Journal articles on the topic 'Seismic cone penetration test'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Seismic cone penetration test.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
LeBlanc, Anne-Marie, Richard Fortier, Michel Allard, Calin Cosma, and Sylvie Buteau. "Seismic cone penetration test and seismic tomography in permafrost." Canadian Geotechnical Journal 41, no. 5 (2004): 796–813. http://dx.doi.org/10.1139/t04-026.
Full textBagińska, Irena, Wojciech Janecki, and Maciej Sobótka. "On the interpretation of seismic cone penetration test (SCPT) results." Studia Geotechnica et Mechanica 35, no. 4 (2013): 3–11. http://dx.doi.org/10.2478/sgem-2013-0033.
Full textCampanella, R. G., P. K. Robertson, D. Gillespie, N. Laing, and P. J. Kurfurst. "Seismic cone penetration testing in the near offshore of the MacKenzie Delta." Canadian Geotechnical Journal 24, no. 1 (1987): 154–59. http://dx.doi.org/10.1139/t87-015.
Full textLeBlanc, Anne-Marie, Richard Fortier, Calin Cosma, and Michel Allard. "Tomographic imaging of permafrost using three-component seismic cone-penetration test." GEOPHYSICS 71, no. 5 (2006): H55—H65. http://dx.doi.org/10.1190/1.2235876.
Full textRobertson, P. K., D. J. Woeller, and W. D. L. Finn. "Seismic cone penetration test for evaluating liquefaction potential under cyclic loading." Canadian Geotechnical Journal 29, no. 4 (1992): 686–95. http://dx.doi.org/10.1139/t92-075.
Full textKu, Taeseo, Sung-Woo Moon, and Brent J. Gutierrez. "Advanced application of seismic cone penetration test at complex ground conditions." Engineering Geology 210 (August 2016): 140–47. http://dx.doi.org/10.1016/j.enggeo.2016.06.009.
Full textWang, Hao, Shifan Wu, Xiaohui Qi, and Jian Chu. "Site characterization of reclaimed lands based on seismic cone penetration test." Engineering Geology 280 (January 2021): 105953. http://dx.doi.org/10.1016/j.enggeo.2020.105953.
Full textPoenaru, Alexandru. "Correlations between Cone Penetration Test and Seismic Dilatometer Marchetti Test with Common Laboratory Investigations." Energy Procedia 85 (January 2016): 399–407. http://dx.doi.org/10.1016/j.egypro.2015.12.219.
Full textNa, Yung-Mook, Victor Choa, Cee-Ing Teh, and Ming-Fang Chang. "Geotechnical parameters of reclaimed sandfill from the cone penetration test." Canadian Geotechnical Journal 42, no. 1 (2005): 91–109. http://dx.doi.org/10.1139/t04-064.
Full textLech, Mariusz, Marek Bajda, and Katarzyna Markowska-Lech. "The use of resistivity and seismic cone penetration tests for site characterization." Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation 40, no. 1 (2008): 87–96. http://dx.doi.org/10.2478/v10060-008-0040-3.
Full textGhose, Ranajit, and Jeroen Goudswaard. "Integrating S‐wave seismic‐reflection data and cone penetration test data using a multiangle multiscale approach." GEOPHYSICS 69, no. 2 (2004): 440–59. http://dx.doi.org/10.1190/1.1707064.
Full textHowie, John A., and Ali Amini. "Numerical simulation of seismic cone signals." Canadian Geotechnical Journal 42, no. 2 (2005): 574–86. http://dx.doi.org/10.1139/t04-120.
Full textPutra, Rusnardi Rahmat, J. Kiyono, Sai K. Vanapalli, and Y. Ono. "Relationship between Shear Velocities Recorded by Microtremor Observations and Seismic Cone Penetration Test Results." Indonesian Journal of Science and Technology 6, no. 2 (2021): 315–36. http://dx.doi.org/10.17509/ijost.v6i2.34191.
Full textHryciw, Roman D. "Flat Dilatometer (DMT), Cone Penetrometer (CPT) and Seismic Cone (SCPT) Evaluation of Select New Madrid Liquefaction Sites." Seismological Research Letters 63, no. 3 (1992): 357–66. http://dx.doi.org/10.1785/gssrl.63.3.357.
Full textStewart, W. P., and R. G. Campanella. "Practical aspects of in situ measurements of material damping with the seismic cone penetration test." Canadian Geotechnical Journal 30, no. 2 (1993): 211–19. http://dx.doi.org/10.1139/t93-018.
Full textRobertson, P. K. "In situ testing and its application to foundation engineering." Canadian Geotechnical Journal 23, no. 4 (1986): 573–94. http://dx.doi.org/10.1139/t86-086.
Full textTschuschke, Wojciech, Sławomir Gogolik, Magdalena Wróżyńska, Maciej Kroll, and Paweł Stefanek. "The Application of the Seismic Cone Penetration Test (SCPTU) in Tailings Water Conditions Monitoring." Water 12, no. 3 (2020): 737. http://dx.doi.org/10.3390/w12030737.
Full text(Fear) Wride, C. E., P. K. Robertson, K. W. Biggar, et al. "Interpretation of in situ test results from the CANLEX sites." Canadian Geotechnical Journal 37, no. 3 (2000): 505–29. http://dx.doi.org/10.1139/t00-044.
Full textRobertson, P. K. "Interpretation of cone penetration tests — a unified approach." Canadian Geotechnical Journal 46, no. 11 (2009): 1337–55. http://dx.doi.org/10.1139/t09-065.
Full textAn, Yan Yong, and Bao Tian Wang. "Multifunctional Piezocone Penetration Testing in Geotechnical Practice." Applied Mechanics and Materials 90-93 (September 2011): 250–54. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.250.
Full textLorenzo, Juan M., Jason Hicks, and Emilio E. Vera. "Integrated seismic and cone penetration test observations at a distressed earthen levee: Marrero, Louisiana, U.S.A." Engineering Geology 168 (January 2014): 59–68. http://dx.doi.org/10.1016/j.enggeo.2013.10.019.
Full textKu, Taeseo, Paul W. Mayne, and Ethan Cargill. "Continuous-interval shear wave velocity profiling by auto-source and seismic piezocone tests." Canadian Geotechnical Journal 50, no. 4 (2013): 382–90. http://dx.doi.org/10.1139/cgj-2012-0278.
Full textGoh, Anthony TC. "Probabilistic neural network for evaluating seismic liquefaction potential." Canadian Geotechnical Journal 39, no. 1 (2002): 219–32. http://dx.doi.org/10.1139/t01-073.
Full textBaziw, Erick J. "Derivation of seismic cone interval velocities utilizing forward modeling and the downhill simplex method." Canadian Geotechnical Journal 39, no. 5 (2002): 1181–92. http://dx.doi.org/10.1139/t02-061.
Full textKarl, L., W. Haegeman, and G. Degrande. "Determination of the material damping ratio and the shear wave velocity with the Seismic Cone Penetration Test." Soil Dynamics and Earthquake Engineering 26, no. 12 (2006): 1111–26. http://dx.doi.org/10.1016/j.soildyn.2006.03.001.
Full textSitharam, T. G., Naveen James, and Monalisha Nayak. "Dynamic Characterization and Site Response Studies for an Offshore Site Based on Detailed Geotechnical Tests." International Journal of Geotechnical Earthquake Engineering 6, no. 1 (2015): 50–80. http://dx.doi.org/10.4018/ijgee.2015010104.
Full textMcGann, Christopher R., Brendon A. Bradley, Merrick L. Taylor, Liam M. Wotherspoon, and Misko Cubrinovski. "Applicability of existing empirical shear wave velocity correlations to seismic cone penetration test data in Christchurch New Zealand." Soil Dynamics and Earthquake Engineering 75 (August 2015): 76–86. http://dx.doi.org/10.1016/j.soildyn.2015.03.021.
Full textNierwinski, Helena P., Marcelo Heidemann, Laura A. Lavalle, and Bruna Sell. "Study of mining tailings geotechnical parameters obtained from SCPTu tests carried on dry and saturated layers." MATEC Web of Conferences 337 (2021): 04010. http://dx.doi.org/10.1051/matecconf/202133704010.
Full textMarkowska-Lech, Katarzyna, Mariusz Lech, Marek Bajda, and Alojzy Szymański. "Small strain stiffness in overconsolidated Pliocene clays." Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation 45, no. 2 (2013): 169–81. http://dx.doi.org/10.2478/sggw-2013-0014.
Full textAhmad, Mahmood, Xiao-Wei Tang, Jiang-Nan Qiu, and Feezan Ahmad. "Evaluating Seismic Soil Liquefaction Potential Using Bayesian Belief Network and C4.5 Decision Tree Approaches." Applied Sciences 9, no. 20 (2019): 4226. http://dx.doi.org/10.3390/app9204226.
Full textJuang, C. Hsein, Jianye Ching, Lei Wang, Sara Khoshnevisan, and Chih-Sheng Ku. "Simplified procedure for estimation of liquefaction-induced settlement and site-specific probabilistic settlement exceedance curve using cone penetration test (CPT)." Canadian Geotechnical Journal 50, no. 10 (2013): 1055–66. http://dx.doi.org/10.1139/cgj-2012-0410.
Full textElkateb, Tamer, Rick Chalaturnyk, and Peter K. Robertson. "Simplified geostatistical analysis of earthquake-induced ground response at the Wildlife Site, California, U.S.A." Canadian Geotechnical Journal 40, no. 1 (2003): 16–35. http://dx.doi.org/10.1139/t02-089.
Full textTohari, Adrin. "Seismic microzonation of soil amplification and liquefaction for Padang City." E3S Web of Conferences 156 (2020): 02008. http://dx.doi.org/10.1051/e3sconf/202015602008.
Full textPrice, Bradford E., Marc Stilson, Michael Hansen, Jon Bischoff, and T. Leslie Youd. "Liquefaction and Lateral Spread Evaluation and Mitigation for Highway Overpass Structure: Cherry Hill Interchange, Davis County, Utah." Transportation Research Record: Journal of the Transportation Research Board 1736, no. 1 (2000): 119–26. http://dx.doi.org/10.3141/1736-15.
Full textMorales, Camilo, Christian Ledezma, Esteban Sáez, Sebastián Boldrini, and Kyle Rollins. "Seismic failure of an old pier during the 2014 Mw8.2, Pisagua, Chile earthquake." Earthquake Spectra 36, no. 2 (2020): 880–903. http://dx.doi.org/10.1177/8755293019891726.
Full textZhang, Guang De. "Near Surface Research and Excitation Horizon Prediction Based on Old River Course of Xiaoqing River in Shan Dong." Advanced Materials Research 664 (February 2013): 94–98. http://dx.doi.org/10.4028/www.scientific.net/amr.664.94.
Full textHu, Jiang Chun, Hong Fang Wang, and Chen Li. "Analysis on the Discrimination Method of Seismic Liquefaction." Applied Mechanics and Materials 275-277 (January 2013): 1441–45. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.1441.
Full textStacul, Stefano, Aurora Magalotti, Massimo Baglione, Claudia Meisina, and Diego Lo Presti. "Implementation and Use of a Mechanical Cone Penetration Test Database for Liquefaction Hazard Assessment of the Coastal Area of the Tuscany Region." Geosciences 10, no. 4 (2020): 128. http://dx.doi.org/10.3390/geosciences10040128.
Full textJaume, S. C. "Shear Wave Velocity Profiles via Seismic Cone Penetration Test and Refraction Microtremor Techniques at ANSS Strong Motion Sites in Charleston, South Carolina." Seismological Research Letters 77, no. 6 (2006): 771–79. http://dx.doi.org/10.1785/gssrl.77.6.771.
Full textKruiver, Pauline P., Ane Wiersma, Fred H. Kloosterman, et al. "Characterisation of the Groningen subsurface for seismic hazard and risk modelling." Netherlands Journal of Geosciences 96, no. 5 (2017): s215—s233. http://dx.doi.org/10.1017/njg.2017.11.
Full textDu, Guangyin, Changhui Gao, Songyu Liu, Qian Guo, and Tao Luo. "Evaluation Method for the Liquefaction Potential Using the Standard Penetration Test Value Based on the CPTU Soil Behavior Type Index." Advances in Civil Engineering 2019 (March 12, 2019): 1–8. http://dx.doi.org/10.1155/2019/5612857.
Full textFarhangi, Visar, Moses Karakouzian, and Marten Geertsema. "Effect of Micropiles on Clean Sand Liquefaction Risk Based on CPT and SPT." Applied Sciences 10, no. 9 (2020): 3111. http://dx.doi.org/10.3390/app10093111.
Full textGalushkin, I. V., N. A. Ragozin, D. V. Stenin, and V. I. Ignatev. "Experience of using seismoacoustic methods for a detailed modeling of geological environment at design of high criticallity objects of nuclear construction." Engineering survey 12, no. 11-12 (2019): 52–62. http://dx.doi.org/10.25296/1997-8650-2018-12-11-12-52-62.
Full textBerrill, J. B., P. C. Mulqueen, and E. T. C. Ooi. "Liquefaction at Kaiapoi in the 1901 Cheviot, New Zealand, earthquake." Bulletin of the New Zealand Society for Earthquake Engineering 27, no. 3 (1994): 178–89. http://dx.doi.org/10.5459/bnzsee.27.3.178-189.
Full textHolzer, Thomas L., Amy C. Padovani, Michael J. Bennett, Thomas E. Noce, and John C. Tinsley. "Mapping NEHRP VS30 Site Classes." Earthquake Spectra 21, no. 2 (2005): 353–70. http://dx.doi.org/10.1193/1.1895726.
Full textFauzan, Nadia Milla Hanifah, Willy Peratundhika E, Mutia Putri Monika, and Zev Al Jauhari. "Structural evaluation of 3-story dormitory reinforced concrete building considering soil liquefaction potential." E3S Web of Conferences 156 (2020): 05015. http://dx.doi.org/10.1051/e3sconf/202015605015.
Full textVongchavalitkul, Sanguan, and Swein Kumpangta. "Probabilistic Assessment of Soil Liquefaction by Using Seismic Chinese Code." Applied Mechanics and Materials 166-169 (May 2012): 2248–52. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.2248.
Full textRabarijoely, Simon. "Rigidity of “Warsaw clay” from the Poznań Formation determined by in situ tests." Open Geosciences 12, no. 1 (2020): 1274–85. http://dx.doi.org/10.1515/geo-2020-0030.
Full textHobiger, Manuel, Paolo Bergamo, Walter Imperatori, et al. "Site Characterization of Swiss Strong-Motion Stations: The Benefit of Advanced Processing Algorithms." Bulletin of the Seismological Society of America 111, no. 4 (2021): 1713–39. http://dx.doi.org/10.1785/0120200316.
Full textBALA, ANDREI, and DIETER HANNICH. "Liquefaction Potential Analysis in Bucharest City as a Result of the Ground Shaking during Strong Vrancea Earthquakes." Athens Journal of Τechnology & Engineering 8, no. 2 (2021): 113–38. http://dx.doi.org/10.30958/ajte.8-2-1.
Full text