open up dimensions of variation play an important role in the learning process. The results indicate that there is a convergent variation leading the students to improve their learning. By focusing on some aspects of the objects of learning and create convergent variations, it is possible for the students to understand the difference between various interpretations of these aspects and thereafter focus on the interpretation that fits in a certain context. Furthermore, this variation leads the students to make generalisations in each object of learning (equations and functions) and between these objects of learning. These generalisations remain over time, despite working with new objects of learning. An important result in this study is that the implicit or explicit arguments of a function can make it possible to discern an equation from a function despite the fact that they are constituted by the same algebraic expression.
Silva, M?rcio Vieira da. "Equa??es de segundo grau e mudan?a de vari?veis." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18669.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
In this work are presented, as a review and in a historical context, the most used methods to solve quadratic equations. It is also shown the simplest type of change of variables, namely: x = Ay + B where A;B 2 R, and some changes of variables that were used to solve quadratic equations throughout history. Finally, a change of variable, which has been used by the author in the classroom as an alternative method, is presented and the result of this methodoly is illustrated by the responses of a test that was done by the students in classroom
Neste trabalho s?o apresentados, como revis?o e num contexto hist ?rico, os m?todos mais utilizados de resolver equa??es de 2? grau. E apresentado tamb ?m o tipo maissimples de mudan ?a de vari ?veis, a saber: x = Ay + B onde A;B 2 R, e mostrado como algumas mudan ?as de vari ?veis foram utilizadas na resolu ??o de equa ??ess do segundo grau ao longo da hist ?ria. Finalmente, uma mudan ?a de vari ?vel, que tem sido utilizada pelo autor em sala de aula como um m et?do alternativo, e apresentada e o resultado da aplica ??o de tal m ?todo e ilustrado atr?v es das respostas de um teste
Books on the topic "Second degree equation"
Sherwood, Dennis, and Paul Dalby. Order, information and time. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782957.003.0011.
Full textBook chapters on the topic "Second degree equation"
Wille, Katrin. "Equations of the Second Degree." In George Spencer Brown, 172–91. Wiesbaden: VS Verlag für Sozialwissenschaften, 2004. http://dx.doi.org/10.1007/978-3-322-95679-8_15.
Full textWille, Katrin. "Equations of the second degree." In George Spencer Brown, 174–93. Wiesbaden: VS Verlag für Sozialwissenschaften, 2009. http://dx.doi.org/10.1007/978-3-531-91964-5_15.
Full textGauss, Carl Friedrich. "Forms and Indeterminate Equations of the Second Degree." In Disquisitiones Arithmeticae, 108–374. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4939-7560-0_5.
Full textMagnaghi-Delfino, Paola, and Tullia Norando. "How to Solve Second Degree Algebraic Equations Using Geometry." In Lecture Notes in Networks and Systems, 121–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29796-1_11.
Full textEgorov, Yu V., and M. A. Shubin. "The Function P+λ for Polynomials of Second-degree and its Application in the Construction of Fundamental Solutions." In Partial Differential Equations II, 185–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57876-2_12.
Full textTakagi, Teiji. "On the theory of indeterminate equations of the second degree in two variables." In Springer Collected Works in Mathematics, 256–61. Tokyo: Springer Japan, 1990. http://dx.doi.org/10.1007/978-4-431-54995-6_24.
Full textHarris, Michael. "How to Explain Number Theory at a Dinner Party." In Mathematics without Apologies. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691175836.003.0006.
Full textK. Makarios, Triantafyllos. "Identification of Eigen-Frequencies and Mode-Shapes of Beams with Continuous Distribution of Mass and Elasticity and for Various Conditions at Supports." In Number Theory and Its Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92185.
Full textBandle, Catherine, and Wolfgang Reichel. "Solutions of Quasilinear Second-Order Elliptic Boundary Value Problems via Degree Theory." In Handbook of Differential Equations: Stationary Partial Differential Equations, 1–70. Elsevier, 2004. http://dx.doi.org/10.1016/s1874-5733(04)80003-2.
Full textNitzan, Abraham. "Introduction To Quantum Relaxation Processes." In Chemical Dynamics in Condensed Phases. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198529798.003.0015.
Full textConference papers on the topic "Second degree equation"
Riley, Peregrine E. J. "Alternative Inverse Kinematic Equations for General RRP and RRR Regional Structures of Manipulators." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1009.
Full textKhanuja, Sukhwant S., Andi I. Mahyuddin, and Ashok Midha. "Analytical and Experimental Investigations of a Multi-Degree-of-Freedom Flexible Cam-Follower Mechanisma." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1182.
Full textHuang, Qinghua, and Wei-Chau Xie. "Stability of SDOF Linear Viscoelastic System Under the Excitation of Narrow-Band Noise." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34366.
Full textLi, Like, Chen Chen, Renwei Mei, and James F. Klausner. "Conjugate Interface Heat and Mass Transfer Simulation With the Lattice Boltzmann Equation Method." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21864.
Full textVenkataraman, P. "Solving Inverse ODE Using Bezier Functions." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86331.
Full textLiu, Jian, David T. Martin, Karthik Kadirvel, Toshikazu Nishida, Louis N. Cattafesta, Mark Sheplak, and Brian P. Mann. "Nonlinear System Identification of a MEMS Dual-Backplate Capacitance Microphone by Harmonic Balance Method." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82880.
Full textDuan, Zhipeng. "Second-Order Gaseous Flow Models in Long Circular and Noncircular Microchannels and Nanochannels." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58040.
Full textManickam, Vijaymaran, Ismail B. Celik, Jerry Mason, and Yuxin Liu. "Assessment of the Degree of Mixing in Microchannel Two-Fluid Flows." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72268.
Full textReiss, Robert, Bo Qian, and Win Aung. "Eigenvalues for Moderately Damped Linear Systems Determined by Eigensensitivity Analysis." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0079.
Full textHassanpour, Pezhman A. "Approximate Response of Beam-Type Resonant Biosensors." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88535.
Full text