Academic literature on the topic 'Segment trees'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Segment trees.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Segment trees"
Blankenagel, G., and R. H. G�ting. "External segment trees." Algorithmica 12, no. 6 (December 1994): 498–532. http://dx.doi.org/10.1007/bf01188717.
Full textEaswarakumar, K. S., and T. Hema. "BITS-Tree -- An Efficient Data Structure for Segment Storage and Query Processing." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 11, no. 10 (December 5, 2013): 3108–16. http://dx.doi.org/10.24297/ijct.v11i10.2980.
Full textButterfield, R. P., R. P. Crook, R. Adams, and R. Morris. "Radial Variation in Wood Specific Gravity, Fibre Length and Vessel Area for Two Central American Hardwoods: Hyeronima Alchorneoides and Vochysia Guatemalensis: Natural and Plantation-Grown Trees." IAWA Journal 14, no. 2 (1993): 153–61. http://dx.doi.org/10.1163/22941932-90001310.
Full textChang, Yeim-Kuan, and Yung-Chieh Lin. "Dynamic Segment Trees for Ranges and Prefixes." IEEE Transactions on Computers 56, no. 6 (June 2007): 769–84. http://dx.doi.org/10.1109/tc.2007.1037.
Full textvan Kreveld, Marc J., and Mark H. Overmars. "Union-copy structures and dynamic segment trees." Journal of the ACM 40, no. 3 (July 1993): 635–52. http://dx.doi.org/10.1145/174130.174140.
Full textNoest, A. J. "Conservative trees have universal segment measure distributions." Mathematical Biosciences 80, no. 2 (August 1986): 173–86. http://dx.doi.org/10.1016/0025-5564(86)90043-x.
Full textAndriantiana, Eric Ould Dadah, Stephan Wagner, and Hua Wang. "Extremal problems for trees with given segment sequence." Discrete Applied Mathematics 220 (March 2017): 20–34. http://dx.doi.org/10.1016/j.dam.2016.12.009.
Full textGerbessiotis, Alexandros V. "An architecture independent study of parallel segment trees." Journal of Discrete Algorithms 4, no. 1 (March 2006): 1–24. http://dx.doi.org/10.1016/j.jda.2005.01.001.
Full textJiao, Jichao, and Zhongliang Deng. "Individual Building Rooftop and Tree Crown Segmentation from High-Resolution Urban Aerial Optical Images." Journal of Sensors 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/1795205.
Full textBloom, J. Z. "The use of neural networks and rule induction for customer segmentation and target market profiling." South African Journal of Economic and Management Sciences 5, no. 1 (March 31, 2002): 233–57. http://dx.doi.org/10.4102/sajems.v5i1.2673.
Full textDissertations / Theses on the topic "Segment trees"
Franco, Alvaro Junio Pereira. "Consultas de segmentos em janelas: algoritmos e estruturas de dados." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-09122009-145514/.
Full textIn this work we study problems about point and segment query in rectangular windows whose edges are parallel to the axis. Given a set of segments (or points) in the plane. In a first phase these segments are organized in data structures such that queries for segments in windows are done more efficiently. In the second phase windows are given online. The data structures are balanced trees as range tree, priority search tree, interval tree and segment tree. In this master\'s thesis we show in details data structures and algorithms for solving windowing queries to sets of points (unidimensional version of the problem) and of segments in the plane, as horizontal and vertical as any orientation (without crossings). The algorithms are analysed rigorously regarding their space and time used. We implement the algorithms studied, building a library of these data structures. Finally, we present, the results of computational experiments with instances of the problem.
Sosna, Dieter. "Document Version Management Using an Adapted Segment Tree." Universität Leipzig, 1997. https://ul.qucosa.de/id/qucosa%3A34515.
Full textQureshi, Touseef Ahmad. "Extraction of arterial and venous trees from disconnected vessel segments in fundus images." Thesis, University of Lincoln, 2016. http://eprints.lincoln.ac.uk/23687/.
Full textSheppard, Paul R., Richard L. Holmes, and Lisa J. Graumlich. "The "Many Fragments Curse:" A Special Case of the Segment Length Curse." Tree-Ring Society, 1997. http://hdl.handle.net/10150/262370.
Full textSarigul, Erol. "Interactive Machine Learning for Refinement and Analysis of Segmented CT/MRI Images." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/25954.
Full textPh. D.
Fujii, Sena. "The bronchial tree of the human embryo: an analysis of variations in the bronchial segments." Kyoto University, 2020. http://hdl.handle.net/2433/259733.
Full textOunekham, Khamsene. "Developing volume and taper equations for Styrax tonkinensis in Laos." Thesis, University of Canterbury. School of Forestry, 2009. http://hdl.handle.net/10092/3450.
Full textSaid, Mouhammad. "Géométrie multi-résolution des objets discrets bruités." Grenoble, 2010. http://www.theses.fr/2010GRENM084.
Full textBoundary curves are compact and descriptive means for defining regions or shapes in the plane. It is well known that shapes should be studied at different scales. This has led to the development of regular and irregular pyramids for shape analysis and scene understanding. However there exists no analytical description of the multiresolution of a digital shape, contrary to the famous scale-space analysis in the continuous world. Moreover, in the context of digital geometry, geometric primitives such as lines, circles or polynomials are of a great importance. For instance, pieces of digital lines are excellent tangent estimators, circular arcs estimate curvature. It is thus fundamental to keep them in the multiscale analysis of digital boundaries. One of the contribution of this thesis is to give new analytical results on the multiresolution of Digital Straight Line (DSL) and Digital Straight Segment (DSS). Figueiredo is the first one who studied the behavior of 8-connected lines when changing the resolution of the grid [41]. In this work, we consider a standard digital line. The objective is to provide an analytic description of digital straight line DSL when the resolution of the grid is changed by an arbitrary factor. We also prove that their subsampling is a standard digital line. As analytical formulae for DSS appear to be a much harder problem and DSS are finite parts of DSL, we propose an indirect path to DSS multiresolution. Given a DSS, we build two DSL whose intersection contains it and whose main connected part has the same arithmetic characteristics as well as the same number of patterns. We note here that we propose new results about the combinatorics of such digital line intersections. We determine the multiresolution of DSS by examining the multiresolution of the intersection of these two DSL. We give a new analytical description of this set with arithmetic inequalities. We also address the problem of computing the exact characteristics of any subsegment of digital straight line with known characteristics. We present two new algorithms SmartDSS and ReversedSmartDSS that solve this problem. Their principle is to climb the Stern-Brocot tree of fraction either in a top-down or bottom-up way. Their worst-time complexity are better than the classical DSS recognition algorithm. Both algorithms are useful to compute efficiently the multiresolution of a DSS. The noise along digital contours is not really detected but is rather canceled out by thickening digital straight segments. The thickness is tuned by a user and set globally for the contour. To overcome this issue, we propose an original strategy to detect locally both the amount of noise and the meaningful thickness of each point of a digital contour. This work is based on the asymptotic properties of blurred segments with different thicknesses and forms an alternative to the multiscale approach to noise detection
García, Martin Silvana María. "Propuesta de mejora en la segmentación comercial de clientes del segmento grandes empresas de tres de los principales bancos del Perú." Bachelor's thesis, Universidad del Pacífico, 2019. http://hdl.handle.net/11354/2624.
Full textSturla, Rojas Giovanna Paulina. "Resistencia adhesiva a dentina radicular de dos tipos de cementos de resina compuesta en tres segmentos de la raíz." Tesis, Universidad de Chile, 2011. http://repositorio.uchile.cl/handle/2250/133379.
Full textAutor no autoriza el acceso a texto completo de su documento
Los cementos de resina compuesta autoadhesivos se desarrollaron con el fin de simplificar la técnica de aplicación manteniendo la misma eficacia de los cementos que requieren de acondicionamiento previo. Si bien algunos estudios demuestran un mejor comportamiento en cuanto a la fuerza adhesiva en dentina coronaria lograda con los cementos tradicionales como RelyX ARC con su sistema adhesivo, respecto al cemento RelyX U100 autoadhesivo, no existen estudios similares que demuestren este comportamiento en dentina radicular. Objetivo: Establecer las diferencias en el grado de resistencia adhesiva lograda en el segmento cervical, medio y apical de dentina radicular que presentan dos sistemas de cemento de resina compuesta diferentes. Material y Método: 30 piezas dentarias humanas unirradiculadas sanas, recientemente extraídas, fueron seccionadas a nivel del límite amelocementario. La raíz fue dividida en dos hemirraíces, las que a su vez, fueron seccionadas en tres segmentos: cervical, medio y apical. Se obtuvieron 180 muestras de dentina radicular separadas en 6 grupos de 30 muestras cada uno, a las que se les adhirió un cilindro de resina compuesta de 2 mm de diámetro con el cemento y sistema adhesivo correspondiente: Grupo A1: Segmento cervical/ RelyX U100; A2: Segmento medio/ RelyX U100; A3: Segmento apical/ RelyX U100; B1: Segmento cervical/ RelyX ARC+ SingleBond2; B2: Segmento medio/ RelyX ARC+ SingleBond2; B3: Segmento apical/ RelyX ARC+ SingleBond2. Los cuerpos de prueba fueron testeados en la máquina de ensayos universales Instron, que aplicó fuerzas de cizallamiento a una velocidad de 2 mm/min. Se realizó análisis estadístico descriptivo e inferencial, con un nivel de significancia de 0,05. Resultados: Los promedios de resistencia adhesiva expresados en megapascales fueron: A1=26,24; A2=24,61; A3=22,50; B1=30,07; B2=25,98; B3=22,17. 5 Conclusión: RelyX ARC+ SingleBond2, presentó mayores valores de adhesión que RelyX U100 en el segmento cervical y medio, no así en el segmento apical. Estas diferencias no fueron estadísticamente significativas (p>0,05). En ambos sistemas adhesivos, el mayor grado de resistencia adhesiva se presentó en el segmento cervical, seguido del segmento medio y apical, encontrándose sólo diferencias significativas en el sistema RelyX ARC+ SingleBond2 entre el segmento cervical y apical (p=0,014) a través del test de Tukey.
Books on the topic "Segment trees"
Taylor, Wesley P. An application of existing code for a generalized suffix tree to the identification of rRNA segments exclusive to taxonomic groups: A case study. 1999.
Find full textDewhurst, Alexander Timothy, and Brigitta Brandner. Intensive care management after vascular surgery. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0370.
Full textBook chapters on the topic "Segment trees"
van Kreveld, Marc J., and Mark H. Overmars. "Concatenable segment trees." In STACS 89, 493–504. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0029010.
Full textMitchell, William J., and John R. Steel. "Closure Under Initial Segment." In Fine Structure and Iteration Trees, 96–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-21903-4_11.
Full textNiquefa, Rafael, Juan Mendivelso, Germán Hernández, and Yoan Pinzón. "Segment and Fenwick Trees for Approximate Order Preserving Matching." In Communications in Computer and Information Science, 131–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66963-2_13.
Full textBala, Kavita, Julie Dorsey, and Seth Teller. "Interactive Ray-Traced Scene Editing Using Ray Segment Trees." In Eurographics, 31–44. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6809-7_4.
Full textRacherla, Gopal, Sridhar Radhakrishnan, and B. John Oommen. "A New Geometric Tool for Pattern Recognition - An Algorithm for Real Time Insertion of Layered Segment Trees." In Lecture Notes in Computer Science, 214–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44732-6_22.
Full textDey, Sanjana, Ramesh K. Jallu, and Subhas C. Nandy. "Minimum Spanning Tree of Line Segments." In Lecture Notes in Computer Science, 529–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94776-1_44.
Full textLee, Inbok, Jeong-Shik Mun, and Sung-Ryul Kim. "IP Address Lookup with the Visualizable Biased Segment Tree." In Fuzzy Systems and Knowledge Discovery, 1137–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539506_142.
Full textKan, Tomohiro, Shoichi Higuchi, and Kouichi Hirata. "Segmental Mapping and Distance for Rooted Labeled Ordered Trees." In Algorithms and Computation, 485–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35261-4_51.
Full textCousot, Patrick, Radhia Cousot, and Laurent Mauborgne. "A Scalable Segmented Decision Tree Abstract Domain." In Time for Verification, 72–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13754-9_5.
Full textBose, Prosenjit, Michael E. Houle, and Godfried Toussaint. "Every set of disjoint line segments admits a binary tree." In Algorithms and Computation, 20–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58325-4_162.
Full textConference papers on the topic "Segment trees"
Chang, Yeim-Kuan, Yung-Chieh Lin, and Chen-Yu Lin. "Grid of Segment Trees for Packet Classification." In 2010 24th IEEE International Conference on Advanced Information Networking and Applications. IEEE, 2010. http://dx.doi.org/10.1109/aina.2010.38.
Full textChang, Yeim-Kuan, and Hsin-Mao Chen. "Set Pruning Segment Trees for Packet Classification." In 2011 IEEE 25th International Conference on Advanced Information Networking and Applications (AINA). IEEE, 2011. http://dx.doi.org/10.1109/aina.2011.69.
Full textGawarkiewicz, Michał, Piotr Wiśniewski, and Krzysztof Stencel. "Enhanced segment trees in object-relational mapping." In the 6th Balkan Conference in Informatics. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2490257.2490291.
Full textStan, Ioan, Dan Toderici, and Rodica Potolea. "Segment Trees based Traffic Congestion Avoidance in Connected Cars Context." In 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2018. http://dx.doi.org/10.1109/iccp.2018.8516609.
Full textWang, Chih-Hang, Sheng-Hao Chiang, Shan-Hsiang Shen, De-Nian Yang, and Wen-Tsuen Chen. "Multicast Traffic Engineering with Segment Trees in Software-Defined Networks." In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. IEEE, 2020. http://dx.doi.org/10.1109/infocom41043.2020.9155264.
Full textHampe, Nils, Jelmer M. Wolterink, Carlos Collet, R. Nils Planken, and Ivana Išgum. "Graph attention networks for segment labeling in coronary artery trees." In Image Processing, edited by Bennett A. Landman and Ivana Išgum. SPIE, 2021. http://dx.doi.org/10.1117/12.2581219.
Full textChen, Xinuo, and Stephen A. Jarvis. "Distributed Arbitrary Segment Trees: Providing Efficient Range Query Support over Public DHT Services." In 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2007. http://dx.doi.org/10.1109/pimrc.2007.4394158.
Full textBalasa, Florin, Sarat C. Maruvada, and Karthik Krishnamoorthy. "Efficient solution space exploration based on segment trees in analog placement with symmetry constraints." In the 2002 IEEE/ACM international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/774572.774645.
Full textAdamo, Francesco, Filippo Attivissimo, Attilio Di Nisio, Mattia Alessandro Ragolia, and Marco Scarpetta. "A New Processing Method to Segment Olive Trees and Detect Xylella Fastidiosa in UAVs Multispectral Images." In 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2021. http://dx.doi.org/10.1109/i2mtc50364.2021.9459835.
Full textLim, Andrew, and Sartaj Sahni. "Segmented winner trees." In the 30th annual Southeast regional conference. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/503720.503783.
Full textReports on the topic "Segment trees"
Qi, Yan, Ryan Fries, Shambhu Saran Baral, and Pranesh Biswas. Evaluating the Costs and Benefits of Snow Fences in Illinois: Phase 2. Illinois Center for Transportation, November 2020. http://dx.doi.org/10.36501/0197-9191/20-020.
Full textPerkins, Dustin. Invasive exotic plant monitoring at Colorado National Monument: 2019 field season. Edited by Alice Wondrak Biel. National Park Service, July 2021. http://dx.doi.org/10.36967/nrr-2286650.
Full textBastante, Marcelo. Estudio Fintech 2020: Ecosistema Argentino. Inter-American Development Bank, July 2020. http://dx.doi.org/10.18235/0002892.
Full text