To see the other types of publications on this topic, follow the link: Sediment transport Shorelines Beach erosion.

Dissertations / Theses on the topic 'Sediment transport Shorelines Beach erosion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Sediment transport Shorelines Beach erosion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Schmied, Lauren. "Cross shore sediment transport and beach profile change." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 297 p, 2006. http://proquest.umi.com/pqdweb?did=1203570311&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Whitcombe, Leslie John. "Sediment transport processes, with particular reference to Hayling Island." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nairn, Robert Bruce. "Prediction of cross-shore sediment transport and beach profile evolution." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Faries, Joseph W. C. "A new conductivity sediment concentration profiler (CCP) for the measurement of nearbed sediment concentrations application in the swash zone on a laboratory beach /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 150 p, 2009. http://proquest.umi.com/pqdweb?did=1889078541&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Figlus, Jens. "Seasonal and yearly profile changes of Delaware beaches." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 198 p, 2007. http://proquest.umi.com/pqdlink?did=1253510781&Fmt=7&clientId=79356&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cambazoglu, Mustafa Kemal. "Numerical modeling of cross-shore sediment transport and sandbar migration." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31744.

Full text
Abstract:
Thesis (Ph.D)--Civil and Environmental Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Kevin A. Haas; Committee Member: Emanuele Di Lorenzo; Committee Member: Hermann M. Fritz; Committee Member: Paul A. Work; Committee Member: Terry W. Sturm. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
7

Teran, Cobo Pablo. "Model simulations of bar evolution on a large scale laboratory beach." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 150 p, 2007. http://proquest.umi.com/pqdweb?did=1338884401&sid=15&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Ruoshu. "Comparison of Beach Changes Induced by Two Hurricanes along the Coast of West-Central Florida." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7388.

Full text
Abstract:
The beach profiles pre-and post-the Hurricane Hermine (2016) and Irma (2017) along the Sand Key barrier island were collected to quantify longshore variations in storm induced beach changes as well as to compare the beach changes caused by hydrodynamic conditions of the two different hurricanes. Cross-shore beach profile are examined in 4 sections including dune field, dry beach, sand bar and whole beach to calculate beach change. The volume change for each section and shoreline contour change before and post the hurricane was computed. Hydrodynamic conditions were obtained from adjacent NOAA’s tide and wave gauges. Both hurricanes generated high offshore waves, with Hurricane Hermine generated waves mostly from southwest, and Irma generated waves dominantly from northeast. Hurricane Hermine generated a storm surge of up to 1 m. While hurricane Irma generated negative surge of -1.1 m. Several beach profile parameters such as the foreshore slope, as well as volume changes of dune field, dry beach and sand bar induced by the two hurricanes were computed. Under both storms, the foreshore slope became steeper after the storm north of the headland, while the foreshore slope became gentler south of the headland. Storm surge plays an important role in inducing beach erosion. Hurricane Hermine with 1 m surge caused significant dune erosion in terms of dune volume loss and dune line retreat. On the other hand, hurricane Irma with negative surge only caused minor dune erosion. Sand bar moved seaward during both hurricanes, with Irma induced a much greater offshore movement than that of Hermine. In addition, the sand bar height decreased significantly during Irma. In contrast, during Hermine the sand bar height remained largely similar before and after the storm. Large alongshore variations in beach erosion was observed during both hurricanes as influenced by background erosion rate and direction of incident waves as they approaching the curved shoreline. For both storms, the erosional hot spot at North Sand Key with the highest background erosion rate suffered the most sand loss over the entire profile. More sand was eroded from the dry beach along the broad headland than along the beaches both north and south of it. Corresponding to the higher volume of dry beach erosion, shoreline retreat was also the largest around the headland. During Hurricane Hermine, the headland sheltering of the southerly approaching waves resulted in more erosion to the south than to the north. The opposite happened during Hurricane Irma with northerly approaching wave. More erosion occurred to the north of the headland than that to the south. Systematic measurement of beach profile beach and after hurricanes can improve our understanding on beach morphodynamics on storm induced beach changes.
APA, Harvard, Vancouver, ISO, and other styles
9

Srisuwan, Chatchawin. "Size-selective sediment transport and cross-shore profile evolution in the nearshore zone." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45892.

Full text
Abstract:
Cross-shore bathymetric evolution in the nearshore zone often leads to threatening consequences such as beach erosion and shoreline retreat that concern the coastal community. A new, comprehensive cross-shore morphodynamic model was developed that can be used to describe and predict these phenomena. The study included both physical and numerical models that were designed to focus on the influence of sediment size characteristics on the cross-shore sediment transport process. For a profile equilibrium timescale, three types of beach profiles with different sediment mixtures were simulated in a small-scale, random-wave flume laboratory using erosive, storm, and accretive wave conditions. Dynamic relationships between the sediment grain sorting and beach profile changes were found to be evident as size-graded sediment fractions tended to relocate to different energetic zones along the cross-shore profiles. Existing phase-averaged wave and circulation models were utilized together with several new intra-wave modules for predicting important hydrodynamic parameters that were validated using the experimental data. A novel, multi-size sediment transport model was formulated to compute individual transport rates of size-graded sediment fractions while accounting for their interaction and non-linear size dependencies. The model was coupled with a new grain sorting model that resolves cross-shore grain sorting and vertical grain lamination. Compared to a traditional modeling approach, the new comprehensive model proved to offer superior modeling accuracy for both profile evolution and sediment grain size change. The use of the model is most advantageous for a condition with intensive grain sorting, a common scenario on a natural beach profile. Equilibrium beach profile is also better simulated by the model as size-graded fractions are predicted to relocate to different zones where they could withstand local hydrodynamics. Other new components that also help improve the modeling capability include the terms for wave-breaking and bed-slope effects, wave-crest sediment flux, and acceleration-induced bottom-shear stress. Besides superior profile modeling accuracy, sediment size characteristics and their spatial and temporal variations are also a useful set of information provided by the new model.
APA, Harvard, Vancouver, ISO, and other styles
10

Chenault, Carla D. "Understanding long-term beach width change in the Oceanside littoral cell, California." Diss., Digital Dissertations Database. Restricted to UC campuses, 2007. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhu, Zhaoxu. "Storm Induced Beach Profile Changes along the Coast of Treasure Island, West-Central Florida, U.S.A." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6608.

Full text
Abstract:
Storms play a significant role in beach morphodynamics. Storm-induced beach-profile changes and their longshore variations are investigated in this study. The impacts of four summer tropical storms and two series of winter storms over the last 10 years along the coast of Treasure Island were documented. Tropical storms Alberto in 2006, Fay in 2008, Debby in 2012, Hermine in 2016 and winter storms in winter seasons of 2014 and 2015 are discussed in this study. In general, the Treasure Island beach experienced more erosion generated by tropical storms with greater intensity, but shorter duration, as compared to winter storms due to lower waves, weaker wind and smaller storm surge. Winter storms typically do not generate high storm surge and generally do not cause erosion at the dune and back beach unless the pre-storm beach is very narrow. Based on pre- and post-storm beach-profile surveys along the coast of Treasure Island, the northern end of the barrier island, located directly downdrift of the John’s Pass tidal inlet, experienced erosion along the entire profile during the storms. Along the middle part of Treasure Island, dry beach suffered erosion during both the tropical storms and winter seasons while the nearshore zone suffered erosion during the tropical storms and experienced deposition during the winter seasons. Sunset Beach at the southern end experienced severe erosion during tropical storm Debby, but not during other storms. Winter seasons caused relatively small changes to the morphology of Sunset Beach. Deposition happened in the nearshore zone along Sunset Beach during winter storms. Survey line R143 at the very south end of Treasure Island suffered erosion in tropical storm Alberto, Debby and Hermine. Beach profile changes induced by Tropical storm Fay was different as compared to other tropical storms. Considerably less beach erosion occurred due to the large distance of the storm path from the study area. Overall, Sunshine Beach, bounded by John’s Pass inlet at northern end of Treasure Island, was influenced both by wave conditions and the tidal flows. Sediment transport was to the north along the coast of Sunshine Beach when wind direction was from south, e.g. during tropical storm Fay. However the northward sediment transport was blocked by the John’s Pass jetty. Therefore, deposition occurred at Sunshine Beach during tropical storm Fay. When wind direction was from north (e.g. during tropical storms Alberto and during the winter seasons), southward sediment transport was generated. Erosion occurs during the northerly approaching storms. The morphodynamics of the middle section of Treasure Island are influenced by the sand supply at the attachment point of John’s Pass ebb delta. Sunset Beach experienced various levels of erosion during the tropical storms not only because of the high wave, strong wind and high water level generated by storms, but also due to the higher waves associated with an offshore dredged pit.
APA, Harvard, Vancouver, ISO, and other styles
12

Kularatne, Kottabogoda Angidigedera Samantha Rangajeewa. "Factors influencing sediment re-suspension and cross-shore suspended sediment flux in the frequency domain." University of Western Australia. School of Environmental Systems Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0005.

Full text
Abstract:
[Truncated abstract] With rapidly increasing population densities along coastlines and rising global sea levels, coastal protection has become a major concern for coastal communities. Predicting sediment transport in nearshore regions, however, is one of the most challenging tasks faced by coastal researchers in designing coastal structures or beach nourishment schemes. Although nearshore sediment transport mainly occurs in the longshore direction, cross-shore sediment transport is crucial in determining the shoreline evolution and beach morphology . . . This study investigated the factors influencing sediment re-suspension and cross-shore suspended sediment flux in the frequency domain through a series of field measurements conducted at several different locations and a numerical model. Only oscillatory flow components were examined and the mean flow components were not considered. Although many different factors such as cross-shore location with respect to breaker line, significant wave height to water depth ratio (Hs/h), normalised horizontal velocity skewness (/‹u²›³/²), median grain size (d50), breaker type, and wave groupiness appeared to influence the magnitude of cross-shore suspended sediment flux, bed ripples was identified as the major contributing factor in changing the direction of suspended sediment flux due to incident swell waves. Moreover, the direction changed significantly with ripple type. High frequency measurements, obtained to examine the influence of turbulent kinetic energy (TKE) on higher sediment suspension events observed under wave groups indicated that higher TKE was generated at the seabed by approaching wave groups, which in turn resulted in higher suspension events.°1
APA, Harvard, Vancouver, ISO, and other styles
13

Seker-Elci, Sebnem. "Modeling of Hydrodynamic Circulation and Cohesive Sediment Transport and Prediction of Shoreline Erosion in Hartwell Lake, SC/GA." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5081.

Full text
Abstract:
This dissertation addresses hydrodynamics, sediment transport and shoreline erosion within the main pool of Hartwell Lake, a U.S. Army Corps of Engineers reservoir built on the Savannah River, between Anderson, South Carolina, and Hartwell, Georgia, USA. A U.S. Environmental Protection Agency (EPA) Superfund site is located on a tributary of Hartwell Lake because of high concentrations of polychlorinated biphenyls (PCBs) in the lake sediments. PCBs are hydrophobic and typically bond to fine-grained sediments, such as silts and clays. The primary goal of the study was to document, through field measurements, and model, using a 3-D numerical model of flow and sediment transport, the fate of sediments within the main pool of Hartwell Lake. To document forty years of sedimentation within the reservoir, bathymetric survey data were collected in Hartwell Lake during the period, February 10-14, 2003. The bathymetric surveys revealed that deposition was, in places, up to two meters thickness in forty years. During the field campaign, flow velocity measurements were made primarily to provide a check on the magnitude of the velocities predicted by the numerical model used in the study. Shoreline surveys provided data for the modeling procedure for shoreline change. This in turn facilitated specification of the sediment flux into the domain via shoreline erosion. Hartwell Lake is located near the southern terminus of the Appalachian mountain chain in the Piedmont region. Sediments contain high fractions of silt and clay. Hartwell Lake has a shoreline length of 1548 km, and erosion of lake shorelines has been a significant problem for many homeowners. As of September 2002, there were 1123 permitted riprap installations, and 393 permitted retaining walls, for a total of 1516 erosion control structures along the lakeshores (source: USACE Hartwell Office), an indication of the magnitude of the erosion problem. To quantify the erosion rate of the shorelines, an approach that relates erosion rates to wind wave forces was developed. A simplified representation of the shape of beach profiles is employed. Historical shoreline change rates were quantified by comparing available digital aerial photos taken in different years, and the erosion prediction model was calibrated using these computed erosion rates. Sediments derived from shoreline erosion were introduced to the model as an additional source along the model boundary, and the fate of the eroding sediments was investigated via numerical modeling.
APA, Harvard, Vancouver, ISO, and other styles
14

Roberts, Tiffany M. "Limts Of Beach And Dune Erosion In Response To Wave Runup From Large-Scale Laboratroy Data." Scholar Commons, 2008. https://scholarcommons.usf.edu/etd/478.

Full text
Abstract:
The SUPERTANK dataset is analyzed to examine the upper limit of beach change in response to elevated water level induced by wave runup. Thirty SUPERTANK runs are investigated, including both erosional and accretionary wave conditions under random and monochromatic waves. Two experiments, one under a spilling and one under a plunging breaker-type, from the Large-Scale Sediment Transport Facility (LSTF) are also analyzed. The upper limit of beach change approximately equals the maximum vertical excursion of swash runup. Exceptions to this direct relationship are those with beach or dune scarps when gravity-driven changes, i.e., avalanching, become significant. The vertical extent of wave runup, Rmax, above mean water level on a beach without a scarp is found to approximately equal the significant breaking wave height, Hbs. Therefore, a simple formula Rmax = Hbs is proposed. The linear relationship between maximum runup and breaking wave height is supported by a conceptual derivation. This predictive formula reproduced the measured runup from a large-scale 3-dimensional movable bed physical model. Beach and dune scarps substantially limit the uprush of swash motion, resulting in a much reduced maximum runup. Predictions of wave runup are not improved by including a slope-dependent surf-similarity parameter. The limit of wave runup is substantially less for monochromatic waves than for random waves, attributed to absence of low-frequency motion for monochromatic waves.
APA, Harvard, Vancouver, ISO, and other styles
15

Abbe, Timothy. "Sediment dynamics on the shore slopes of the Puget Island reach of the Columbia River, Oregon and Washington." PDXScholar, 1989. https://pdxscholar.library.pdx.edu/open_access_etds/4306.

Full text
Abstract:
Water waves generated by wind and ships; ebb tidal currents; water level fluctuations; and dredging impact sediment transport in shallow water of the lower Columbia River. Observations were made over a one-year period after sand dredged from the navigation channel was placed at three study sites in the Puget Island region, 46°15'N 123°25'W, Oregon and Washington. Sediment composition is fine to medium grained, low density dacitic volcanics with small percentages of pumice, heavy minerals, and basalt.
APA, Harvard, Vancouver, ISO, and other styles
16

Brutsche, Katherine. "First Year Sedimentological Characteristics and Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3019.

Full text
Abstract:
Dredging is often conducted to maintain authorized depths in coastal navigation channels. Placement of dredged sediment in the form of nearshore berms is becoming an increasingly popular option for disposal. Compared to direct beach placement, nearshore berms have fewer environmental impacts such as shore birds and turtle nesting, and have more lenient sediment compatibility restrictions. Understanding the potential morphological and sedimentological evolution is crucial to the design of a nearshore berm. Furthermore, the artificial perturbation generated by the berm installation provides a unique opportunity to understand the equilibrium process of coastal morphodynamics. Matanzas Pass and Bowditch Point, located on the northern tip of Estero Island in west-central Florida were dredged in October 2009. The dredged material was placed approximately 600 ft offshore of Fort Myers Beach and 1.5 miles southeast of Matanzas Pass, in the form of an artificial berm. Time-series surveys and sediment sampling were conducted semi-annually in order to quantify sedimentological characteristics and morphological changes within the first year after construction of the berm. The artificial berm at Fort Myers Beach is composed mainly of fine sand. Patches of mud were found throughout the study area, with the highest concentrations being in the trough landward of the berm, and offshore southeast of the berm area. The highest concentration of carbonates was found in the swash zone, as well as at the landward toe of the berm, which coincides with the coarsest sediment. The overall mud content of the berm is lower than that of the dredged sediment, thus indicating a coarsening of the berm over time. The reduction in fines as compared to the original dredged sedimet could also indicate a selective transport mechanism that moves finer material offshore, and coarser material landward, a desirable trend for artificial berm nourishment. During the course of the first year, the berm migrated landward and increased in elevation. Onshore migration occurred mostly within the first 6 months. Along with onshore migration, the shape of the berm changed from a symmetrical bell curve to an asymmetrical shape with a steep landward slope. There is no clear spatial trend of volume change alongshore within the berm area, indicating that sediment transport is mostly cross-shore dominated. A salient was formed landward of the northern portion of the berm. Several gaps were created during berm construction due to dredging and placement techniques. These dynamic gaps are likely maintained by rip currents through them. This study showed that the Fort Myers Beach berm is active, due to its landward migration during the first year after construction.
APA, Harvard, Vancouver, ISO, and other styles
17

Abanades, Tercero Javier. "Beach morphodynamics in the lee of a wave farm : synergies with coastal defence." Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/8807.

Full text
Abstract:
Wave energy has a great potential in many coastal areas thanks to a number of advantages: the abundant resource, the highest energy density of all renewables, the greater availability factors than e.g. wind or solar energy; and the low environmental and particularly visual impact. In addition, a novel advantage will be investigated in this work: the possibility of a synergetic use for carbon-free energy production and coastal protection. In this context, wave energy can contribute not only to decarbonising the energy supply and reducing greenhouse emissions, but also to mitigating coastal erosion. In effect, wave farms will be deployed nearshore to generate electricity from wave energy, and therefore the leeward coast will be exposed to a milder wave climate, which can potentially mitigate coastal erosion. This thesis aims to determine the effectiveness of wave farms for combating coastal erosion by means of a suite of state-of-the-art process-based numerical models that are applied in several case studies (Perranporth Beach,UK; and Xago Beach, Spain) and at different time scales (from the short-term to the long-term). A wave propagation model, SWAN, is used to establish the effects of the wave farm on the wave conditions. The outcomes of SWAN will be coupled to XBeach, a costal processes model that is applied to analyse the effects of the milder wave conditions on the coast. In addition to these models, empirical classifications and analytical solutions are used as well to characterise the alteration of the beach morphology due to the presence of a wave farm. The analysis of the wave farm impacts on the wave conditions and the beach morphology will be carried out through a set of ad hoc impact indicators. Parameters such as the reduction in the significant wave height, the performance of the wave farm, the effects on the seabed level and the erosion in the beach face area are defined to characterise these impacts. Moreover, the role played by the key design parameters of wave farms, e.g. farm-to-coast distance or layout, is also examined. The results from this analysis demonstrate that wave farms, in addition to their main purpose of generating carbon-free energy, are capable of reducing erosion at the coast. Storm-induced erosion is significantly reduced due to the presence of wave farms in the areas most at risk from this phenomenon. However, the effects of wave farms on the coast do not lend themselves to general statements, for they will depend on the wave farm design (WEC type, layout and farm-to-coast distance) and the characteristics of the area in question, as shown in this document for Perranporth and Xago. In summary, this synergy will improve the economic viability of wave farm projects through savings in conventional coastal defence measures, thereby fostering the development of this nascent renewable, reducing greenhouse gas emission and converging towards a more sustainable energy model. Thus, wave energy contributes to mitigating climate change by two means, one acting on the cause, the other on the effect: (i) by bringing down carbon emissions (cause) through its production of renewable energy, and (ii) by reducing coastal erosion (effect).
APA, Harvard, Vancouver, ISO, and other styles
18

Montoya, Luis Humberto. "Analysis of a 10-year Nearshore Wave Database and its Implications to Littoral Processes." UNF Digital Commons, 2014. http://digitalcommons.unf.edu/etd/494.

Full text
Abstract:
The variability of the nearshore wave climate is investigated via the analysis of over 10 years of Acoustic Doppler Current Profiler (ADCP) data from a gauge deployed at Melbourne Beach, FL. Examples of large yearly variability in the significant wave height, peak period, mean direction and energy distribution are found in the data. Estimates of the averaged spectra for the entire record show that the average wave energy is distributed almost symmetrically with the peak being close to shore-normal. It was expected that the peak would be shifted towards the north of shore-normal considering net north to south longshore sediment transport at this location. Further analysis of the directional spectra partitioned into three directional windows reveals that waves from the southeast (avg. Hmo = 0.78 m) are less energetic than those from the northeast (avg. Hmo = 0.87 m), but they arrive from the south 53% more often. Additionally, energy-based significant wave height (Hmo), peak period (Tp) and mean period (Tmean) distributions are studied and modeled with notable success. Radiation stress (Sxy) estimates are computed using both rigorous integration as well as parameter-based approximations. These two estimates are correlated but the parameter-based approximation over predicts Sxy by 42%, because this method assigns all the wave energy into one direction (Ruessink et al., 2001). Finally, it is shown by the Sxy total average that the net longshore forcing at this location is indeed north to south, but yearly and seasonal variability were quite high. The results indicate that short-term wave records may not provide accurate information for planning purposes. For example, if only 3 months of data were collected at this site, there would be a 33% chance that the mean longshore forcing would be erroneously directed from south to north.
APA, Harvard, Vancouver, ISO, and other styles
19

"Turbulence, Sediment Transport, Erosion, and Sandbar Beach Failure Processes In Grand Canyon." Doctoral diss., 2015. http://hdl.handle.net/2286/R.I.30069.

Full text
Abstract:
abstract: This research examines lateral separation zones and sand bar slope stability using two methods: a parallelized turbulence resolving model and full-scale laboratory experiments. Lateral flow separation occurs in rivers where banks exhibit strong curvature, for instance canyon rivers, sharp meanders and river confluences. In the Colorado River, downstream Glen Canyon Dam, lateral separation zones are the principal storage of sandbars. Maximum ramp rates have been imposed to Glen Canyon Dam operation to minimize mass loss of sandbars. Assessment of the effect of restricting maximum ramp rates in bar stability is conducted using multiple laboratory experiments. Results reveal that steep sandbar faces would rapidly erode by mass failure and seepage erosion to stable slopes, regardless of dam discharge ramp rates. Thus, continued erosion of sand bars depends primarily of turbulent flow and waves. A parallelized, three-dimensional, turbulence resolving model is developed to study flow structures in two lateral separation zones located along the Colorado River in Grand Canyon. The model employs a Detached Eddy Simulation (DES) technique where variables larger than the grid scale are fully resolved, while Sub-Grid-Scale (SGS) variables are modeled. The DES-3D model is validated using ADCP flow measurements and skill metric scores show predictive capabilities of simulated flow. The model reproduces the patterns and magnitudes of flow velocity in lateral recirculation zones, including size and position of primary and secondary eddy cells and return current. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer, becoming three-dimensional without preferred orientation downstream. The DES-3D model is coupled with a sediment advection-diffusion formulation, wherein advection is provided by the DES velocity field minus particles settling velocity, and diffusion is provided by the SGS. Results show a lateral recirculation zone having a continuous export and import of sediment from and to the main channel following a pattern of high frequency pulsations of positive deposition fluxes. These high frequency pulsations play an important role to prevent an oversupply of sediment within the lateral separation zones. Improved predictive capabilities are achieved with this model when compared with previous two- and three-dimensional quasi steady and steady models.
Dissertation/Thesis
Appendix C Video 3.1
Appendix C Video 3.2
Appendix C Video 3.3
Appendix C Video 3.4
Appendix C Video 3.5
Appendix C Video 3.6
Appendix C Video 3.7
Appendix F Video 4.1.a
Appendix F Video 4.1.b
Appendix F Video 4.2
Doctoral Dissertation Geography 2015
APA, Harvard, Vancouver, ISO, and other styles
20

Scholar, Deirdre Claire. "Pocket beaches and longshore sediment transport Yellow Bank Beach, Santa Cruz County, California /." Diss., 1998. http://catalog.hathitrust.org/api/volumes/oclc/40184573.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Willis, Cope M. "Assessing natural and human alterations to coastal sediment supply in California and the impacts on regional beach sustainability." Diss., 2002. http://catalog.hathitrust.org/api/volumes/oclc/51066652.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography