To see the other types of publications on this topic, follow the link: Segmentação não supervisionada.

Dissertations / Theses on the topic 'Segmentação não supervisionada'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Segmentação não supervisionada.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nascimento, Tiago Dias Carvalho do. "Segmentação não supervisionada de texturas baseada no algoritmo ppm." Universidade Federal da Paraí­ba, 2010. http://tede.biblioteca.ufpb.br:8080/handle/tede/6147.

Full text
Abstract:
Made available in DSpace on 2015-05-14T12:36:57Z (GMT). No. of bitstreams: 1 parte1.pdf: 1278902 bytes, checksum: c1a877f74ec783e6525701070c717a4d (MD5) Previous issue date: 2010-03-26<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>The image segmentation problem is present in various tasks such as remote sensing, object detection in robotics, industrial automation, content based image retrieval, security, and others related to medicine. When there is a set of pre-classified data, segmentation is called supervised. In the case of unsupervised segmentation, the classes are extracted directly from the data. Among the image properties, the texture is among those that provide the best results in the segmentation process. This work proposes a new unsupervised texture segmentation method that uses as the similarity measure between regions the bit rate obtained from compression using models, produced by the Prediction by Partial Matching (PPM) algorithm, extracted from them. To segment an image, it is split in rectangular adjacent regions and each of them is assigned to a different cluster. Then a greedy agglomerative clustering algorithm, in which the two closest clusters are grouped at every step, is applied until the number of remaining clusters is equal to the number of classes (supplied by the user). In order to improve the localization of the region boundaries, the image is then split in shorter regions, that are assigned to the cluster whose PPM model results in lower bit rate. To evaluate the proposed method, three image set were used: Trygve Randen, Timo Ojala and one created by the author of this work. By adjusting the method parameters for each image, the hit rate obtained was around 97% in most cases and 100% in several of them. The proposed method, whose main drawback is the complexity order, is robust to regions with different geometric shapes, grouping correctly even those that are disconnected.<br>O problema da segmentação de imagens está presente em diversas tarefas como sensoriamento remoto, detecção de objetos em robótica, automação industrial, recuperação de imagens por conteúdo, segurança, e outras relacionadas à medicina. Quando há um conjunto de padrões pré-classificados, a segmentação é denominada supervisionada. No caso da segmentação não supervisionada, as classes são extraídas diretamente dos padrões. Dentre as propriedades de uma imagem, a textura está entre as que proporcionam os melhores resultados no processo de segmentação. Este trabalho propõe um novo método de segmentação não supervisionada de texturas que utiliza como medida de similaridade entre regiões as taxas de bits resultantes da compressão utilizando modelos produzidos pelo algoritmo Prediction by Partial Matching (PPM) extraídos das mesmas. Para segmentar uma imagem, a mesma é dividida em regiões retangulares adjacentes e cada uma delas é atribuída a um grupo distinto. Um algoritmo aglomerativo guloso, que une os dois grupos mais próximos em cada iteração, é aplicado até que o número de grupos seja igual ao número de classes (fornecido pelo usuário). Na etapa seguinte, cujo objetivo é refinar a localização das fronteiras, a imagem é dividida em regiões ainda menores, as quais são atribuídas ao agrupamento cujo modelo PPM resulta na taxa de bits mais baixa. Para avaliar o método proposto, foram utilizados três bancos de imagens: o de Trygve Randen, o de Timo Ojala e um criado pelo autor deste trabalho. Ajustando-se os parâmetros do método para cada imagem, a taxa de acerto obtida foi em torno de 97% na maioria dos casos e 100% em vários deles. O método proposto, cuja principal desvantagem é a ordem de complexidade, se mostrou robusto a regiões de diferentes formas geométricas, agrupando corretamente até mesmo as desconexas.
APA, Harvard, Vancouver, ISO, and other styles
2

Vilarinho, Eli Cortez Custódio. "Extração de informação não-supervisionada por segmentação de texto." Universidade Federal do Amazonas, 2012. http://tede.ufam.edu.br/handle/tede/4518.

Full text
Abstract:
Submitted by Lúcia Brandão (lucia.elaine@live.com) on 2015-07-27T19:15:09Z No. of bitstreams: 1 Tese - Eli Cortez Custódio Vilarinho.pdf: 11041462 bytes, checksum: 19414e6ce9e997483dc1adee4e5eb413 (MD5)<br>Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-28T19:02:25Z (GMT) No. of bitstreams: 1 Tese - Eli Cortez Custódio Vilarinho.pdf: 11041462 bytes, checksum: 19414e6ce9e997483dc1adee4e5eb413 (MD5)<br>Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-28T19:08:39Z (GMT) No. of bitstreams: 1 Tese - Eli Cortez Custódio Vilarinho.pdf: 11041462 bytes, checksum: 19414e6ce9e997483dc1adee4e5eb413 (MD5)<br>Made available in DSpace on 2015-07-28T19:08:39Z (GMT). No. of bitstreams: 1 Tese - Eli Cortez Custódio Vilarinho.pdf: 11041462 bytes, checksum: 19414e6ce9e997483dc1adee4e5eb413 (MD5) Previous issue date: 2012-12-14<br>CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>In this work we propose, implement and evaluate a new unsupervised approach for the problem of Information Extraction by Text Segmentation (IETS). Our approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to our approach. Based on our approach, we have produced a number of results to address the IETS problem in a unsupervised fashion. In particular, we have developed, implemented and evaluated distinct IETS methods, namely ONDUX, JUDIE and iForm. ONDUX (On Demand Unsupervised Information Extraction) is an unsupervised probabilistic approach for IETS that relies on content-based features to bootstrap the learning of structure-based features. Structure-based features are exploited to disambiguate the extraction of certain attributes through a reinforcement step, which relies on sequencing and positioning of attribute values directly learned on-demand from the input texts. JUDIE (Joint Unsupervised Structure Discovery and Information Extraction) aims at automatically extracting several semi-structured data records in the form of continuous text and having no explicit delimiters between them. In comparison with other IETS methods, including ONDUX, JUDIE faces a task considerably harder, that is, extracting information while simultaneously uncovering the underlying structure of the implicit records containing it. In spite of that, it achieves results comparable to the state-of- the-art methods. iForm applies our approach to the task of Web form filling. It aims at extracting segments from a data-rich text given as input and associating these segments with fields from a target Web form. The extraction process relies on content-based features learned from data that was previously submitted to the Web form. All of these methods were evaluated considering different experimental datasets, which we use to perform a large set of experiments in order to validate our approach and methods. These experiments indicate that our proposed approach yields high quality results when compared to state-of-the-art approaches and that it is able to properly support IETS methods in a number of real applications.<br>Neste trabalho, propomos, implementar e avaliar uma nova abordagem não supervisionada para o problema de Extração de Informações Segmentação Texto (IETS). Nossa abordagem baseia-se em informações disponíveis sobre dados pré-existentes para aprender a associar segmentos na seqüência de entrada com atributos de um determinado domínio contando com uma muito eficaz conjunto de recursos baseados em conteúdo. A eficácia dos recursos com base em conteúdo também é explorada para aprender diretamente com recursos baseados em estrutura de dados de teste, sem prévia formação humana-driven, uma característica única para a nossa abordagem. Com base em nossa abordagem, que produziram um número de resultados de abordar o problema IETS num sem supervisão moda. Em particular, temos desenvolvido, implementado e avaliado IETS distintas métodos, nomeadamente ONDUX, judie e iForm. ONDUX (On Demand Unsupervised Extração de Informação) é uma abordagem probabilística sem supervisão para que IETS depende de características baseadas em conteúdo para iniciar o aprendizado de características baseadas em estrutura. Recursos baseados em estrutura são exploradas para disambiguate a extração de certos atributos através de uma etapa de reforço, que se baseia na sequenciação e posicionamento de valores de atributos diretamente aprendidas on-demand a partir dos textos de entrada. Judie (Joint Estrutura sem supervisão Descoberta e Extração de Informações) visa automaticamente extrair vários registros semi-estruturados de dados na forma de texto contínuo e não tendo delimitadores explícitas entre eles. Em comparação com outros IETS métodos, incluindo ONDUX, judie enfrenta uma tarefa consideravelmente mais forte, isto é, extrair informações, ao mesmo tempo descobrindo a estrutura subjacente de os registros implícitas que o contenham. Apesar disso, ele consegue resultados comparáveis ​​aos a métodos the-art estado-da. iForm aplica-se a nossa abordagem para a tarefa de forma Web o preenchimento. Destina-se a extração de segmentos de um texto rico em dados fornecidos como entrada e associando esses segmentos com campos de um formulário Web de destino. O processo de extracção depende de recursos com base em conteúdo aprendidas com os dados que foram previamente submetidos à o formulário Web. Todos esses métodos foram avaliados considerando diferente experimental conjuntos de dados, que usamos para realizar um grande conjunto de experiências, a fim de validar nossa abordagem e métodos. Estas experiências indicam que a nossa abordagem proposta produz resultados de alta qualidade quando comparado com abordagens state-of-the-art e que ele é capaz de suportar adequadamente os métodos IETS em uma série de aplicações reais.
APA, Harvard, Vancouver, ISO, and other styles
3

KOMATI, KARIN SATIE. "Uma Abordagem Não Supervisionada para Segmentação de Cenas Naturais Coloridas." Universidade Federal do Espírito Santo, 2011. http://repositorio.ufes.br/handle/10/9701.

Full text
Abstract:
Made available in DSpace on 2018-08-02T00:01:56Z (GMT). No. of bitstreams: 1 tese_2856_TeseDoutoradoKarinSatieKomati.pdf: 23762070 bytes, checksum: aaba168a3997a0dc7f4d9efeecb48452 (MD5) Previous issue date: 2011-12-16<br>A análise e segmentação de cenas naturais é um tópico importante em processamento de imagens e visão computacional, com aplicações em diversas áreas, tais como navegação robótica, biometria, tratamento de imagens de satélite e inspeção de qualidade. Entretanto, a etapa de segmentação pode se tornar extremamente complicada devido à imensa variabilidade de cor, iluminação e texturas que se manifestam em uma imagem. Ou seja, é muito difícil implementar uma abordagem que consiga segmentar satisfatoriamente todas as nuances de uma cena, projetada numa imagem. Este trabalho busca o desenvolvimento de uma técnica não supervisionada e automática que possa segmentar imagens coloridas de cenas naturais. Para tanto, o ponto de partida foi a técnica conhecida como JSEG (JSegmentation) onde não se supõe um modelo específico de texturas e regiões, nem se realiza ajuste de parâmetros a partir de imagens. Em linhas gerais, o JSEG avalia a homogeneidade local de uma região, caracterizada por cor e textura, e assim realiza a segmentação, caracterizando regiões distintas e seus limites na imagem. Entretanto, é possível melhorar os seus resultados de segmentação adotando um critério adequado para distinguir informações intra e inter-regiões. Dentre as opções para tal melhoria, estão os operadores de detecção de bordas, mas eles não são compatí&#305;veis com tal tarefa, pois são muito sensíveis a quaisquer bordas e não incluem bons critérios de homogeneidade de regiões. Neste contexto, multifractal se encaixa bem na definição de um critério de homogeneidade. Assim, este trabalho propõe três versões melhoradas para o algoritmo de segmentação de imagens coloridas JSEG, combinando o algoritmo clássico JSEG e o operador fractal local, que mede a dimensão fractal de cada pixel, aumentando o limite de detecção no J-image. Experimentos com imagens de cenas naturais coloridas do The Berkeley Segmentation Dataset and Benchmark (BSDS) são apresentados, mostrando uma melhoria dos resultados, qualitativa e quantitativamente falando, em comparação com o método clássico JSEG.
APA, Harvard, Vancouver, ISO, and other styles
4

Souto, Junior Carlos Alberto. "Avaliação de descritores de textura para segmentação não-supervisionada de imagens." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261351.

Full text
Abstract:
Orientador: Clésio Luis Tozzi<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenhaia Elétrica e de Computação<br>Made available in DSpace on 2018-08-16T00:09:42Z (GMT). No. of bitstreams: 1 SoutoJunior_CarlosAlberto_M.pdf: 16501917 bytes, checksum: 490a2364c9bd25c00b6cfa939af84889 (MD5) Previous issue date: 2010<br>Resumo: Este trabalho consiste em uma avaliação de descritores de atributos de textura para o caso totalmente não-supervisionado, na qual nada se conhece anteriormente sobre a natureza das texturas ou o número de regiões presentes na imagem. Escolheram-se para descrever as texturas decomposição por filtros de Gabor, descritores escalares baseados em matrizes de co-ocorrência de níveis de cinza e campos aleatórios de Gauss-Markov; e aplicou-se um procedimento baseado no algoritmo k-means, onde o valor ótimo do parâmetro k foi estimado a partir de uma métrica de qualidade calculada nos resultados da execução do algoritmo k-means para vários valores de k. O k ótimo foi obtido pelo "método do cotovelo". Aplicou-se o procedimento em imagens sintéticas e naturais e confrontou-se com uma segmentação manual. Obtiveram-se melhores resultados para imagens agrícolas de baixa altitude e tipo frente-fundo quando usados descritores baseados em matrizes de co-ocorrência; nas imagens de satélite, o método que emprega campos aleatórios foi melhor sucedido<br>Abstract: This work comprises a texture features descriptors evaluation focusing the fully unsupervised case, where neither the texture nature nor the numbers of regions in the image are previously known. Three distinct texture descriptors were chosen: Image decomposition with Gabor filters, scalar descriptors based in gray-level co-occurrence matrix and Gauss-Markov random fields; and an automatic region number determination framework was applied. For performance evaluation, the procedure was applied in both synthetic and natural images<br>Mestrado<br>Engenharia de Computação<br>Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
5

Fontoura, Anderson Gadelha. "Técnica aprimorada de segmentação não-supervisionada em imagens com felinos domésticos." Universidade Federal do Amazonas, 2016. http://tede.ufam.edu.br/handle/tede/5303.

Full text
Abstract:
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T18:29:57Z No. of bitstreams: 1 Dissertação - Anderson G. Fontoura.pdf: 22470211 bytes, checksum: 6a7a28be7dd1f16db08371c0f70abfb6 (MD5)<br>Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T18:30:30Z (GMT) No. of bitstreams: 1 Dissertação - Anderson G. Fontoura.pdf: 22470211 bytes, checksum: 6a7a28be7dd1f16db08371c0f70abfb6 (MD5)<br>Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-01T18:30:50Z (GMT) No. of bitstreams: 1 Dissertação - Anderson G. Fontoura.pdf: 22470211 bytes, checksum: 6a7a28be7dd1f16db08371c0f70abfb6 (MD5)<br>Made available in DSpace on 2016-12-01T18:30:50Z (GMT). No. of bitstreams: 1 Dissertação - Anderson G. Fontoura.pdf: 22470211 bytes, checksum: 6a7a28be7dd1f16db08371c0f70abfb6 (MD5) Previous issue date: 2016-04-19<br>CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>A great number of recent projects have, as their focus, the preservation of fauna and flora through monitoring and research centered on regions with very heterogenic ecosystems, such as the Amazon Rain Forest. In fact, research projects based on animal monitoring are carried out in various parts of the world. The main problem of this type of monitoring lies on the cataloguing aspect that is still completed manually, consuming precious time of the researchers which could be better used in truly achieving the objectives of the research. As an example, in Australia, the lack of monitoring in several species of felines, especially domestic cats, is a concern of scientists because of questionable decisions made by governments that consider these animals as pests and treat them as a menace for environment balance. In Brazil, similar researches are conducted in order to maintain conservation of wild cats, such as jaguars. In this context, the objective of this work is to collaborate in this area with the study of pattern recognition and digital image processing in order to build a more effective method for animal segmentation in pictures, particularly the domestic cat. This method consists in creating a combined process that integrates a contrast enhance Color Boost filter, homomorphic filter, Mean- Shift filter and Distance Map in order to achieve an unsupervised way for segmenting cats on picture scenes. In addition to this method, a merge rule for decreasing the process of over-segmentation in images is applied, avoiding this common issue in many Watershed algorithms. The results can reach up to 84% on average accuracy in feline segmentation, with the possibility, in the future, to be extrapolated to others objects or species.<br>Muitos trabalhos atuais têm como foco principal a preservação da fauna e flora através do monitoramento e de pesquisas centradas em regiões com ecossistemas bem diversos, como é o caso da Amazônia. Pesquisas sobre monitoramento de animais sempre são realizadas em diversas partes do inundo. O problema principal deste tipo de monitoramento é que sua catalogação ainda é realizada de forma manual, consumindo o tempo dos pesquisadores que poderia ser melhor utilizado no alcance dos objetivos das pesquisas propriamente ditas. Na Austrália por exemplo, a falta de monitoramento em diversas espécies de felinos, principalmente gatos domésticos, preocupa cientistas devido a tornada de decisões errôneas por parte dos governos, que deseja combatê-los como se realmente fossem pragas. No Brasil, pesquisas similares são realizadas para prover a melhor conservação das espécies de felinos selvagens. Nesse contexto, o objetivo deste trabalho é de colaborar nessa área com o estudo de reconhecimento de padrões e processamento digital de imagens para a construção de um método mais eficaz de segmentação de um animal, em especial: o felino doméstico. O método consiste na criação de um processo combinado de um filtro de aumento de contraste Color Boost, filtro homomórfico, filtro Mean-Shift e do Mapa de distância para conseguir de forma não-supervisionada, segmentar o felino em uma cena. Além de conter uma regra para diminuir o processo de sobre segmentação em imagens, que é muito comum em segmentadores do tipo Watershed Os resultados conseguem alcançar até 84% em média de exatidão na extração do felino, tendo a possibilidade de no futuro ser extrapolado para outros objetos ou espécies.
APA, Harvard, Vancouver, ISO, and other styles
6

Oliveira, Domingos Lucas Latorre. "Método computacional para segmentação não supervisionada de componentes histológicos da próstata." reponame:Repositório Institucional da UFABC, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mileze, Ana Maria Brandão. "Avaliação não supervisionada do processo de segmentação de imagens utilizadas em geociências." Universidade do Estado do Rio de Janeiro, 2010. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=3465.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>Com a necessidade de extrair as informações contidas nas imagens de satélite de forma rápida, eficiente e econômica, são utilizadas cada vez mais as técnicas computacionais de processamento de imagens como a de segmentação automática. Segmentar uma imagem consiste em dividí-la em regiões através de um critério de similaridade, onde os pixels que estão contidos nestas possuem características semelhantes, como por exemplo, nível de cinza, textura, ou seja, a que melhor represente os objetos presentes na imagem. Existem vários exemplos de algoritmos segmentadores, como o de crescimento de regiões onde os pixels crescem e são aglutinados formando regiões. Para determinar quais os melhores parâmetros utilizados nestes algoritmos segmentadores é necessário que se avalie os resultados a partir dos métodos mais utilizados, que são os supervisionados onde há necessidade de uma imagem de referência, considerada ideal fazendo com que se tenha um conhecimento a priori da região de estudo. Os não supervisionados, onde não há a necessidade de uma imagem de referência, fazendo com que o usuário economize tempo. Devido à dificuldade de se obter avaliadores para diferentes tipos de imagem, é proposta a metodologia que permite avaliar imagens que possuam áreas com vegetação, onde serão formadas grandes regiões (Crianass) e o que avaliará as imagens com áreas urbanas onde será necessário mais detalhamento (Cranassir).<br>With the need of extracting the information contained in satellite images in a quick, efficent and economic way computational image process tecniques are being used more frequently, such as the automatic segmentation. Segmenting an image consists on dividing it in regions acording to a similarity standard, where the pixels which are contained there have the same characteristic, for example, level of gray, texture, that is, the one that best represents the objects on the image. There are lots of examples of segmentary algorithm like the development of areas where the pixels 'grow" and are agglutinated forming regions. To determine which are the best parameters utilized in these segmentary algorithms it is necessary to evaluate the results from the methods used more often, they are the supervized where there is a need of a reference image, considered ideal, giving us a priori knowledge of the regions in study. The unsupervised, where there is not the need of a reference image, make the user save time. Due to the difficulty of obtaining evaluators, for different kinds of images, is proposed the methodology that allows to evaluate images that have vegetation areas, where it will be formed large regions (Crianass), and the one that will evaluate the images with urban areas, where it will be needed more detailing (Cranassir).
APA, Harvard, Vancouver, ISO, and other styles
8

Santana, Eduardo Freire. "Segmentação não supervisionada de imagens de sensoriamento remoto por minimização da entropia cruzada." Universidade Federal da Paraí­ba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/6134.

Full text
Abstract:
Made available in DSpace on 2015-05-14T12:36:53Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2394889 bytes, checksum: 5c6ccaa494934050681761ba80143978 (MD5) Previous issue date: 2014-08-30<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>Remote sensing is one of the fastest growing technologies of late twentieth and early twenty-first century. The most common use of this term is related to the optical sensing of Earth's surface through satellites. In remote sensing, image segmentation is a process often used to aid in landscape change detection and land use classification. This study aims the research and development of a new method for unsupervised segmentation of remote sensing images by minimizing the cross entropy between the probability distribution of the image and some statistical model. Images used for tests were captured by the Thematic Mapper sensor on Landsat 5 satellite. The proposed algorithm takes an initial segmentation and progresses iteratively, trying to improve the statistical model and reduce the cross entropy with respect to previous iterations. Results indicate that the cross entropy minimization is related to a consistent image segmentation. Two approaches were developed, one by performing a per-pixel classification and the other by classifying regions obtained by the Watershed transform. In per-pixel approach, the average agreement between the classifier and the thematic image used as ground truth was 88.75% for fifteen selected images and 91.81% for four small regions that represent details of land use transitions, such as vegetation, rivers, pastures and exposed soil. In region approach, the average agreement was 87.33% for images and 91.81% for details. The ground truth for image details was manually created by an expert.<br>Sensoriamento remoto é uma das tecnologias que mais rapidamente cresceu durante o final do século XX e início do século XXI. O uso mais comum deste termo refere-se à observação da superfície terrestre por meio de satélites. Em sensoriamento remoto, segmentação de imagens é um processo frequentemente utilizado no auxílio à detecção de mudança de paisagens e classificação do uso do solo. Este trabalho se propõe à pesquisa e ao desenvolvimento de um método para segmentação não supervisionada de imagens de sensoriamento remoto baseado na minimização da entropia cruzada entre a distribuição de probabilidade da imagem e um modelo estatístico. Para os testes realizados, foram utilizadas quinze imagens capturadas pelo sensor TM (Thematic Mapper) do satélite Landsat 5. A partir do banco de dados do projeto de mapeamento do uso do solo da região amazônica TerraClass, foram derivadas imagens temáticas utilizadas como referência para medir o desempenho do classificador desenvolvido. O algoritmo proposto parte de uma segmentação inicial e busca iterativamente melhorar o modelo estatístico que descreve a imagem, de forma a reduzir a entropia cruzada em relação à iteração anterior. Os resultados indicam que a minimização da entropia cruzada está relacionada com uma segmentação coerente das imagens. Duas abordagens de segmentação foram desenvolvidas, uma realizando classificação pixel a pixel e outra classificando regiões obtidas pela transformada Watershed. Na abordagem por pixel, a concordância média entre o classificador e a imagem temática de referência foi de 88,75% para as quinze imagens selecionadas e de 91,81% para quatro pequenas regiões que representam detalhes de transição entre hidrografia, vegetação e outras paisagens, como área urbana, pastos e solo exposto. Na abordagem por região, a concordância média foi de 87,33% para as imagens e 91,81% para os detalhes. As imagens de referência dos detalhes foram preparadas manualmente por um especialista.
APA, Harvard, Vancouver, ISO, and other styles
9

Melo, Douglas Henrique de. "Desenvolvimento de algoritmo para segmentação não supervisionada de embriões bovinos produzidos in vitro." reponame:Repositório Institucional da UFABC, 2014.

Find full text
Abstract:
Orientador: Prof. Dr. Marcelo Zanchetta do Nascimento<br>Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, 2014.<br>In vitro production has been employed in bovine embryos and quantification of lipids is fundamental to understand the metabolism of these embryos. This paper presents an unsupervised segmentation method for histological images of bovine embryos. During the process of mounting slides some droplets of dye and other fragments could be remain out of the embryo. With this method, the irregularities were removed by applying an algorithm developed in the pre-processing step, in which a calculation is done to eliminate regions whose pixels have values of hypotenuse greater than 22% of the image center. After removal of the irregularities a transformation of the RGB color model to the YIQ was applied. Then the global thresholding technique was applied with the threshold value obtained by the maximum entropy in order to separate the lipid droplets of histological slides at diferent stages: early cleavage, morula and blastocyst. After this step, false positive regions were removed using the technique of connected components. For this step, area information, center and amount of pixels were used. It enabled outliers removal of segmented regions. The proposed segmentation method was applied in 60 histological images of bovine embryos. The images were evaluated qualitatively and quantitatively with respect to the gold standard images. The method presented accuracy values of 96 2%, 942% and 952%, respectively in the tissues of early cleavage, morula and blastocyst. The developed method obtained better results than classical segmentation methods.
APA, Harvard, Vancouver, ISO, and other styles
10

Alexandre, Eduardo Barreto. "IFT-SLIC: geração de superpixels com base em agrupamento iterativo linear simples e transformada imagem-floresta." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-24092017-235915/.

Full text
Abstract:
A representação de imagem baseada em superpixels tem se tornado indispensável na melhoria da eficiência em sistemas de Visão Computacional. Reconhecimento de objetos, segmentação, estimativa de profundidade e estimativa de modelo corporal são alguns importantes problemas nos quais superpixels podem ser aplicados. Porém, superpixels podem influenciar a qualidade dos resultados do sistema positiva ou negativamente, dependendo de quão bem eles respeitam as fronteiras dos objetos na imagem. Neste trabalho, é proposto um método iterativo para geração de superpixels, conhecido por IFT-SLIC, baseado em sequências de Transformadas Imagem-Floresta, começando com uma grade regular de sementes. Um procedimento de recomputação de pixels sementes é aplicado a cada iteração, gerando superpixels conexos com melhor aderência às bordas dos objetos presentes na imagem. Os superpixels obtidos via IFT-SLIC correspondem, estruturalmente, a árvores de espalhamento enraizadas nessas sementes, que naturalmente definem superpixels como regiões de pixels fortemente conexas. Comparadas ao Agrupamento Iterativo Linear Simples (SLIC), o IFT-SLIC considera os custos dos caminhos mínimos entre pixels e os centros dos agrupamentos, em vez de suas distâncias diretas. Funções de conexidade não monotonicamente incrementais são exploradas em neste método resultando em melhor desempenho. Estudos experimentais indicam resultados de extração de superpixels superiores pelo método proposto em comparação com o SLIC. Também é analisada a efetividade do IFT-SLIC, em termos de medidas de eficiência e acurácia, em uma aplicação de segmentação do céu em fotos de paisagens. Os resultados mostram que o IFT-SLIC é competitivo com os melhores métodos do estado da arte e superior a muitos outros, motivando seu desenvolvimento para diferentes aplicações.<br>Image representation based on superpixels has become indispensable for improving efficiency in Computer Vision systems. Object recognition, segmentation, depth estimation, and body model estimation are some important problems where superpixels can be applied. However, superpixels can influence the quality of the system results in a positive or negative manner, depending on how well they respect the object boundaries in the image. In this work, we propose an iterative method for superpixels generation, known as IFT-SLIC, which is based on sequences of Image Foresting Transforms, starting with a regular grid for seed sampling. A seed pixel recomputation procedure is applied per each iteration, generating connected superpixels with a better adherence to objects borders present in the image. The superpixels obtained by IFT-SLIC structurally correspond to spanning trees rooted at those seeds, that naturally define superpixels as regions of strongly connected pixels. Compared to Simple Linear Iterative Clustering (SLIC), IFT-SLIC considers minimum path costs between pixel and cluster centers rather than their direct distances. Non-monotonically increasing connectivity functions are explored in our IFT-SLIC approach leading to improved performance. Experimental results indicate better superpixel extraction by the proposed approach in comparation to that of SLIC. We also analyze the effectiveness of IFT-SLIC, according to efficiency, and accuracy on an application -- namely sky segmentation. The results show that IFT-SLIC can be competitive to the best state-of-the-art methods and superior to many others, which motivates it\'s further development for different applications.
APA, Harvard, Vancouver, ISO, and other styles
11

SOARES, JÚNIOR Amílcar. "Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/19518.

Full text
Abstract:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-12T13:16:29Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) tese_doutorado_amilcar-07-2016_versao-cd (1).pdf: 2101060 bytes, checksum: 21d268c59ad60238bce0cde073e6f3cd (MD5)<br>Made available in DSpace on 2017-07-12T13:16:29Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) tese_doutorado_amilcar-07-2016_versao-cd (1).pdf: 2101060 bytes, checksum: 21d268c59ad60238bce0cde073e6f3cd (MD5) Previous issue date: 2016-03-10<br>A popularização de tecnologias de captura de dados geolocalizados aumentou a quantidade de dados de trajetórias disponível para análise. Trajetórias de objetos móveis são geradas a partir das posições de um objeto que se move durante um certo intervalo de tempo no espaço geográfico. Para diversas aplicações é necessário que as trajetórias sejam divididas em partições menores, denominadas segmentos, que representam algum comportamento relevante para a aplicação. A literatura reporta diversos trabalhos que propõem a segmentação de trajetórias. Entretanto, pouco se discute a respeito de quais algoritmos são mais adequados para um domínio ou quais valores de parâmetros de entrada fazem com que um algoritmo obtenha o melhor desempenho neste mesmo domínio. A grande maioria dos algoritmos de segmentação de trajetórias utiliza critérios pré-definidos para realizar esta tarefa. Poucos trabalhos procuram utilizar critérios nos quais não se sabe a priori que tipos de segmentos são gerados, sendo esta questão pouco explorada na literatura. Outra questão em aberto é o uso de exemplos para induzir um algoritmo de segmentação a encontrar segmentos semelhantes a estes exemplos em outras trajetórias. Esta proposta de tese objetiva resolver estas questões. Primeiro, são propostos os métodos GEnetic Algorithm based on Roc analysis (GEAR) e o Iterated F-Race for Trajectory Segmentation Algorithms (I/F-Race-TSA), que são métodos para auxiliar na escolha da melhor configuração (i.e. valores de parâmetros de entrada) de algoritmos de segmentação de trajetórias. Segundo, é proposto o Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS), com o objetivo de resolver o problema de segmentação de trajetórias quando o critério de segmentação não é previamente definido. Por último, propomos o GRASP for Semi-supervised Trajectory Segmentation (GRASP-SemTS). O GRASP-SemTS usa exemplos para induzir a tarefa de segmentação a encontrar segmentos semelhantes em outras trajetórias. Foram conduzidos experimentos com os métodos e algoritmos propostos para domínios distintos e para trajetórias reais de objetos móveis. Os resultados mostraram que ambos os métodos GEAR e I/F-Race-TSA foram capazes de calibrar automaticamente os parâmetros de entrada de algoritmos de segmentação de trajetórias para um dado domínio de aplicação. Os algoritmos GRASP-UTS e GRASP-SemTS obtiveram melhor desempenho quando comparados a outros algoritmos de segmentação de trajetórias da literatura contribuindo assim com importantes resultados para a área.<br>The popularization of technologies for geolocated data increased the amount of trajectory data available for analysis. Moving objects’ trajectories are generated from the positions of an object that moves in the geographical space during a certain amount of time. For many applications, it is necessary to partition trajectories into smaller pieces, named segments, which represent a relevant behavior to the application point of view. The literature reports many studies that propose trajectory segmentation approaches. However, there is a lack of discussions about which algorithm is more likely to be applied in a domain or which values of its input parameters obtain the best performance in the domain. Most algorithms for trajectory segmentation use pre-defined criteria to perform this task. Only few works make use of criteria where the characteristics of the segment are not known a priori and this topic is not well explored in the literature. Another open question is how to use a small amount of labeled segments to induce a segmentation algorithm in order to find such kind of behaviors into unseen trajectories. This thesis proposal aims to solve these questions. First, we propose the GEnetic Algorithm based on Roc analysis (GEAR) and the Iterated F-Race for Trajectory Segmentation Algorithms (I/F-RaceTSA), which are methods that are able to find the best configuration (i.e. input parameter values) of algorithms for trajectory segmentation. Second, we propose a Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS) aiming to solve the trajectory segmentation problem when the criteria is not determined a priori. Last, we propose the GRASP for Semi-supervised Trajectory Segmentation (RGRASP-SemTS). The GRASP-SemTS solves the problem of using a small amount of labeled data to induce the trajectory segmentation algorithm to find such behaviors into unseen trajectories. Experiments were conducted with the methods and algorithms algorithms using real world trajectory data. Results showed that GEAR and I/F-Race-TSA are capable of finding automatically the input parameter values for a domain. The GRASP-UTS and GRASP-SemTS obtained a better performance when compared to other segmentation algorithms from literature, contributing with important results for this field.
APA, Harvard, Vancouver, ISO, and other styles
12

Velloso, Roberto Panerai. "Algoritmo não supervisionado para segmentação e remoção de ruído de páginas web utilizando tag paths." reponame:Repositório Institucional da UFSC, 2014. https://repositorio.ufsc.br/xmlui/handle/123456789/129142.

Full text
Abstract:
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, Florianópolis, 2014<br>Made available in DSpace on 2015-02-05T20:44:43Z (GMT). No. of bitstreams: 1 329914.pdf: 1331548 bytes, checksum: 83651130b0ac80ced63647347769e15a (MD5) Previous issue date: 2014<br>Segmentação e remoção de ruído de páginas web são etapas essenciais no processo de extração de dados estruturados. Identificar a região principal da página, eliminando o que não é importante (menus, anúncios,etc.), pode melhorar significativamente o desempenho do processo de extração. Para essa tarefa e proposto um novo algoritmo, totalmente automático, que utiliza uma sequência de tag paths (TPS) como representação da página web. A TPS é composta por uma sequência de símbolos (string), cada um representando um tag path diferente. O algoritmo proposto procura por posições na TPS onde é possível dividi-la em duas regiões de tal forma que seus alfabetos não se intersectem, o que significa que as regiões têm conjuntos de tag paths completamente distintos e, portanto, são regiões diferentes da página. Os resultados mostram que o algoritmo é muito efetivo em identificar o conteúdo principal de vários sites, e melhora a precisão da extração, removendo resultados irrelevantes.<br><br>Abstract: Web page segmentation and data cleaning are essential steps in structured web data extraction. Identifying a web page main content region, removing what is not important (menus, ads, etc.), can greatly improve the performance of the extraction process. We propose, for this task, a novel and fully automatic algorithm that uses a tag path sequence (TPS) representation of the web page. The TPS consists of a sequence of symbols (string), each one representing a diferent tag path. The proposed technique searches for positions in the TPS where it is possible to split it in two regions where each region's alphabet do not intersect, which means that they have completely dierent sets of tag paths and, thus, are diferent regions. The results show that the algorithm is very effective in identifying the main content block of several major web sites, and improves the precision of the extraction step by removing irrelevant results.
APA, Harvard, Vancouver, ISO, and other styles
13

Mexas, Antonio Henrique. "Processo de reconhecimento não supervisionado de áreas de estacionamento." Universidade Presbiteriana Mackenzie, 2014. http://tede.mackenzie.br/jspui/handle/tede/1441.

Full text
Abstract:
Made available in DSpace on 2016-03-15T19:37:50Z (GMT). No. of bitstreams: 1 Antonio Henrique Mexas.pdf: 5418066 bytes, checksum: b25603c3c927a22f01b86d5fe74feee4 (MD5) Previous issue date: 2014-08-05<br>Universidade Presbiteriana Mackenzie<br>The detection of objects in an image is important for decision making in a remote sensing system. The interest areas in this kind of work are buildings, streets, bridges, airports, ports and parking. The latter will be addressed in this work. The detection of these objects using manual techniques can be laborious and result in detection errors. This paper examines algorithms to the identification and recognition of parking areas paved and marked. To define the processing the best parameters are analised, with the purpose to obtain more accurate results. This work proposes an algorithm composed of recognition of parking areas that uses important variables such as vehicle size, size of parking spaces, image resolution and camera zoom. The experimental results obtained with the proposed method have a higher hit rate than other academic approaches.<br>A detecção de objetos em uma imagem é uma funcional idade indispensável para a tomada de decisão em um sistema de sensoriamento remoto. As áreas de interesse para detecção nesse tipo de trabalho são edifícios, ruas, pontes, aeroportos, portos e estacionamento. Este último se rá abordado neste trabalho. Utilizar técnicas manuais para detectar tais objetos pode se tornar trabalhoso e ocasionar erros de detecção. O presente trabalho analisa algoritmos referentes à identificação e reconhecimento de áreas pavimentadas e sinalizadas de estacionamento. São investigados os melhores parâmetros para se realizar o processamento, com propósito de atingir maior precisão nos resultados. Propõe-se um algoritmo composto de reconhecimento de áreas de estacionamento, que considera variáveis importantes tais como, tamanho dos veículos, tamanho das vagas de estacionamento, resolução da imagem e zoom da câmera. Os resultados experimentais obtidos com o método proposto apresentam uma maior taxa de acerto do que outras abordagens acadêmicas
APA, Harvard, Vancouver, ISO, and other styles
14

Franco, Pedro Guerra de Almeida. "Fuzzy clustering não supervisionado na detecção automática de regiões de upwelling a partir de mapas de temperatura da superfície oceânica." Master's thesis, FCT - UNL, 2009. http://hdl.handle.net/10362/2383.

Full text
Abstract:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática<br>O afloramento costeiro (upwelling) ao largo da costa de Portugal Continental é um fenómeno bem estudado na literatura oceanográfica. No entanto, existem poucos trabalhos na literatura científica sobre a sua detecção automática, em particular utilizando técnicas de clustering. Algoritmos de agrupamento difuso (fuzzy clustering) têm sido bastante explorados na área de detecção remota e segmentação de imagem, e investigação recente mostrou que essas técnicas conseguem resultados promissores na detecção do upwelling a partir de mapas de temperatura da superfície do oceano, obtidos por imagens de satélite. No trabalho a desenvolver nesta dissertação, propõe-se definir um método que consiga identificar automaticamente a região que define o fenómeno. Como objecto de estudo, foram analisados dois conjuntos independentes de mapas de temperatura, num total de 61 mapas, cobrindo a diversidade de cenários em que o upwelling ocorre. Focando o domínio do problema, foi desenvolvido trabalho de pesquisa bibliográfica ao nível de literatura de referência e estudos mais recentes, principalmente sobre os temas de técnicas de agrupamento, agrupamento difuso e a sua aplicação à segmentação de imagem. Com base num dos algoritmos com mais influência na literatura, o Fuzzy c-means (FCM), foi desenvolvida uma nova abordagem, utilizando o método de inicialização ‘Anomalous Pattern’, que tenta resolver dois problemas base do FCM: a validação do melhor número de clusters e a dependência da inicialização aleatória. Após um estudo das condições de paragem do novo algoritmo, AP-FCM, estabeleceu-se uma parametrização que determina automaticamente um bom número de clusters. Análise aos resultados obtidos mostra que as segmentações geradas são de qualidade elevada, reproduzindo fidedignamente as estruturas presentes nos mapas originais, e que, computacionalmente, o AP-FCM é mais eficiente que o FCM. Foi ainda implementado um outro algoritmo, com base numa técnica de Histogram Thresholding, que, obtendo também boas segmentações, não permite uma parametrização para a definição automática do número de grupos. A partir das segmentações obtidas, foi desenvolvido um módulo de definição de features, a partir das quais se criou um critério composto que permite a identificação automática do cluster que delimita a região de upwelling.
APA, Harvard, Vancouver, ISO, and other styles
15

Nandaia, Morna. "Os Sistemas de Informação Geográfica e Detecção Remota na Determinação das Regiões de Risco por Malária na Guiné-Bissau." Master's thesis, 2015. http://hdl.handle.net/10362/15892.

Full text
Abstract:
A malária é uma doença infecciosa complexa, que resulta do “vírus” plasmodium, e manifesta-se sob cinco tipos distintos de espécies protozoários (plasmodium vivax, plasmodium ovale, plasmodium falciparum, plasmodium malariae e plasmodium Knowlesi), atacando sobretudo os glóbulos vermelhos. Considerada a quinta maior causa de morte por doenças infecciosas em todo o mundo após doenças respiratórias, VIH/SIDA, doenças diarreicas e tuberculose, no continente africano, a malária é considerada a segunda causa do aumento da mortalidade, após VIH/SIDA. No caso particular da Guiné-Bissau, esta constitui a principal causa do incremento da morbilidade e da mortalidade naquele país, onde, em 2012 foram notificados 129.684 casos de paludismo, dos quais 370 resultaram em óbitos. Partindo da realidade acima constatada, em particular, da complexidade e o impacto global da doença associada a uma forte mortalidade e morbilidade, concluiu-se ser necessário abordar esta temática, utilizando os SIG e a DR no sentido de determinar as regiões de elevado risco. Entendeu-se serem necessárias novas abordagens e novas ferramentas de análise dos dados epidemiológicos e consequentemente novas metodologias que possibilitem a determinação de áreas de risco por malária. O presente estudo, pretende demonstrar o papel dos SIG e DR na determinação das regiões de risco por malária. A metodologia utilizada centrou-se numa abordagem quantitativa baseada na hierarquização das variáveis. Pretende-se, assim abordar os impactos da malária e simultaneamente demonstrar as potencialidades dos SIG e das ferramentas de Análise Espacial no estudo da disseminação da mesma na Guiné-Bissau.
APA, Harvard, Vancouver, ISO, and other styles
16

Veiga, Arlindo Oliveira da. "Treino não supervisionado de modelos acústicos para reconhecimento de fala." Doctoral thesis, 2014. http://hdl.handle.net/10316/24262.

Full text
Abstract:
Tese de doutoramento em Engenharia Electrotécnica e de Computadores, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de Coimbra<br>Esta tese resume os trabalhos desenvolvidos na área de processamento automático de fala com o objetivo de incrementar a quantidade de recursos linguísticos disponíveis para o português europeu. O estágio de desenvolvimento e a aplicação das tecnologias de fala para uma língua estão relacionados com a quantidade e a qualidade de recursos disponíveis por esta língua. Poucas línguas apresentam, no domínio público e livre, todos os recursos necessários para desenvolver as tecnologias de fala. A língua portuguesa, como muitas outras, tem escassez de recursos públicos e livres, o que pode dificultar o desenvolvimento e a aplicação de tecnologias de fala que incorporam esta língua. Os trabalhos descritos nesta tese apresentam uma abordagem para criar bases de dados de fala, recorrendo apenas aos recursos do domínio público e livres, partindo de sinais multimédia sem transcrições ortográficas ou fonéticas. É apresentada uma solução para aproveitar a grande disponibilidade de material multimédia existente no domínio público (podcasts por exemplo) e selecionar segmentos de fala adequados para treinar modelos acústicos. Para isso, foram desenvolvidos vários sistemas para segmentar e classificar automaticamente os noticiários. Estes sistemas podem ser combinados para criar bases de dados de fala com transcrição fonética sem a intervenção humana. Foi desenvolvido um sistema de conversão automático de grafemas para fonemas que apoia em regras fonológicas e modelos estatísticos. Esta abordagem híbrida é justificada pelos desenvolvimentos de algoritmos de aprendizagem automática aplicados a conversão de grafemas para fonemas e pelo fato do português apresentar uma razoável regularidade fonética e fonológica bem como uma ortografia de base fonológica. Com auxílio deste sistema, foi criado um dicionário de pronunciação com cerca de 40 mil entradas que foram verificadas manualmente. Foram implementados sistemas de segmentação e de diarização de locutor para segmentar sinais de áudio. Estes sistemas utilizam várias técnicas como a impressão digital acústica, modelos com misturas de gaussianas e critério de informação bayesiana que normalmente são aplicadas noutras tarefas de processamento de fala. Para selecionar os segmentos adequados ou descartar os segmentos com fala não preparada que podem prejudicar o treino de modelos acústicos, foi desenvolvido um sistema de deteção de estilos de fala. A deteção de estilos de fala baseia-se na combinação de parâmetros acústicos e parâmetros prosódicos, na segmentação automática e em classificadores de máquinas de vetores de suporte. Ainda neste âmbito, fez-se um estudo com o intuito de caracterizar os eventos de hesitações presentes nos noticiários em português. A transcrição fonética da base de dados de fala é indispensável no processo de treino de modelos acústicos. É frequente recorrer a sistema de reconhecimento de fala de grande vocabulário para fazer transcrição automática quando a base de dados não apresenta nenhuma transcrição. Nesta tese, é proposto um sistema de word-spotting para fazer a transcrição fonética dos segmentos de fala. Fez-se uma implementação preliminar de um sistema de word-spotting baseado em modelos de fonemas. Foi proposta uma estratégia para diminuir o tempo de resposta do sistema, criando, a priori, uma espécie de “assinatura acústica” para cada sinal de áudio com os valores de todos os cálculos que não dependem da palavra a pesquisar, como a verosimilhanças de todos os estados dos modelos de fonemas. A deteção de uma palavra utiliza medidas de similaridades entre as verosimilhanças do modelo da palavra e do modelo de enchimento, um detetor de picos e um limiar definido por forma a minimizar os erros de deteção. Foram publicados vários recursos para a língua portuguesa que resultaram da aplicação dos vários sistemas desenvolvidos ao longo da execução desta tese com especial destaque para o sistema de conversão de grafemas para fonemas a partir do qual publicou-se vários dicionários de pronunciação, dicionários com as palavras homógrafas heterofónicas, dicionário com estrangeirismos, modelos estatísticos para a conversão de grafemas para fonemas, código fonte de todo sistema de treino e conversão e um demonstrador online.<br>This thesis summarizes the works done in the automatic speech processing field aiming to increase the amount of the linguistic resources available for European Portuguese language. The development stage and the application of speech technologies into a language are related to the quantity and quality of resources available for that given language. Few languages have all the required resources to implement speech technologies within free-access and public domain. Like many other language, the Portuguese language lacks public and free resources which may hinder the development and the application of speech technologies that incorporate the Portuguese language. The works described in this thesis present an approach to create speech databases, using only the public and free-access resources, starting from multimedia signals without orthographic or phonetic transcriptions. It this sense, a solution is presented to take advantage of the wide availability in the public domain of multimedia material (e.g. podcasts) and select appropriate speech segments to train acoustic models. To this end, several systems have been developed to automatically segment and classify broadcast news. These systems can be combined to build speech databases with phonetic transcription without human intervention. A system was developed to automatically convert graphemes to phonemes based on phonological rules and statistical models. This hybrid approach is justified by the developments in machine learning algorithms applied to the conversion of graphemes into phonemes and by the fact that the Portuguese language presents a reasonable phonetic/phonologic regularity and an orthography that is roughly phonologically based. Using this system, a pronunciation dictionary was created including about 40 thousands entries that where manually confirmed. They were implemented a system for segmentation into five predetermined acoustic classes (speech, music, noise, speech with music and speech with noise) and a system for speaker diarization. These systems use various techniques such as acoustic fingerprint, Gaussian mixture model and Bayesian information criterion that normally are used in other speech processing tasks. In order to select appropriate audio segments or discard non-prepared speech segments that may impair acoustic models training, it was developed a system to detect speaking styles. The detection of speaking styles is based on the combination of acoustic and prosodic parameters, on automatic segmentation and on support vector machine classifiers. Also in this scope, a study was made in order to characterize the hesitation events present in the Portuguese broadcast news. The transcription of the audio databases is essential in the process of acoustic models training. The large-vocabulary continuous speech recognition system is usually used to do automatic transcription wen the database do not have any transcripts. In this thesis, it is proposed to use word-spotting system to provide phonetic transcriptions of speech segments. A preliminary implementation of a word-spotting system based on phoneme models was conducted. A strategy was proposed to decrease the system response time, creating, a priori, a sort of “acoustic signature” for each audio signal with the values of all calculations which do not depend on the searching word as for example the likelihood of all states of phoneme models. The detection of a word uses similarity measures based on likelihood of word model and likelihood of filler model, a peak detector and a threshold value defined as to minimize detection errors. Several resources for the Portuguese language were published that resulted from the application of the various systems developed throughout the development of this thesis with particular emphasis on the graphemes to phonemes system from which it was published several dictionaries of pronunciation, dictionary with heterophonic homographs words, dictionary of foreign words, statistical models for converting graphemes to phonemes, the source code of the whole system of training as well as conversion and an online demo.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!