To see the other types of publications on this topic, follow the link: SEI (Solid Electrolyte Interphase).

Dissertations / Theses on the topic 'SEI (Solid Electrolyte Interphase)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 37 dissertations / theses for your research on the topic 'SEI (Solid Electrolyte Interphase).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Berglund, Anna. "Simulating Li-ion battery ageing through solid electrolyte interphase growth in graphite/NMC cells." Thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-334651.

Full text
Abstract:
Ageing mechanisms of graphite/NMC Li-ion batteries have been studied using computational methods. The purpose of the project was to investigate solid electrolyte interphase (SEI) formation and growth during cycling of the battery. The SEI layer formation was considered to be a reason for capacity fade of the battery. Irreversible consumption of cyclable Li-ions and increased resistance in the layer was considered to be the result of solid electrolyte layer formation and these two effects were studied more closely using cell modelling. The battery cycled with three cases of fast charge rates (2
APA, Harvard, Vancouver, ISO, and other styles
2

Andersson, Edvin. "Spectroelectrochemical analysis of the Li-ion battery solid electrolyte interphase using simulated Raman spectra." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413474.

Full text
Abstract:
Lithium Ion Batteries (LIBs) are important in today's society, powering cars and mobile devices. LIBs consist of a negative anode commonly made of graphite, and a positive cathode commonly made from transition metal oxides. Between these electrodes are separators and organic solvent based electrolyte. Due to the high potential of LIBs the electrolyte is reduced at the anode. The electrolyte reduction results in the formation of a layer called the Solid Electrolyte Interphase (SEI), which prohibits the further breakdown of the electrolyte. Despite being researched for over50 years, the composit
APA, Harvard, Vancouver, ISO, and other styles
3

Ciosek, Högström Katarzyna. "The Complex Nature of the Electrode/Electrolyte Interfaces in Li-ion Batteries : Towards Understanding the Role of Electrolytes and Additives Using Photoelectron Spectroscopy." Doctoral thesis, Uppsala universitet, Strukturkemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219336.

Full text
Abstract:
The stability of electrode/electrolyte interfaces in Li-ion batteries is crucial to the performance, lifetime and safety of the entire battery system. In this work, interface processes have been studied in LiFePO4/graphite Li-ion battery cells.  The first part has focused on improving photoelectron spectroscopy (PES) methodology for making post-mortem battery analyses. Exposure of cycled electrodes to air was shown to influence the surface chemistry of the graphite. A combination of synchrotron and in-house PES has facilitated non-destructive interface depth profiling from the outermost surfac
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, Lucile. "Etude de l'oxyde de cuivre CuO, matériau de conversion en film mince pour microbatteries au lithium : caractérisation des processus électrochimiques et chimiques en cyclage." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3027/document.

Full text
Abstract:
La miniaturisation des appareils électroniques et la multiplication de leurs fonctionnalités conduisent à développer des microsources d’énergie adaptées, parmi lesquelles figurent les microbatteries au lithium. Malgré leurs excellentes performances, ces systèmes de stockage électrochimique tout solide restent toutefois limités en termes de capacité surfacique. Cette caractéristique étant intrinsèquement liée aux matériaux d’électrodes, nous avons choisi de nous intéresser à des couches minces de CuO, dont la capacité volumique théorique (426 µAh .cm-2.µm-1) est sensiblement plus élevée que cel
APA, Harvard, Vancouver, ISO, and other styles
5

Törnblom, Pontus. "Ethyl 2,2-difluoroacetate as Possible Additive for Hydrogen-Evolution-Suppressing SEI in Aqueous Lithium-Ion Batteries." Thesis, Uppsala universitet, Strukturkemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448596.

Full text
Abstract:
The performance and lifetime of lithium-ion batteries are strongly influenced by their composition. One category of critical components are electrolyte additives, which are included primarily to stabilize electrode/electrolyte interfaces in the battery cells by forming passivation layers. The presented study aimed to identify and study such an additive that could form a hydrogen-evolution-suppressing solid electrolyte interphase (SEI) in lithium-ion batteries based on aqueous electrolytes. A promising molecular additive, ethyl 2,2-difluoroacetate (EDFA), was found to hold the qualities require
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Qinglin. "IMPROVING THE CAPACITY, DURABILITY AND STABILITY OF LITHIUM-ION BATTERIES BY INTERPHASE ENGINEERING." UKnowledge, 2016. http://uknowledge.uky.edu/cme_etds/60.

Full text
Abstract:
This dissertation is focus on the study of solid-electrolyte interphases (SEIs) on advanced lithium ion battery (LIB) anodes. The purposes of this dissertation are to a) develop a methodology to study the properties of SEIs; and b) provide guidelines for designing engineered SEIs. The general knowledge gained through this research will be beneficial for the entire battery research community.
APA, Harvard, Vancouver, ISO, and other styles
7

Chrétien, Fabien. "Etude de l'effet des sels de lithium de la couche de passivation sur la cyclabilité d'un accumulateur lithium-ion." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4009/document.

Full text
Abstract:
Limiter le vieillissement des accumulateurs lithium-ion est un challenge pour optimiser leur utilisation notamment dans le domaine spatial. La qualité de la couche de passivation (SEI), formée à la surface de l’électrode négative de graphite lors des premiers cycles de vie de la batterie, est déterminante pour ses performances futures. Celle-ci est composée de polymères et de divers sels de lithium dont la dissolution, la précipitation et la migration affectent les performances. Cette étude vise à comprendre l’impact de ces composés sur la cyclabilité et de proposer des solutions à l’effet néf
APA, Harvard, Vancouver, ISO, and other styles
8

Jin, Yanting. "Understanding the solid electrolyte interphase formed on Si anodes in lithium ion batteries." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288372.

Full text
Abstract:
The main aim of this thesis is to reveal the chemical structures of the solid-liquid interphase in lithium ion batteries by NMR spectroscopy in order to understand the working mechanism of electrolyte additives for achieving stable cycling performance. In the first part, a combination of solution and solid-state NMR techniques, including dynamic nuclear polarization (DNP) are employed to monitor the formation of the solid electrolyte interphase (SEI) on next-generation, high-capacity Si anodes in conventional carbonate electrolytes with and without fluoroethylene carbonate (FEC) additives. A m
APA, Harvard, Vancouver, ISO, and other styles
9

Bennett, Raffeal A. "Characterization of the Solid-Electrolyte Interface on Sn Film Electrodes by Electrochemical Quartz Crystal Microbalance." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1399048324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goel, Ekta. "A lithium-ion test cell for characterization of electrode materials and solid electrolyte interphase." Master's thesis, Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-03062008-081546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Single, Fabian [Verfasser]. "Theory-based Investigation of the Solid Electrolyte Interphase in Lithium-ion Systems / Fabian Single." Ulm : Universität Ulm, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-38988-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sardinha, Eduardo dos Santos [Verfasser], Gunther [Akademischer Betreuer] Wittstock, Rüdiger [Akademischer Betreuer] Beckhaus, and Michael [Akademischer Betreuer] Wark. "Reactivity and compositional analysis of the solid electrolyte interphase and the cathode electrolyte interphase in different electrodes for Li-ion batteries / Eduardo, dos Santos Sardinha ; Gunther Wittstock, Rüdiger Beckhaus, Michael Wark." Oldenburg : BIS der Universität Oldenburg, 2019. http://d-nb.info/1190283921/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sardinha, Eduardo dos Santos Verfasser], Gunther [Akademischer Betreuer] Wittstock, Rüdiger [Akademischer Betreuer] Beckhaus, and Michael [Akademischer Betreuer] [Wark. "Reactivity and compositional analysis of the solid electrolyte interphase and the cathode electrolyte interphase in different electrodes for Li-ion batteries / Eduardo, dos Santos Sardinha ; Gunther Wittstock, Rüdiger Beckhaus, Michael Wark." Oldenburg : BIS der Universität Oldenburg, 2019. http://nbn-resolving.de/urn:nbn:de:gbv:715-oops-41536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kautz, Jr David Joseph. "Investigation of Alkali Metal-Host Interactions and Electrode-Electrolyte Interfacial Chemistries for Lean Lithium and Sodium Metal Batteries." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103946.

Full text
Abstract:
The development and commercialization of alkali ion secondary batteries has played a critical role in the development of personal electronics and electric vehicles. The recent increase in demand for electric vehicles has pushed for lighter batteries with a higher energy density to reduce the weight of the vehicle while with an emphasis on improving the mile range. A resurgence has occurred in lithium, and sodium, metal anode research due to their high theoretical capacities, low densities, and low redox potentials. However, Li and Na metal anodes suffer from major safety issues and long-term c
APA, Harvard, Vancouver, ISO, and other styles
15

Hee-Youb, Song. "In Situ Probe Microscopic Studies on Graphite Electrodes for Lithium-ion Batteries." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dehiwala, Liyanage Chamathka H. "In-situ scanning tunneling microscopy studies of the SEI formation on graphite anodes in propylene carbonate." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574502965210263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Inoo, Akane. "Electrochemical Analysis on Reaction Sites of Graphite Electrodes with Surface Film in Lithium-ion Batteries." Kyoto University, 2020. http://hdl.handle.net/2433/253292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fan, Jui Chin. "The Performance of Structured High-Capacity Si Anodes for Lithium-Ion Batteries." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5467.

Full text
Abstract:
This study sought to improve the performance of Si-based anodes through the use of hierarchically structured electrodes to provide the nanoscale framework needed to accommodate large volume changes while controlling the interfacial area – which affects solid-electrolyte interphase (SEI) formation. To accomplish this, electrodes were fabricated from vertically aligned carbon nanotubes (VACNT) infiltrated with silicon. On the nanoscale, these electrodes allowed us to adjust the surface area, tube diameter, and silicon layer thickness. On the micro-scale, we have the ability to control the electr
APA, Harvard, Vancouver, ISO, and other styles
19

Maraschky, Adam M. "Experimental and Modeling Studies of Dendrite Initiation during Lithium Electrodeposition." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1590505470067127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tesfaye, Alexander Teklit. "Study and improve the electrochemical behaviour of new negative electrodes for li-ion batteries." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0346/document.

Full text
Abstract:
Les accumulateurs commerciaux à base de lithium-ion (LIB) utilisent des matériaux à base de carbone (graphite) comme électrode négative; cependant, la technologie atteint sa limite en raison de la faible capacité spécifique théorique. L'objectif de cette thèse est d'étudier le comportement électrochimique de trois nouvelles anodes à haute capacité (SnSb microsturé, Ti3SiC2 anodisé et nanotubes de Si poreux) comme alternatives au graphite, d'identifier les principaux paramètres responsables de la perte de capacité et de proposer une solution commune pour améliorer leurs performances électrochim
APA, Harvard, Vancouver, ISO, and other styles
21

Antonopoulos, Byron Konstantinos [Verfasser], Harry E. [Akademischer Betreuer] Hoster, Hubert A. [Gutachter] Gasteiger, and Harry E. [Gutachter] Hoster. "Investigation of Structural and Chemical Stability of Selected Li-Ion Systems : New Insights into the Formation and the Properties of the Solid Electrolyte Interphase / Byron Konstantinos Antonopoulos ; Gutachter: Hubert A. Gasteiger, Harry E. Hoster ; Betreuer: Harry E. Hoster." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1197800182/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pierre, André Albert Bernard. "Etude des mécanismes de vieillissement des interfaces de batteries Lithium-ion appliquées aux énergies renouvelables." Thesis, Pau, 2015. http://www.theses.fr/2015PAUU3001/document.

Full text
Abstract:
Le développement des énergies renouvelables, telles que le solaire photovoltaïque ou l’éolien, est fortement conditionné par la nature intermittente de ces sources d’énergie. Cette intermittence se traduit par un décalage entre pics de production et de consommation. Le stockage de l’énergie électrique revêt donc un caractère primordial dans la gestion de ce décalage. Pour accomplir cette tâche, la technologie lithium-ion est une bonne candidate parmi les technologies de stockage électrochimique de l’énergie. Mais les applications visées exigent des durées de vie bien supérieures à celles requi
APA, Harvard, Vancouver, ISO, and other styles
23

Pan, Jie. "UNDERSTANDING ELECTRICAL CONDUCTION IN LITHIUM ION BATTERIES THROUGH MULTI-SCALE MODELING." UKnowledge, 2016. http://uknowledge.uky.edu/cme_etds/62.

Full text
Abstract:
Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposit
APA, Harvard, Vancouver, ISO, and other styles
24

Chhor, Sarine. "Etude et modélisation de l'interface graphite/électrolyte dans les batteries lithium-ion." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI067/document.

Full text
Abstract:
Cette thèse se positionne dans le domaine des batteries lithium-ion. Elle a pourobjectif de mieux comprendre le fonctionnement de l’électrode négative de graphiteen étudiant le processus de formation du film de passivation, couramment appeléSEI (Solid Electrolyte Interface) créé à l’interface avec l’électrolyte. Ce travail nousa conduit à proposer des modèles pouvant expliquer comment se forme la SEI et àidentifier les phénomènes qui entrent en jeu dans le fonctionnement de la batterie.La SEI résulte de la réaction entre l’électrode de graphite, les ions lithium et les moléculesorganiques de l
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Wanjie. "Etude des interfaces de batteries lithium-ion : application aux anodes de conversion." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3024/document.

Full text
Abstract:
Les matériaux dits de conversion à base de Sb et Sn, utilisés comme électrodes, apparaissent comme des composés particulièrement intéressants compte tenu de leur forte capacité théorique. Le matériau TiSnSb a été récemment développé en tant qu’électrode négative pour batteries lithium-ion. Ce matériau est capable d’accueilir, de façon réversible, 6,5 Li par unité formulaire, ce qui correspond à une capacité spécifique de 580 mAh/g. Dans le domaine des batteries lithium-ion, les propriétés de l’interface électrode/électrolyte (« solid electrolyte interphase », SEI), formant une couche de passiv
APA, Harvard, Vancouver, ISO, and other styles
26

Fan-WelLin and 林凡為. "Effect of 1,3-propane sultone (PS) on modification of solid electrolyte interphase (SEI) film: A first-principles study." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/05011711582199889327.

Full text
Abstract:
碩士<br>國立成功大學<br>材料科學及工程學系<br>104<br>Systematic method was applied to investigated the effect of reductive-type additive, 1,3-propane sultone (PS) on the formation of solid electrolyte interphase (SEI) at lithium ion battery anode surface, carried by the density functional theory. The anode of graphite as the electron source where the molecules reduced. In the solvent state, the most stable reduction state of PS and electrolyte, EC were confirmed and as the initial reactants reacted with the environment supplies. With the addition of PS, the reduction of PS is prior to EC which would suppress t
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Hsiang-Hwan, and 李香寰. "Studies of Solid Electrolyte Interphase on Carbon Surface in Lithium Batteries." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/t23av7.

Full text
Abstract:
博士<br>國立清華大學<br>化學工程學系<br>92<br>In lithium-ion batteries, solid electrolyte interphase (SEI) formed on carbon electrodes (negative electrodes) has been studied intensively due to its crucial impact on cycling performance of the cells. This dissertation presents the effects of formation potential range, heat treatment, and the thermal additive, vinylene carbonate (VC), on the formation and stability of SEI by electron spectroscopy for chemical analysis (ESCA), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), AC impedance,
APA, Harvard, Vancouver, ISO, and other styles
28

HUANG, SIN-YI, and 黃馨毅. "Influence and numerical analysis of solid electrolyte interphase of the lithium ion battery." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/tvfhkv.

Full text
Abstract:
碩士<br>國立臺南大學<br>綠色能源科技學系碩士班<br>106<br>In this study is employed a pseudo two-dimensional (P2D) lithium-ion battery electro-chemical model to discuss the temperature variation of lithium-ion battery and solid electrolyte interphase (SEI) film had an impact on battery. In numerical analysis, this mode is composed of electrochemical model, heat transfer model and capacity fade mode. The results have good agreement with experimental battery (LiC6-LiMn5Ni3Co2) and the error is 2.24%. In the literature review, the literature refers three kind of models for using its formulas as the basis for the stu
APA, Harvard, Vancouver, ISO, and other styles
29

Yohannes, Yonas Beyene, and Yonas Beyene Yohannes. "Anode Solid Electrolyte Interphase Formation in the presence of FEC: an In-Situ Infrared Spectroscopic Study." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/m93kv2.

Full text
Abstract:
博士<br>國立臺灣科技大學<br>化學工程系<br>106<br>The Solid Electrolyte Interphase (SEI) forms on electrodes of most Li-ion batteries (LiBs), but its formation mechanism and the properties that may govern the performance of LiBs are a mystery. The goal of this dissertation is to understand SEI growth by examining the formation of interface layer using in situ infrared spectroscopy. We focus on the role of fluoroethylene carbonate (FEC) on both silicon-based and carbon anodes. At first, the effect of FEC additive on the formation of SEI over Si-based anode is studied using in-situ DRIFTS (diffuse reflectance i
APA, Harvard, Vancouver, ISO, and other styles
30

Lin, Pin-Ling, and 林品伶. "The investigation of solid electrolyte interphase of self-electrochemically forming binder addition in silicon anode material." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/kc78jb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Felix and 李堅境. "Investigation on Novel Sulfured-Based Additives for Solid Electrolyte Interface (SEI) Improver in High Voltage Lithium Ion Battery Application." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/78826301066201971792.

Full text
Abstract:
碩士<br>國立臺灣科技大學<br>化學工程系<br>100<br>The sulfured-based materials, which have been demonstrated to have an effective application in high voltage electrolyte system, are adapted as an additive to form better solid electrolyte interface (SEI) in this work. This SEI could help prevent the current electrolyte from decomposition and the manganese ion dissolution of positive electrode. Various weight ratios of these additives were added into commercial carbonate-based electrolyte to evaluate their performance and compatibility. The results imply that 1 wt.% PCS (1,3 Propanediol Cyclic Sulfate) in elect
APA, Harvard, Vancouver, ISO, and other styles
32

"AN IN-SITU INVESTIGATION OF SOLID ELECTROLYTE INTERPHASE FORMATION ON ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES USING SPECTROSCOPIC ELLIPSOMETRY." 2011. http://hdl.handle.net/10222/14076.

Full text
Abstract:
A novel method to detect and quantify the growth of the solid electrolyte interphase (SEI) on battery electrode materials using in-situ spectroscopic ellipsometry (SE) is presented. The effects of additives in 1 M LiPF6/EC:DEC (1:2) electrolyte on the SEI were studied. Thin film electrodes of a-Si, Ni, and TiN were prepared by magnetron sputtering for use with a custom-designed tubular in-situ electrochemical cell. Li/a-Si and Li/Ni in-situ cells in 0.1 M LiPF6/EC:DEC (1:2) were studied by galvanostatic chronopotentiometry. Large changes in the ellipsometric parameters, ? and ?, were obser
APA, Harvard, Vancouver, ISO, and other styles
33

Lee, Cheng-Yao, and 李承堯. "Effects of butadiene sulfone on the formation of solid electrolyte interphase in lithium-ion batteries based on Li4Ti5O12 anode materials." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/67544442232960969532.

Full text
Abstract:
碩士<br>大同大學<br>化學工程學系(所)<br>103<br>In recent years, Li4Ti5O12 (LTO) has been extensively considered as a promising alternative anode material for Li-ion batteries because of its excellent Li-ion intercalation/extraction reversibility and negligible volume change. Moreover, it exhibits a flat discharge platform at 1.55 V (vs. Li+) which is higher than the reduction potential of the most organic electrolytes, thus avoiding solid electrolyte interphase (SEI) film formation on the surface of LTO particles and ensuring a longer cycling life and better safety of the battery. However, the SEI formatio
APA, Harvard, Vancouver, ISO, and other styles
34

Lin, Chieh-Chang, and 林杰樟. "Carbon coating and artificial solid electrolyte interphase modification on lithium-rich layered oxides material via chemical vapor deposition with carbon source." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/agq5k5.

Full text
Abstract:
碩士<br>國立臺灣科技大學<br>化學工程系<br>105<br>Lithium-rich cathode materials are drawing high attention recently as next generation cathode materials for Li-ion battery due to its high operating voltage and high capacity ~270 mAhg-1. However, its poor electronic conductivity, rapid voltage fading during cycles and interphase instability still hinder its practical applications. This study consists of two parts: first, to deposit carbon on Li rich powders by chemical vapor deposition (CVD) with dilute ethylene and argon for enhancing electronic conductivity of powder. Second, to form a carbonaceous layer (A
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, Shih-Chang, and 張世璋. "The Study of The Reaction Kinetics of Benzimidazole-Based Lithium Salt and Characteristic Analysis of Solid Electrolyte Interphase after Electrochemical Reduction Reaction." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/z5zs74.

Full text
Abstract:
碩士<br>國立臺灣科技大學<br>應用科技研究所<br>105<br>In this study, benzimidazole as the main body of the structure to research different functional groups as the electrolyte solution of lithium salt. The results were tested by electrochemical quartz crystal microbalance to investigate benzimidazole lithium salt additives in different electrodes electrochemical reaction kinetics and the formation mechanism of Solid Electrolyte Interface (SEI). The chemical composition of solid electrolyte interface film was identified by nuclear magnetic resonance spectroscopy. The results showed the addition of benzimidazole
APA, Harvard, Vancouver, ISO, and other styles
36

Hamidah, Nur Laila, and 努萊拉. "Synthesis of fluorine functional group of maleimide based additive and its applications to the solid electrolyte interface (SEI) formation of lithium ion battery." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/20642268043756605671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

"Surface Stress during Electro-Oxidation of Carbon Monoxide and Bulk Stress Evolution during Electrochemical Intercalation of Lithium." Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.9139.

Full text
Abstract:
abstract: This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic elec
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!