Academic literature on the topic 'Second-life batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Second-life batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Second-life batteries"

1

Mubenga, Ngalula Sandrine, and Thomas Stuart. "Capacity Measurements for Second Life EV Batteries." Electricity 3, no. 3 (August 13, 2022): 396–409. http://dx.doi.org/10.3390/electricity3030021.

Full text
Abstract:
After they reached the end of their useful EV life, lithium-ion batteries are still satisfactory for second life (SL) energy storage applications. However, the spread in their SL cell capacities may be much wider than in the EV, and this raises a question as to what type of cell voltage equalizer (EQU) should be used. Most users plan to retain the same passive EQU (PEQ) from the EV, but this means the battery capacity will be the same as the worst cell in the battery, just as it was in the EV. Unfortunately, the SL cell capacity spread may be much wider than it was in the EV, and if so, most of the cells will be under-utilized. This can be corrected by using an active EQU (AEQ) or a hybrid, such as the bilevel EQU (BEQ), to provide a capacity close to the cell average; but first, measured data is needed on the actual size of the cell capacity spread. To simplify and reduce the cost of these measurements, a new method is proposed that provides the capacities of the worst cell and the cell average.
APA, Harvard, Vancouver, ISO, and other styles
2

Williams, Brett. "Second Life for Plug-In Vehicle Batteries." Transportation Research Record: Journal of the Transportation Research Board 2287, no. 1 (January 2012): 64–71. http://dx.doi.org/10.3141/2287-08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Milojevic, Zoran, Pierrot S. Attidekou, Mohamed Ahmeid, Simon Lambert, and Prodip Das. "(Digital Presentation) Reusing Li-Ion Batteries in Second-Life Applications: Impact of Cell Orientation in Electric Vehicle Pack." ECS Meeting Abstracts MA2022-01, no. 5 (July 7, 2022): 615. http://dx.doi.org/10.1149/ma2022-015615mtgabs.

Full text
Abstract:
Li-ion batteries (LiBs) in electric vehicles (EVs) finish their life with a significant amount of capacity left in them (about 80% of the nominal capacity), which provides a promising avenue for reusing the spent EV-batteries in less demanding second-life applications, such as grid-scale energy storage for peak shaving, EV charging, storage for intermittent energy sources (solar or wind power), backup storage for industries and property owners, and less demanding vehicle propulsion (ferries or forklifts) [1, 2]. However, reusing spent EV batteries in second-life applications is not as straightforward as taking a battery pack from an EV then installing it directly into a second-life application. One must consider the state-of-health (SoH) of the battery packs and hence the modules and cells to avoid any mismatch in terms of capacity, state-of-charge/depth-of-discharge (SoC/DoD). Even within the batteries suitable for reuse, cells must be sorted by similar remaining capacity and identical degradation state, or else the second-life system performance would suffer. The SoH needs careful assessment and ageing conditions evaluated to send heavily degraded batteries to recycling facilities. Whilst assessing the SoH is straightforward [3], identifying the ageing condition is complex, as ageing and degradation of LiBs over time are caused by various factors, including charging/discharging rate (C-rate), operating temperature, lifetime, SoC, and cycling [2]. Moreover, pack design, configuration, cooling methods as well as cell/module’s orientation in a pack can influence the battery degradation. In the present study, the effect of cell orientation on battery ageing and degradation has been investigated that can have an impact on the life of a battery in second-life applications. Eight large-size pouch batteries from two differently orientated modules from a dismantled first-generation Nissan Leaf retired battery pack have been analysed utilising infrared (IR) thermography and electrochemical impedance spectroscopy (EIS) techniques along with a brand-new second-generation Nissan Leaf battery which has almost the same geometry as batteries from the retired pack. Temperature derivative maps over the battery surface during discharging have been analysed, which show a direct correlation with the battery’s heat generation rates. Obtained results show that the thermal behaviour of brand-new batteries in orientations mimicking aged battery's orientation in the pack during EV life are very similar showing that the temperature derivative map’s hot spot is more towards the edge opposite to gravity vector (Figure 1 left). Also, EIS results (RCT+RSEI, charge transfer and solid electrolyte interphase layer resistances) show a wider range over SoCs for rotated-aged than flat-aged cells (Figure 1 right). It is worth noting that cells aged in flat orientation retained higher capacity compared to the cells aged in rotated orientation. These results show that different LiB orientations in EV batteries cause ageing non-uniformities over the battery surface, which would impact their second-life applications [4]. Non-uniform ageing is found to be more pronounced for the rotated module compared with the flat orientation inside the battery pack (Figure 1). Based on the present results, it is clear that avoiding different orientations in the battery pack can be a sustainable design for future EV battery back if reusing of spent EV batteries is envisaged. This work was part of the ReLiB project (https://relib.org.uk) and was supported by the Faraday Institution (https://www.faraday.ac.uk; grant numbers FIRG005 and FIRG027). References [1] ReLiB: Reuse and Recycling of Lithium-ion Batteries, accessed 12 December 2021, <https://relib1.relib.org.uk>. [2] P.S. Attidekou, Z. Milojevic, M. Muhammad, M. Ahmeid, S. Lambert, P.K. Das, “Methodologies for large-size pouch lithium-ion batteries end-of-life gateway detection in the second-life application,” Journal of the Electrochemical Society, vol. 167, pp. 160534, 2020, DOI: 10.1149/1945-7111/abd1f1. [3] M. Muhammad, M. Ahmeid, P. Attidekou, Z. Milojevic, S. Lambert, P. Das, “Assessment of spent EV batteries for second-life application”, 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), IEEE, pp. 1-5, 2019, DOI: 10.1109/IFEEC47410.2019.9015015. [4] Z. Milojevic, P.S. Attidekou, M. Muhammad, M. Ahmeid, S. Lambert, P.K. Das, “Influence of orientation on ageing of large-size pouch lithium-ion batteries during electric vehicle life,” Journal of Power Sources, vol. 506, pp. 230242, 2021, DOI: 10.1016/j.jpowsour.2021.230242 Figure 1
APA, Harvard, Vancouver, ISO, and other styles
4

Casals, Lluc Canals, B. Amante García, and Camille Canal. "Second life batteries lifespan: Rest of useful life and environmental analysis." Journal of Environmental Management 232 (February 2019): 354–63. http://dx.doi.org/10.1016/j.jenvman.2018.11.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wolff, Deidre, Lluc Canals Casals, Gabriela Benveniste, Cristina Corchero, and Lluís Trilla. "The Effects of Lithium Sulfur Battery Ageing on Second-Life Possibilities and Environmental Life Cycle Assessment Studies." Energies 12, no. 12 (June 25, 2019): 2440. http://dx.doi.org/10.3390/en12122440.

Full text
Abstract:
The development of Li-ion batteries has enabled the re-entry of electric vehicles into the market. As car manufacturers strive to reach higher practical specific energies (550 Wh/kg) than what is achievable for Li-ion batteries, new alternatives for battery chemistry are being considered. Li-Sulfur batteries are of interest due to their ability to achieve the desired practical specific energy. The research presented in this paper focuses on the development of the Li-Sulfur technology for use in electric vehicles. The paper presents the methodology and results for endurance tests conducted on in-house manufactured Li-S cells under various accelerated ageing conditions. The Li-S cells were found to reach 80% state of health after 300–500 cycles. The results of these tests were used as the basis for discussing the second life options for Li-S batteries, as well as environmental Life Cycle Assessment results of a 50 kWh Li-S battery.
APA, Harvard, Vancouver, ISO, and other styles
6

Canals Casals, Lluc, Beatriz Amante García, and Lázaro V. Cremades. "Electric vehicle battery reuse: Preparing for a second life." Journal of Industrial Engineering and Management 10, no. 2 (May 15, 2017): 266. http://dx.doi.org/10.3926/jiem.2009.

Full text
Abstract:
Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants.Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective.This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy.Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita.15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots.Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.
APA, Harvard, Vancouver, ISO, and other styles
7

Mubenga, Ngalula Sandrine, Boluwatito Salami, and Thomas Stuart. "Bilevel vs. Passive Equalizers for Second Life EV Batteries." Electricity 2, no. 1 (February 7, 2021): 63–76. http://dx.doi.org/10.3390/electricity2010004.

Full text
Abstract:
Once lithium-ion batteries degrade to below about 80% of their original capacity, they are no longer considered satisfactory for electric vehicles (EVs), but they are still adequate for second-life energy storage applications. However, once this level is reached, capacity fade increases at a much faster rate, and the spread between the cell capacities becomes much wider. If the passive equalizer (PEQ) from the EV is still used, battery capacity remains equal to that of the worst cell in the stack, just like it was in the EV. Unfortunately, the worst cell eventually becomes much weaker than the cell average, and the other cells are not fully utilized. If operated while the battery is in use, an active equalizer (AEQ) can increase the battery capacity to a much higher value close to the cell average, but AEQs are much more expensive and are not considered cost effective. However, it can be shown that the bilevel equalizer (BEQ), a PEQ/AEQ hybrid, also can provide a capacity very close to the cell average and at a much lower cost than an AEQ.
APA, Harvard, Vancouver, ISO, and other styles
8

Canals Casals, Lluc, Mattia Barbero, and Cristina Corchero. "Reused second life batteries for aggregated demand response services." Journal of Cleaner Production 212 (March 2019): 99–108. http://dx.doi.org/10.1016/j.jclepro.2018.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janota, Lukáš, Tomáš Králík, and Jaroslav Knápek. "Second Life Batteries Used in Energy Storage for Frequency Containment Reserve Service." Energies 13, no. 23 (December 3, 2020): 6396. http://dx.doi.org/10.3390/en13236396.

Full text
Abstract:
The new Li-ion battery systems used in electric vehicles have an average capacity of 50 kWh and are expected to be discarded when they reach approximately 80% of their initial capacity, because they are considered to no longer be sufficient for traction purposes. Based on the official national future development scenarios and subsequent mathematical modeling of the number of electric vehicles (EVs), up to 400 GWh of storage capacity in discharged batteries will be available on the EU market by 2035. Therefore, since the batteries still have a considerable capacity after the end of their first life, they could be used in many stationary applications during their second life, such as support for renewables, flexibility, energy arbitrage, peak shaving, etc. Due to the high output power achieved in a short time, one of the most promising applications of these batteries are ancillary services. The study assesses the economic efficiency of the used batteries and presents several main scenarios depending on the likely future development of the interconnected EU regulatory energy market. The final results indicate that the best results of second-life batteries utilization lie in the provision of Frequency Containment Reserve Service, both from a technical and economic point of view. The internal rate of return fluctuates from 8% to 21% in the realistic scenario, and it supports the idea that such systems might be able to be in operation without any direct financial subsidies.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhu, Juner, Ian Mathews, Dongsheng Ren, Wei Li, Daniel Cogswell, Bobin Xing, Tobias Sedlatschek, et al. "End-of-life or second-life options for retired electric vehicle batteries." Cell Reports Physical Science 2, no. 8 (August 2021): 100537. http://dx.doi.org/10.1016/j.xcrp.2021.100537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Second-life batteries"

1

Leandersson, Regina. "Optimal usage of EV batteries – V2X and second life of batteries : From a circular economy perspective." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281779.

Full text
Abstract:
The increased number of electric vehicles (EV) will influence the electricity demand and could possibly exceed the maximum power available on the grid. In order to manage such development, new innovations and impactful policy mechanisms are crucial.  EV fleets are prospected to work as dynamic energy storage systems and if controlled smartly, it could result in energy savings and revenue streams. The EV could, be charged when electricity prices are low and discharged when high. Thus, discharged power could be sold to the grid or supplied to a building. This could then generate revenue streams and enhance self-consumption through services called vehicle-to-grid (V2G) and vehicle-to-building (V2B). Despite the advantages of V2X (vehicle-to-anything), premature battery degradation due to capacity loss as a consequence of charging and discharging processes is a prominent concern since the battery is unfit for EV when it reaches 80 percent of the initial capacity. This could be managed by providing the battery a second life as storage solution and thus enhance the feasibility, and lifetime for EV batteries thereby contributing to circular economy.  Previous studies have investigated the possibility of EV as energy vectors and optimizing the charging and discharging schedules for demand supply management, for example in peak shredding or shifting. This study aims to combine the mechanism of V2B and V2G and further providing the EV battery a second life in residential PV storage to optimize the usage through the battery’s lifetime in a circular perspective. Hence, for this thesis, a mixed integer linear problem (MILP) was developed to optimize the potential, savings and earnings from V2B/V2G as well as from second-life energy storage in residential PV. For this purpose, a case study with real data from a residential building with a build-in PV from 2018 in Switzerland was integrated. Further, the impact of the batteries in the two stages and the contribution towards a circular economy was investigated.  Results show that the battery lifetime from exercising V2G/V2B could at its worst last for 3.11 years. This is however strongly impacted from input data, degradation and selling price of electricity. During its lifetime, the EV battery could avoid 26% of cost compared with not using V2X. Overall, V2B/V2G leads to energy and economic savings, but there is degradation in the battery and the savings made by V2B/V2G is not enough to justify the investment costs of an EV battery. Hence, the cost of replacing the battery in the EV due to the degradation of V2B/V2G needs to be subsidized or by other incentives for it to become feasible. When further providing the battery a second life, it shows huge potential in savings as observed from the result which contributes to resource efficiency and circular economy. In this study, the reused battery could last for either 2.4 or 9.45 years, depending on the electricity selling price. Thus, the lifetime usage of the battery can be increased substantially with second life of batteries depending on the application.
Det ökande antalet elbilar kommer att resultera i ökad efterfrågan av elektricitet och då även överskrida tillgängligheten på elnätet. För att hantera utveckling som denna är nya innovationer och kraftfulla policys vitalt.  Elbilar förväntas att kunna användas som dynamisk energilagring och leda till energibesparingar och intäkter. Genom innovationer som vehicle-to-grid (V2G) och vehicle-to-building (V2B) finns det potential för elbilar att ladda upp batteriet när elpriserna är låga och sedan ladda ur batteriet när priserna är höga. Den urladdade energin kan då exempelvis säljas till elnätet (V2G) eller levereras till en byggnad (V2B) och således leda till intäkter eller reducerade elkostnader. Trots fördelarna med att tillämpa elbilsbatterier för urladdning, tillkommer följder av ökad degradering av batteriet på grund av upp- och urladdning. Då batteriet inte är lämpligt för användning i elbilar när det degraderat till 80 procent av den initiala kapaciteten, finns det även en problematik. Detta skulle kunna hanteras genom att återanvända batteriet i lagringslösningar och öka lönsamheten i att använda dynamisk energilagring, förlänga livslängden men även bidra till den cirkulära ekonomin.  Den här studien syftar till att optimera potentialen, besparingar och intäkter av elbilsbatterier i ett cirkulärt perspektiv genom V2B och V2G och därefter återanvända elbilsbatteriet för energilagring med solceller i ett bostadshus. För detta, användes linjär programmering. Vidare integrerades en fallstudie med verkliga data från ett bostadshus i Schweiz med solceller.  Resultaten visar att batteriets livslängd reduceras till 3,11 år genom att använda V2G/V2B, men är starkt påverkat av inmatningsdata, degraderings modellen och försäljningspriset av elektricitet. Under batteriets livstid kunde elbilsbatteriet undvika 26% av elkostnaderna jämfört med att inte implementera V2B/V2G. Sammantaget leder sådan användning av elbilsbatterier till energi- och ekonomiska besparingar, men på grund av den signifikanta reduceringen i livslängd och höga investeringskostnader, räcker det inte för att motivera implementerandet av sådana tekniker som det ser ut idag. Det finns därmed ett behov av subventionering av elbilsbatterier för att använda V2B/V2G. Vidare, när batteriet återanvänds, visar resultaten signifikant besparingspotential som kan bidra till resurseffektivitet och cirkulär ekonomi. I den här studien, varierar livslängden på det återanvända batteriet mellan 2,4 och 9,45 år som ett resultat av försäljningspriset av elektricitet. Således kan batteriets livslängd beroende på applikation förlängas avsevärt genom återanvändning.
APA, Harvard, Vancouver, ISO, and other styles
2

Ganesh, Sai Vinayak. "Critical analysis of aging models for lithium-ion second-life battery applications." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587643968721108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rallo, Tolós Héctor. "Second life batteries of electric vehicles : analysis of use and management models." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671791.

Full text
Abstract:
The mobility of the future undoubtedly involves the electrification of vehicles. The increase in social awareness towards a reduction in CO2 emissions, together with the introduction of new laws regulating them, has finally led to an increase in the sales of electric vehicles. Furthermore, this trend is expected to continue to increase due to the global interest in reducing these emissions. The growth in sales has meant that lithium-ion batteries have become an indispensable element in the automotive sector. The overall emissions of an electric car are between 20 and 40 % lower than those of conventional vehicles, with the current energy mix. With the increase in green power generation, the EU expects to reduce emissions by up to 75 % by 2050 compared to fossil fuel vehicles. The battery, like any other vehicle component, wears out over time and use. Car manufacturers recommend that when these batteries reach 70 % of their health, they should be replaced, as the manufacturers cannot guarantee their proper functioning and they could suffer a drastic drop in capacity, i.e. in the vehicle's range. However, before these batteries are recycled, there is a possibility that they could be reused, as they still have enough power and capacity, to be used in other, less demanding applications. As a result, the reuse of these batteries, whose cost represents between 30 and 40 % of the final price of an electric vehicle, is seen within the automotive sector as a great possibility to reduce the selling price of the electric car and make it more competitive than internal combustion cars. Batteries have therefore become an indispensable element not only for the automotive industry, but also for any application that needs to store electrical energy. Consequently, it is already suggested that there is a market niche where these batteries could have great potential. The objective of reducing the heavy dependence on fossil fuels has led to an increase in renewable energies in the European energy mix. Their intermittence opens the door for energy storage sources to cover the moments when there is no generation. Giving a second life to electric vehicle batteries has prompted the research interest of this doctoral thesis, which analyses different new models of use and business once they are no longer valid for the automobile.
La movilidad del futuro pasa sin lugar a dudas por la electrificación de sus vehículos. El incremento de la conciencia social hacia una reducción de las emisiones de CO2 junto con la introducción de nuevas leyes que las regula, ha provocado finalmente un incremento en la venta de vehículos eléctricos. Además, se prevé que esta tendencia siga aumentando debido al interés global en reducir dichas emisiones. El crecimiento de ventas, ha propiciado que las baterías de Litio-Ion se hayan convertido en un elemento indispensable dentro del sector de la automoción. Las emisiones globales de un coche eléctrico son entre un 20 \% y un 40 \% menores que las de los vehículos convencionales, con el actual mix energético. Con el aumento de generación de energía verde, la UE prevé para 2050, una reducción de emisiones de hasta los 75 \% respecto a las generadas por vehículos propulsados por combustibles fósiles. La batería, al igual que cualquier otro componente del vehículo, se desgasta con el paso del tiempo y el uso. Los fabricantes de automóviles recomiendan que cuando estas baterías llegan entre el 70 \% de su estado de salud, deberían ser sustituidas, ya que los fabricantes no pueden garantizar su buen funcionamiento y podrían sufrir una caída drástica de capacidad, es decir, en la autonomía el vehículo. Sin embargo, antes de reciclar estas baterías, existe la posibilidad de que sean reutilizadas, ya que aún disponen de suficiente potencia y capacidad, para funcionar en otras aplicaciones menos exigentes. Como consecuencia, la reutilización de estas baterías, cuyo coste representa entre el 30 y el 40 \% del precio final de un vehículo eléctrico, se ve dentro del sector de la automoción, como una gran posibilidad para reducir el precio de venta del coche eléctrico y hacerlo más competitivo frente a los coches de combustión interna. Las baterías se han convertido pues, en un elemento indispensable no sólo para la industria del automóvil, sino también para cualquier aplicación que necesite almacenar energía eléctrica. En consecuencia, ya se apunta de la existencia de un nicho de mercado donde estas baterías podrían tener un gran potencial. El objetivo de reducir la fuerte dependencia de los combustibles fósiles ha provocado un aumento de las energías renovables en el mix energético europeo. Su intermitencia, abre la puerta a fuentes de almacenamiento de energía para cubrir los momentos en que no hay generación. Dar una segunda vida a las baterías de vehículo eléctrico, ha despertado el interés de investigación de esta tesis doctoral, la cual analiza diferentes nuevos modelos de uso y de negocio una vez éstas ya no son válidas para la automoción.
APA, Harvard, Vancouver, ISO, and other styles
4

Warner, Nicholas A. "Secondary Life of Automotive Lithium Ion Batteries: An Aging and Economic Analysis." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vesterberg, Iris, and Sofia Westerlund. "Second Life Batteries Faciliating Sustainable Transition in the Transport and Energy Sectors? : An Exploratory Field Study in Colombia." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279508.

Full text
Abstract:
The increasing number of vehicles in Colombian cities have resulted in alarmingly low quality of air, further resulting in increasing health issues. One potential solution to this issue could be a shift from ICEVs (internal combustion engine vehicles) to EVs (electric vehicles). However, EVs in Colombia are still very expensive, an issue that needs to be addressed in order for the EV market to increase enough to be able address the issue of low air quality in cities. One way of overcoming these cost barriers could be through implementation of a market for SLB (second life batteries), meaning that a battery retired from usage in EVs would be remanufactured, resold and reused in another application. Through SLB, the owner cost of EVs could potentially be decreased. SLB could also help improve the case for nondispatchable renewable energy sources by providing low cost BESS (battery energy storage solutions). Thus, SLB has the potential to facilitate sustainable transition within both the transport and the energy sector. This thesis aims to assess the potential of SLB in Colombia. This is done through a literature review where the current state of SLB is investigated, several interviews with potential stakeholders for a SLB market in Colombia, and a techno-economic assessment of four potential BESS applications in Colombia. The literature review provides with current knowledge and state of SLB in general. The interviews provide important insight to potential stakeholders’ view on SLB for the specific case of Colombia. The techno-economic assessment includes a sensitivity analysis aiming to provide insights in which factors, such as e.g. battery purchasing price or charging cost, that that gives rise to the largest impact on feasibility of SLB. Findings from the interviews shows a strong collective commitment from the interviewees to working towards cleaner air, resulting in high engagement and collaborative efforts between stakeholders for the SLB case. The main issue highlighted by stakeholders regards technoeconomic uncertainties of SLB. Findings from the techno-economic assessment indicates that SLB is viable for larger applications such as BESS at solar farms, but not for smaller applications such as backup power in residential buildings. However, SLB is not deemed to be a game changer for either application, and there are still many uncertainties regarding both technological and economic aspects that needs to be further investigated. The sensitivity analysis shows that the factors resulting in the highest impact on feasibility of SLB is battery SOH (state of health) at the beginning of SLB usage, and battery and repurposing cost. It will be hard to address both of these factors simultaneously due to a higher SOH would render higher battery prices, and vice versa. The findings from the thesis shows that SLB can facilitate sustainable transition within both the transport and energy sectors but is not to be considered a game changer for these sectors. However, even though SLB’s contribution to sustainable transition is not revolutionary, it is still necessary from a sustainability perspective. Given the environmental footprint of EV batteries and the amount of hazardous waste retired EV batteries will give rise to, circular economy must be pursued.
Det ökande antalet fordon i colombianska städer har resulterat i oroväckande låg luftkvalitet, vilket ytterligare resulterat i ökande hälsoproblem. En potentiell lösning på det problemet kan vara en övergång från ICEVs (förbränningsmotorfordon) till EV (elfordon). EVs i Colombia är fortfarande väldigt dyra, en fråga som måste adresseras för att EV-marknaden ska kunna öka tillräckligt för att kunna ge en inverkan på problemet med låg luftkvalitet i städer. Ett sätt att övervinna dessa kostnadshinder skulle kunna vara genom att implementera en marknad för SLB (second life-batterier), vilket innebär att ett batteri som bedömts inte längre uppfylla kraven för användning i EVs, och därmed byts ut, skulle kunna byggas om, säljas vidare och återanvändas i andra applikationer. Genom SLB kan ägarkostnaderna för EVs potentiellt sänkas. SLB skulle också kunna användas för att tillhandahålla billigare BESS (batterilagringslösningar) hos icke-reglerbara förnyelsebara kraftverk, såsom solkraftverk. Således har SLB potentialen att underlätta för hållbara förändringar inom både transportsektorn och energisektorn. Den här uppsatsen ämnar att utvärdera SLBs potential i Colombia. Detta görs genom en litteraturöversikt där det nuvarande tillståndet av SLBs undersöks, flera intervjuer med potentiella intressenter för en SLB-marknad i Colombia, och en tekno-ekonomisk bedömning av fyra potentiella BESS-applikationer i Colombia. Litteraturöversikten samlar aktuell kunskap och status inom SLB i allmänhet. Intervjuerna ger viktig insikt om potentiella intressenters syn på SLB för det specifika fallet i Colombia. Den tekno-ekonomiska bedömningen inkluderar en känslighetsanalys som syftar till att ge insikter i vilka faktorer, som t.ex. batteriets inköpspris eller laddningskostnad, som ger upphov till den största effekten på SLBs genomförbarhet. Resultat från intervjuerna visar ett starkt kollektivt engagemang från de intervjuade att arbeta mot renare luft, vilket resulterar i högt engagemang och samarbete mellan intressenterna. Det största problemet med SLB från intressenternas synpunkt berör tekno-ekonomiska osäkerheter. Resultat från den tekno-ekonomiska bedömningen indikerar att SLB är ekonomiskt försvarbart för större applikationer som BESS vid solkraftverk, men inte för mindre applikationer som t.ex. för reservenergi i bostadshus. SLB anses dock inte vara ett genombrott för användning vid någon av applikationerna, och det finns fortfarande många osäkerheter när det gäller både tekniska och ekonomiska aspekter som måste undersökas ytterligare. Känslighetsanalysen visar att de faktorer som resulterar i den högsta påverkan på genomförbarheten av SLB är batteriets SOH (hälsotillstånd) i början av SLB-användning och kostnaden för batteri och ombyggnad av batterier. Det kommer dock att vara svårt att hantera båda dessa faktorer samtidigt på grund av att högre SOH skulle ge högre batteripriser, och vice versa. Resultaten från uppsatsen visar att SLB kan underlätta för hållbara förändringar inom både transport- och energisektorerna, men att det inte ska betraktas som något fantastiskt genombrott för dessa sektorer. Även fast SLBs bidrag till hållbara förändringar är inte revolutionerande, är det fortfarande en nödvändig faktor ur ett hållbarhetsperspektiv. Med tanke på miljöavtrycket för EV-batterier och mängden av farligt avfall som EV-batterier kommer att ge upphov till då de inte längre är önskvärda, måste cirkulär ekonomi bedrivas i största möjliga mån.
APA, Harvard, Vancouver, ISO, and other styles
6

Gris, Trillo Maria. "Towards Circular Economy : Technoeconomic assessment of second-life EV batteries for energy storage applications in public buildings." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292416.

Full text
Abstract:
With the accelerated tendency of renewable energy penetration in the electricity grid, energy storage becomes a crucial asset for matching generation and demand. The growth of energy storage systems requires adequate new policies and regulatory frameworks. The battery value chain also requests for new ways of end-of-life management since battery recycling is not a viable single option yet. This is where circular economy offers different solutions and alternatives for prolonging the battery life and reducing the negative impact. This study analyses the technoeconomic feasibility of giving electric-vehicle (EV) batteries a second life as stationary energy storage systems in buildings with integrated on-site renewable energy production, such as for instance PV panels. Four different scenarios have been considered, including the refurbishment of the battery or its direct reuse, taking into account the degradation of capacity and thus, the amortisation price; against the possible load shifting benefit and the reduction of contracted grid power for the building. Results show that, effectively, the reuse of batteries for stationary energy storage is economically justified but may not be worth only in self-consumption applications, that is, for prosumers with some little renewable generation installed on site. The simulations reveal less than 2% relative energy cost savings on annual basis and up to 25% savings related to reduction of grid-contracted peak power, for the chosen case study of a mid-size office building. Second-life battery applications are still dependent on the development of tools for estimating and monitoring the battery’s state of health and potential performance in the new setting, for the technology to succeed. The increasing interest and necessity for circular economy together with the high volume of EV batteries expected to be released on the second-hand market, not suitable for automotive purposes anymore but reasonably applicable for stationary energy storage, will place this topic in the spotlight in the near future.
Den fortsätta trenden för utvidgning av förnybar energi i elnätet gör att energilagring blir en ännu viktigare tillgång för balansen mellan elproduktion och efterfrågan. Nya policyer och regelverk krävs för att understödja en bredare tillämpning av småskaliga energilagringssystem. Batteriets värdekedja kräver också nya sätt att hantera uttömda material eftersom batteriåtervinning ännu inte hunnit utvecklas som ett genomförbart alternativ. En cirkulär ekonomi borde erbjuda olika lösningar inte endast för materialåtervinning utan också gentemot förlängning av livslängden och fördröjning av återvinningsprocessen tills nya metoder och verktyg finns på plats för effektiv hantering med minimal miljöpåverkan. Denna studie analyserar den teknoekonomiska genomförbarheten att ge begagnade batterier från elektriska fordon (EV) en andra tillämpning, typ en utvidgad livslängd, som stationära energilagringssystem för mellanstora kontorsbyggnader med integrerad lokal elproduktion såsom t.ex. solpaneler på taket. Fyra olika scenarier har beaktats, inklusive delvis renovering av batteriet eller dess direkta återanvändning, med hänsyn tagen till kapacitetsnedbrytningen och därmed amorteringspriset, som vägs mot fördelarna i form av en uppnåelig tidsförskjutning av elbehovet och minskning av kontrakterad nätkraft för byggnaden. Resultaten visar att återanvändning av elfordonsbatterier för stationär energilagring är ekonomiskt motiverad men troligen inte alltid värt i applikationer med låg förbrukning och låg egenproduktion av förnyelsebar elkraft. Simuleringarna avslöjar mindre än 2% relativa energikostnadsbesparingar på årsbasis och upp till 25% besparingar relaterade till minskning av nätavtagen toppeffekt för den valda fallstudien av en medelstor kontorsbyggnad. Praktiska tillämpningar av begagnade batterier är fortfarande beroende av utvecklingen av verktyg för uppskattning och övervakning av batteriets hälsotillstånd och potentiella prestanda i den nya installationen, för att konceptet skulle kunna bevisa sitt värde. Det ökande intresset och nödvändigheten för cirkulär ekonomi tillsammans med den stora volymen EV-batterier som förväntas släppas på den begagnade marknaden, inte längre lämpliga för fordonsändamål men rimligt användbara för stationära energilagringssystem, kommer att föra detta ämnesområde in i rampljuset inom en snar framtid.
APA, Harvard, Vancouver, ISO, and other styles
7

de, Maio Pasquale. "Optimization analysis of secondlifebatteries integration in fastchargersfor electric vehicles inSpain." Thesis, KTH, Energi och klimatstudier, ECS, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226328.

Full text
Abstract:
This project investigates the viability of using reconditioned batteries, which have lost part of their original capacity while powering electric vehicles (EVs), to minimize the expenses of fast-charging infrastructures under the three charging scenarios where fast-charging mode is likely to be needed the most. The analysis is conducted for the Spanish scenario and considers the retail electricity tariff that best suits the requirements of a FCS. The economic analysis is performed on an annual basis and is tackled with an optimization algorithm, formulated as a mixed-integer linear programming problem and run on MATLAB. The expected lifetime of the ESS, being made of reused automotive cells, is estimated with a semi-empirical approach, using an iterative process and implemented in MATLAB. A sensitivity analysis is conducted on three input parameters that were identified to have a considerable impact on the system design and performance.   Overall, results show that with current figures energy storage integration in FCSs is viable as it effectively reduces the infrastructure expenses in all scenarios. Peak-shaving is identified as the main source of cost savings while demand shifting is not effective at all. The latter is further discussed in the sensitivity analysis and some considerations are elaborated. The most profitable scenario for storage integration is the case of a fast-charger located in a urban environment while, surprisingly, the lowest cost savings are obtained in the highway case. The sensitivity analysis illustrates the impact and effects that electricity prices and specific cost of both the power converter and the second-life batteries produce on the optimal system design. Moreover, charging demand profiles are deeply analyzed and their main implications highlighted.
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Deb Nath Uttam. "Electric vehicles in Smart Grids: Performance considerations." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2015. https://ro.ecu.edu.au/theses/1631.

Full text
Abstract:
Distributed power system is the basic architecture of current power systems and demands close cooperation among the generation, transmission and distribution systems. Excessive greenhouse gas emissions over the last decade have driven a move to a more sustainable energy system. This has involved integrating renewable energy sources like wind and solar power into the distributed generation system. Renewable sources offer more opportunities for end users to participate in the power delivery system and to make this distribution system even more efficient, the novel "Smart Grid" concept has emerged. A Smart Grid: offers a two-way communication between the source and the load; integrates renewable sources into the generation system; and provides reliability and sustainability in the entire power system from generation through to ultimate power consumption. Unreliability in continuous production poses challenges for deploying renewable sources in a real-time power delivery system. Different storage options could address this unreliability issue, but they consume electrical energy and create signifcant costs and carbon emissions. An alternative is using electric vehicles and plug-in electric vehicles, with two-way power transfer capability (Grid-to-Vehicle and Vehicle-to-Grid), as temporary distributed energy storage devices. A perfect fit can be charging the vehicle batteries from the renewable sources and discharging the batteries when the grid needs them the most. This will substantially reduce carbon emissions from both the energy and the transportation sector while enhancing the reliability of using renewables. However, participation of these vehicles into the grid discharge program is understandably limited by the concerns of vehicle owners over the battery lifetime and revenue outcomes. A major challenge is to find ways to make vehicle integration more effective and economic for both the vehicle owners and the utility grid. This research addresses problems such as how to increase the average lifetime of vehicles while discharging to the grid; how to make this two-way power transfer economically viable; how to increase the vehicle participation rate; and how to make the whole system more reliable and sustainable. Different methods and techniques are investigated to successfully integrate the electric vehicles into the power system. This research also investigates the economic benefits of using the vehicle batteries in their second life as energy storage units thus reducing storage energy costs for the grid operators, and creating revenue for the vehicle owners.
APA, Harvard, Vancouver, ISO, and other styles
9

Baskar, Ashish Guhan, and Araavind Sridhar. "Short Term Regulation in Hydropower Plants using Batteries : A case study of hydropower pants in lower Oreälven river." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289407.

Full text
Abstract:
Hydropower is one of the oldest renewable energy (RE) sources and constitutes a major share in the Swedish electricity mix. Though hydropower is renewable, there exist some issues pertaining to the local aquatic conditions. With more environmental laws being implemented, regulating the use and management of water is jeopardizing the flexibility of hydropower plants. The decided national plan for new environmental conditions in Sweden is expected to start being implemented in 2025 and more restrictions are expected. Analysing a battery energy storage system's capabilities plants may improve flexibility in hydropower plant operation. This thesis is focused on the short-term regulation in lower Oreälven river where the hydropower plants Skattungbyn, Unnån and Hansjö are located. The combined hydropower plant and battery system is simulated being employed in the day-ahead market and a techno-economic optimization of the combined system is performed. The combined system's operation is modelled using Mixed Integer Linear Programming. The future electricity market analysis is modelled using Machine Learning techniques. Three different electricity market scenarios were developed based on different Swedish nuclear energy targets for 2040 to capture the future. The first scenario developed complies with the Swedish energy target of 100 % renewable production in 2040. The second scenario has still two nuclear power plants in operation by 2040 and the third scenario has the same nuclear capacity as of 2020. It is observed from the results that with the current battery costs (~3,6 Million SEK/MWh), the implementation of a battery system for the short term regulation of the combined battery/hydropower system is not profitable and the cost of battery needs to be less than 0,5 Million SEK/MWh to make it profitable. The thesis also discusses the possibility of utilizing batteries’ second life and the techno-economic analysis of their performance.
Vattenkraft är en av de allra äldsta förnybara energikällorna och utgör idag en väsentlig del av Sveriges energimix. Trots att vattenkraft är förnybar, har den lett till vissa utmaningar i den lokala vattenmiljön. Som en följd av att fler miljölagar har implementerats för att reglera nyttjandet av vattendrag och sjöar, minskar flexibiliteten i vattenkraftproduktionen. Den av den svenska regeringen i juni 2020 beslutade nationella planen för miljöanpassning av vattenkraften i Sverige, förväntas börja genomföras med start 2025 och tros då resultera i fler flexibilitetsbegränsningar. Genom att analysera driften av batteriers energilagringssystem kombinerade med vattenkraftverk, bedöms flexibiliteten i sådana kombinerade system kunna ökas. Denna studie fokuserar på den kortsiktiga regleringen av nedre Oreälven med vattenkraftverken Skattungbyn, Unnån och Hansjö. En kombination av vattenkraftverken med batterisystem simuleras mot spot-marknaden och en teknisk-ekonomisk optimering av det kombinerade systemet utförs. Driften av det kombinerade systemet modelleras med linjärprogrammering och den framtida analysen av elmarknaden modelleras med maskininlärningstekniker. Tre olika scenarier för elmarknaden utvecklades baserade på målen för den svenska kärnkraften år 2040. Det första scenariot som utvecklades är i linje med det svenska energimålet om 100 % förnybar produktion till 2040. Det andra scenariot utvecklades med två kärnkraftverk fortfarande i drift 2040 och det tredje scenariot med samma kärnkraftskapacitet som 2020. Från resultaten kan särskilt noteras att med nuvarande batterikostnader (~3,6 miljoner SEK/MWh) kommer införandet av batterier för att kortsiktigt reglera vattenkraftverken inte att vara lönsamt om inte batterikostnaden reduceras till som högst 0,5 miljoner SEK/MWh. Denna studie diskuterar även möjligheterna att använda andrahandsbatterier samt en teknisk-ekonomisk analys för dess prestanda.
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Baljot. "A case study about the potential of battery storage in Culture house : Investigation on the economic viability of battery energy storage system with peak shaving & time-of-use application for culture house in Skellefteå." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-52998.

Full text
Abstract:
The energy demand is steadily increasing, and the electricity sector is undergoing a severe change in this decade. The primary drivers, such as the need to decarbonize the power industry and megatrends for more distributed and renewable systems, are resulting in revolutionary changes in our lifestyle and industry. The power grid cannot be easily or quickly be upgraded, as investment decisions, construction approvals, and payback time are the main factors to consider. Therefore, new technology, energy storage, tariff reform, and new business models are rapidly changing and challenging the conventional industry. In recent times, industrial peak shaving application has sparked an increased interest in battery energy storage system (BESS).  This work investigated BESS’s potential from peak shaving and Time-of-use (TOU) applications for a Culture-house in Skellefteå. Available literature provides the knowledge of various BESS applications, tariff systems, and how battery degradation functions. The predicted electrical load demand of the culture-house for 2019 is obtained from a consultant company Incoord. The linear optimization was implemented in MATLAB using optimproblem function to perform peak shaving and time-of-use application for the Culture-hose BESS. A cost-optimal charging/discharging strategy was derived through an optimization algorithm by analyzing the culture-house electrical demand and Skellefteå Kraft billing system. The decisional variable decides when to charge/discharge the battery for minimum battery degradation and electricity purchase charges from the grid.   Techno-economic viability is analyzed from BESS investment cost, peak-power tariff, battery lifespan, and batter aging perspective. Results indicate that the current BESS price and peak-power tariff of Skellefteå Kraft are not suitable for peak shaving. Electricity bill saving is too low to consider TOU application due to high battery degradation. However, combining peak shaving & TOU does generate more profit annually due to additional savings from the electricity bill. However, including TOU also leads to higher battery degradation, making it not currently a viable application. A future scenario suggests a decrease in investment cost, resulting in a shorter payback period.  The case study also analyses the potential in the second-life battery, where they are purchased at 80 % State of Health (SoH) for peak shaving application. Second-life batteries are assumed to last until 70 % or 60 % before End of Life (EOL). The benefit-cost ratio indicates that second-life batteries are an attractive investment if batteries can perform until 60% end of life, it would be an excellent investment from an economic and sustainability perspective. Future work suggests integrating more BESS applications into the model to make BESS an economically viable project.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Second-life batteries"

1

Canals Casals, Lluc, Beatriz Amante García, and Maria Margarita González Benítez. "A Cost Analysis of Electric Vehicle Batteries Second Life Businesses." In Lecture Notes in Management and Industrial Engineering, 129–41. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26459-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mayr, Florian. "Second life: Benefiting From the Untapped Potential of EV Batteries." In Proceedings, 15–19. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-32471-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jiao, Na, and Steve Evans. "Business Models for Repurposing a Second-Life for Retired Electric Vehicle Batteries." In Behaviour of Lithium-Ion Batteries in Electric Vehicles, 323–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69950-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kölch, Jürgen. "Greater sustainability with a second life of used electric vehicle batteries." In Proceedings, 663–71. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30995-4_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Müller, Daniel, and Kai Peter Birke. "On the Lifespan of Lithium-Ion Batteries for Second-Life Applications." In Progress in Industrial Mathematics at ECMI 2018, 45–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27550-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Canals Casals, Lluc, Beatriz Amante García, and Maria Margarita González Benítez. "Aging Model for Re-used Electric Vehicle Batteries in Second Life Stationary Applications." In Lecture Notes in Management and Industrial Engineering, 139–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51859-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jiao, Na, and Steve Evans. "Business Models for Sustainability: The Case of Repurposing a Second-Life for Electric Vehicle Batteries." In Sustainable Design and Manufacturing 2017, 537–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57078-5_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bhatt, Ankit, Weerakorn Ongsakul, and Nimal Madhu. "Machine Learning Approach to Predict the Second-Life Capacity of Discarded EV Batteries for Microgrid Applications." In Advances in Intelligent Systems and Computing, 633–46. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68154-8_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagl, Anna, and Karlheinz Bozem. "Praxisbeispiel: Geschäftsmodell für Second Life-Batterien." In Geschäftsmodelle 4.0, 121–44. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-18842-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bockrath, Steffen, Stefan Waldhör, Harald Ludwig, and Vincent Lorentz. "State of Health Estimation using a Temporal Convolutional Network for an Efficient Use of Retired Electric Vehicle Batteries within Second-Life Applications." In Artificial Intelligence for Digitising Industry – Applications, 21–34. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337232-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Second-life batteries"

1

Muhammad, M., M. Ahmeid, P. S. Attidekou, Z. Milojevic, S. Lambert, and P. Das. "Assessment of spent EV batteries for second-life application." In 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC). IEEE, 2019. http://dx.doi.org/10.1109/ifeec47410.2019.9015015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Enache, Bogdan-Adrian, George-Calin Seritan, Sorin-Dan Grigorescu, Costin Cepisca, Felix-Constantin Adochiei, Violeta-Vasilica Argatu, and Teodor Iulian Voicila. "A Battery Screening System for Second Life LiFePO₄ Batteries." In 2020 International Conference and Exposition on Electrical And Power Engineering (EPE). IEEE, 2020. http://dx.doi.org/10.1109/epe50722.2020.9305538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Davis, Chad, and Bryan Schultz. "Second Life Hybrid Vehicle Batteries Used in Solar Backup." In 2012 IEEE Green Technologies Conference. IEEE, 2012. http://dx.doi.org/10.1109/green.2012.6200936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skarvelis-Kazakos, S., S. Daniel, and S. Buckley. "Distributed energy storage using second-life electric vehicle batteries." In IET Conference on Power in Unity: a Whole System Approach. Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/ic.2013.0139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abdel-Monem, Mohamed, Omar Hegazy, Noshin Omar, Khiem Trad, Peter Van den Bossche, and Joeri Van Mierlo. "Lithium-ion batteries: Comprehensive technical analysis of second-life batteries for smart grid applications." In 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). IEEE, 2017. http://dx.doi.org/10.23919/epe17ecceeurope.2017.8099385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Domenech, Carmen Bas, and Miguel Heleno. "Estimating the Value of Second Life Batteries for Residential Prosumers." In 2019 IEEE Milan PowerTech. IEEE, 2019. http://dx.doi.org/10.1109/ptc.2019.8810647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muhammad, M., P. S. Attidekou, M. Ahmeid, Z. Milojevic, and S. Lambert. "Sorting of Spent Electric Vehicle Batteries for Second Life Application." In 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE). IEEE, 2019. http://dx.doi.org/10.1109/sege.2019.8859921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tran, Minh, Tuomas Messo, Roni Luhtala, Jussi Sihvo, and Tomi Roinila. "Used Lithium-Ion Batteries in Second-Life Applications: Feasibility Study." In 2022 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2022. http://dx.doi.org/10.1109/ecce50734.2022.9947891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kruse, Lars Eike, Jendrik Schill, Olaf Landsiedel, and Stephan Pachnicke. "Optical Monitoring of Second-Life Batteries Enhanced by Machine Learning." In 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2022. http://dx.doi.org/10.1109/pedg54999.2022.9923150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keeli, Anupama, and Ratnesh K. Sharma. "Optimal Sizing of Second Life Battery to Reduce CO2 Emissions." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91062.

Full text
Abstract:
Batteries used in electric vehicles cannot be used in the vehicle once the battery capacity falls to 70% to 80%. The remaining capacity of these batteries can be used in various applications so that they can be kept out of landfills. One of the applications is to use the second life batteries to reduce carbon dioxide (CO2) emissions from the grid. The CO2 emissions from the grid are high during the non-peak hours when only the base plants are operating. We charge the second life battery when the power from renewable resources is available and discharge the battery when there is peak load. With the increase in renewable generation such as photo voltaic, wind energy the carbon foot print changes with the hour of the day. The demonstrated technique optimizes the use of second life battery to reduce the emissions considering uncertainties in the load and availability of renewable power.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography