Academic literature on the topic 'Seismic instrumentation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic instrumentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Seismic instrumentation"

1

Harvey, Bill. "Instrumentation." Optician 266, no. 6863 (2022): 14–16. http://dx.doi.org/10.12968/opti.2022.266.6863.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Young, R. P., J. J. Hill, A. D. Green, R. N. Haigh, and R. Middleton. "Microcomputer based seismic instrumentation systems." Quarterly Journal of Engineering Geology and Hydrogeology 18, no. 4 (1985): 369–80. http://dx.doi.org/10.1144/gsl.qjeg.1985.018.04.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

White, J. E. "Downhole instrumentation for seismic waves." Journal of the Acoustical Society of America 90, no. 4 (1991): 2349. http://dx.doi.org/10.1121/1.402149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pieuchot, Maurice, and Enders A. Robinson. "Seismic Instrumentation by Maurice Pieuchot." Journal of the Acoustical Society of America 78, no. 2 (1985): 816. http://dx.doi.org/10.1121/1.392414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heath, R. G. "Trends in land seismic instrumentation." Leading Edge 27, no. 7 (2008): 872–77. http://dx.doi.org/10.1190/1.2954026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dragomir, Claudiu Sorin, and Daniela Dobre. "From Seismic Instrumentation Towards Disaster Prevention and Mitigation." IOP Conference Series: Materials Science and Engineering 1203, no. 3 (2021): 032090. http://dx.doi.org/10.1088/1757-899x/1203/3/032090.

Full text
Abstract:
Abstract The present paper describes the current technical achievements in seismic instrumentation and monitoring within a national network and the role of this developed concept in disaster prevention and mitigation, in particular case of Romanian seismicity. Many studies are being conducted in the field of structural health monitoring, for seismically instrumented/monitored buildings, based on existed sensor technology, seismic data acquisition systems, data communication and information flow, computer hardware/software engineering, new solutions for seismic data transfer etc. Seismic records in free-field and on buildings are capitalised in anti-seismic design, development of technical and technological solutions in construction, seismic evaluation and rehabilitation of buildings, as well as in the process of education and earthquake preparedness. It aimed also to create a virtual seismic network (through Internet, WAN property networks, public analogue telephone network). It is a national priority creating a preventive culture in order to mitigate the seismic risk, starting with the strengthening of buildings, upgrading of the code for seismic design, seismic instrumentation as a usual practice and continuing with public communication and information actions, empowering communities and decision-makers related to the risks, prevention measures, what behaviour to be adopted. The efforts of last years show that Romania has taken important steps in preparing a response according to the challenges induced by the existing seismic sources from the entire territory of the country.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Guoxin, Weizheng Wang, Katayoun B. Aafshar, and Dragi Dojcinovski. "Seismic instrumentation of high-rise buildings." Progress in Natural Science 19, no. 2 (2009): 223–27. http://dx.doi.org/10.1016/j.pnsc.2008.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Liang, Xiuli Du, Rong Pan, Xiuyun Zhu, and Haiyan Luan. "Research on Improved Seismic Instrumentation System for Nuclear Power Plants." Energies 14, no. 14 (2021): 4262. http://dx.doi.org/10.3390/en14144262.

Full text
Abstract:
According to the requirements of nuclear safety regulations, nuclear power plants must be equipped with seismic instrumentation systems, which are mainly used for monitoring alarm and automatic shutdown alarm during an earthquake. Both the second and third generation NPPs adopt Peak Ground Acceleration (PGA). However, among the seismic acceleration characteristics, isolated and prominent single high frequency acceleration peaks have no decisive influence on the seismic response. Especially when the earthquake monitoring alarm is at 1 out of 7, it is likely to cause a false alarm or false shutdown. In addition, it usually takes one month or more for the NPPs to restart after the shutdown. In this paper, an improved seismic instrumentation system based on the existing system is proposed. For high intensity areas, three components resultant acceleration is used to judge the 2 out of 4 logic of the automatic seismic trip system(ASTS). For low intensity areas, the seismic failure level is evaluated quickly by using three components resultant acceleration, seismic instrument intensity, cumulative absolute velocity, floor response spectrum and other multi-parameters, avoiding unnecessary and long-term shutdown inspection.
APA, Harvard, Vancouver, ISO, and other styles
9

Lungu, D., A. Aldea, S. Demetriu, and I. Craifaleanu. "Seismic strengthening of buildings and seismic instrumentation - Two priorities for seismic risk reduction in Romania." Acta Geodaetica et Geophysica Hungarica 39, no. 2-3 (2004): 233–58. http://dx.doi.org/10.1556/ageod.39.2004.2-3.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sokolov, A. N., and A. V. Musrepov. "IMPACT OF AN INSTRUMENTATION TYPE ON SEISMIC NOISE (AT THE EXAMPLE OF “PODGORNOYE” SEISMIC STATION)." NNC RK Bulletin, no. 3 (September 30, 2019): 88–95. http://dx.doi.org/10.52676/1729-7885-2019-3-88-95.

Full text
Abstract:
The paper deals with detailed analysis of seismic noise characteristics at “Podgornoye” station for the purposes of analyzing the impact of seismic instrumentation parameters on the efficiency of the stations’ work.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Seismic instrumentation"

1

Stephens, Todd W. "Kealakaha Stream Bridge Replacement Project: seismic instrumentation plan." Thesis, Monterey, California. Naval Postgraduate School, 1996. http://hdl.handle.net/10945/8600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, Michael S. "Seismic time history analysis and instrumentation of the Galena Creek Bridge." abstract and full text PDF (UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McHattie, Samuel Alexander. "Seismic Response of the UC Physics Building in the Canterbury Earthquakes." Thesis, University of Canterbury. Civil and Natural Resource Engineering, 2013. http://hdl.handle.net/10092/8801.

Full text
Abstract:
The purpose of this thesis is to evaluate the seismic response of the UC Physics Building based on recorded ground motions during the Canterbury earthquakes, and to use the recorded response to evaluate the efficacy of various conventional structural analysis modelling assumptions. The recorded instrument data is examined and analysed to determine how the UC Physics Building performed during the earthquake-induced ground motions. Ten of the largest earthquake events from the 2010-11 Canterbury earthquake sequence are selected in order to understand the seismic response under various levels of demand. Peak response amplitude values are found which characterise the demand from each event. Spectral analysis techniques are utilised to find the natural periods of the structure in each orthogonal direction. Significant torsional and rocking responses are also identified from the recorded ground motions. In addition, the observed building response is used to scrutinise the adequacy of NZ design code prescriptions for fundamental period, response spectra, floor acceleration and effective member stiffness. The efficacy of conventional numerical modelling assumptions for representing the UC Physics Building are examined using the observed building response. The numerical models comprise of the following: a one dimensional multi degree of freedom model, a two dimensional model along each axis of the building and a three dimensional model. Both moderate and strong ground motion records are used to examine the response and subsequently clarify the importance of linear and non-linear responses and the inclusion of base flexibility. The effects of soil-structure interaction are found to be significant in the transverse direction but not the longitudinal direction. Non-linear models predict minor in-elastic behaviour in both directions during the 4 September 2010 Mw 7.1 Darfield earthquake. The observed torsional response is found to be accurately captured by the three dimensional model by considering the interaction between the UC Physics Building and the adjacent structure. With the inclusion of adequate numerical modelling assumptions, the structural response is able to be predicted to within 10% for the majority of the earthquake events considered.
APA, Harvard, Vancouver, ISO, and other styles
4

Murphy, Michael M. "Analysis of Seismic Signatures Generated from Controlled Methane and Coal Dust Explosions in an Underground Mine." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/29705.

Full text
Abstract:
Examination of seismic records during the time interval of the Sago Mine disaster in 2006 revealed a small amplitude signal possibly associated with an event in the mine. Although the epicenter of the signature was located in the vicinity where the explosion occurred, it could not be unequivocally attributed to the explosion. More needs to be understood about the seismicity from mine explosions in order to properly interpret critical seismic information. A seismic monitoring system located at NIOSHâ s Lake Lynn Experimental Mine has monitored nineteen experimental methane and dust based explosions. The objective of the study was to analyze seismic signatures generated by the methane and dust explosions to begin understanding their characteristics at different distances away from the source. The seismic signatures from these different events were analyzed using standard waveform analysis procedures in order to estimate the moment magnitude and radiated seismic energy. The procedures used to analyze the data were conducted using self-produced programs not available with existing commercial software. The signatures of the explosions were found to be extremely complex due a combination of mine geometry and experimental design, both of which could not be controlled for the purposes of the study. Geophones located approximately 600 m (1970 ft) and over from the source collected limited data because of the attenuation of the seismic waves generated by the methane explosion. A combination of the methods used to characterize the seismic signatures allowed for differentiation between experimental designs and the size of the explosion. The factors having the largest impact on the signatures were the mine geometry, size of the methane explosion, construction of the mine seal and location of the mine seal. A relationship was derived to correlate the radiated seismic energy to the size of the explosion. Recommendations were made, based upon the limitations of this study, on methods for better collection of seismic data in the future.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Huynh, Camille. "Real-time seismic monitoring using DAS fiber-optic instrumentation and machine learning : towards autonomous classification of natural and anthropogenic events." Electronic Thesis or Diss., Strasbourg, 2025. http://www.theses.fr/2025STRAH001.

Full text
Abstract:
Ces dernières années, une nouvelle technologie basée sur l'utilisation de fibres optiques est apparue pour surveiller les événements acoustiques naturels ou anthropogéniques : la détection acoustique distribuée (Distributed Acoustic Sensing - DAS). Cette technologie innovante permet de mesurer les vibrations sismiques à très haute résolution spatiale sur des distances allant de quelques dizaines de mètres à plusieurs centaines de kilomètres. Bien que ces données soient plus volumineuses et plus complexes à traiter que celles des sismomètres traditionnels, elles offrent des perspectives prometteuses, notamment pour l'analyse des champs d'ondes générés par les tremblements de terre, la détection des glissements de terrain, la surveillance de divers événements anthropogéniques (tels que les déplacements de piétons, les mouvements de véhicules, ou les signaux sismiques provenant des activités humaines), les événements de faible amplitude ou très localisés, et la localisation précise de l'origine de ces événements sismiques. L'objectif de cette thèse est de développer et de tester des chaînes d'analyse de données automatisées en utilisant des approches basées sur l'IA pour détecter, classer et analyser les données DAS à fibre optique en temps quasi réel. L'objectif est axé sur la surveillance locale et régionale de zones spécifiques afin de permettre la détection et l'identification en temps réel d'événements naturels tels que les tremblements de terre et les glissements de terrain<br>In recent years, alongside traditional seismometer-based approaches, a new technology based on the use of optical fibers has emerged for monitoring natural or anthropogenic acoustic events: Distributed Acoustic Sensing (DAS). This innovative technology enables the measurement of seismic vibrations at very high spatial resolution over distances ranging from tens of meters to several hundred kilometers. Although these data are larger and more complex to process than those from traditional seismometers, they offer promising perspectives, particularly for analyzing the wavefields generated by earthquakes, detecting landslides, monitoring various anthropogenic events (such as pedestrian movements, vehicle movements, or seismic signals from human activities), low-amplitude or highly localized events, and precisely locating the origin of these seismic events. The goal of this thesis is to develop and test automated data analysis chains using AI-based approaches to detect, classify and analyze near-real-time fiber-optics DAS data. The objective is focused on local and regional monitoring of specific areas to enable the real-time detection and identification of natural events such as earthquakes and landslides
APA, Harvard, Vancouver, ISO, and other styles
6

Duco, Fabien. "Méthodologies d'évaluation de la vulnérabilité sismique de bâtiments existants à partir d'une instrumentation in situ." Phd thesis, Toulouse, INPT, 2012. http://oatao.univ-toulouse.fr/9117/1/duco.pdf.

Full text
Abstract:
La France Métropolitaine est composée de régions à sismicité modérée mais néanmoins vulnérables aux tremblements de terre. En effet, 85% des bâtiments existants ont été construits avant l’apparition des règles de construction parasismique. Pour évaluer la vulnérabilité sismique de ces structures, il existe différentes méthodes à grande échelle telles que Hazus ou Risk-UE, non adaptées à l’échelle d’un bâtiment. Deux typologies de structures ont été étudiées dans ce travail : les structures récentes en béton armé représentatives des grands bâtiments stratégiques, et les structures en maçonnerie non renforcée, représentatives des centres villes historiques. Compte-tenu de la sismicité modérée, les structures récentes en béton armé ont un comportement linéaire élastique. Dans ce cadre, l’instrumentation d’un bâtiment, tel que la Tour de l’Ophite, est essentielle car elle permet de déterminer les vibrations ambiantes d’une structure et d’en extraire les paramètres modaux (fréquences propres, amortissements et déformées modales) qui incluent naturellement des informations sur la qualité des matériaux utilisés, leur vieillissement, leur endommagement, etc. De plus, un outil, basé sur la méthode stochastique par sous-espaces à l’aide des matrices de covariance (SSI-COV), a été développé afin de détecter au mieux les modes propres très proches (modes doubles), lors du traitement des données issues de l’instrumentation de la Tour de l’Ophite. Un modèle numérique par Eléments Finis est également proposé afin de prédire, dans le domaine linéaire, les déplacements de la Tour de l’Ophite soumise à un séisme identique à celui des Abruzzes en Italie en 2009. Pour les structures en maçonnerie non renforcée, un modèle de comportement non-linéaire des matériaux, avec une approche de type endommagement fragile, a été développé et utilisé pour la simulation numérique du comportement ductile des panneaux, remplaçant ainsi la mise en œuvre d’essais expérimentaux lourds et coûteux. A partir des travaux précédents, une méthodologie analytique d’évaluation de la vulnérabilité sismique des bâtiments existants, validée par comparaison avec le code numérique TreMuRi, est proposée et appliquée à un bâtiment. Par exemple, la généricité de notre méthodologie a permis de mener une investigation sur un matériau local, les murs en galets.
APA, Harvard, Vancouver, ISO, and other styles
7

Gunn, D. A. "Electronic instrumentation for the measurement of velocities and attenuations of shear and compressional seismic waves in rocks and soils under in-situ stress conditions." Thesis, University of Manchester, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sabri, Amirreza. "Seismic Retrofit of Load Bearing URM Walls with Internally Placed Reinforcement and Surface-Bonded FRP Sheets." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40675.

Full text
Abstract:
Concrete block masonry is a common building material used worldwide, including Canada. Reinforced masonry buildings, designed according to the requirements of recent building codes, may result in seismically safe structures. However, unreinforced masonry (URM) buildings designed and constructed prior to the development of modern seismic design codes are extremely vulnerable to seismic induced damage. Replacement of older seismically deficient buildings with new and seismically designed structures is economically not feasible in most cases. Therefore, seismic retrofitting of deficient buildings remains to be a viable seismic risk mitigation strategy. Masonry load bearing walls are the most important elements of such buildings, potentially serving as lateral force resisting systems. A seismic retrofit research program is currently underway at the University of Ottawa, consisting of experimental and analytical components for developing new seismic retrofit systems for unreinforced masonry walls. The research project presented in this thesis forms part of the same overall research program. The experimental component includes design, construction, retrofit and testing of large-scale load bearing masonry walls. Two approaches were developed as retrofit methodologies, both involving reinforcing the walls for strength and deformability. The first approach involves the use of ordinary deformed steel reinforcement as internally added reinforcement to attain reinforced masonry behaviour. The second approach involves the use of internally placed post-tensioning tendons to attain prestressed masonry behaviour. The analytical component of research consists of constructing a Finite Element computer model for nonlinear analysis of walls and conducting a parametric study to assess the significance of retrofit design parameters. The results have led to the development of a conceptual retrofit design framework for the new techniques developed, while utilizing the seismic provisions of the National Building Code of Canada and the relevant CSA material standards.
APA, Harvard, Vancouver, ISO, and other styles
9

Budi, Wibowo Sandy. "Approches multiscalaires de l'érosion du volcan Merapi, Indonésie : contribution à la compréhension du déclenchement et de la dynamique des lahars." Thesis, Paris 1, 2016. http://www.theses.fr/2016PA01H044/document.

Full text
Abstract:
L’érosion des édifices volcaniques résulte d’une série de processus géomorphologiques qui se produisent pendant, avant ou sans éruption. Ce processus implique également le terme « lahar » qui décrit un écoulement rapide de la zone sommitale vers l’aval amenant des matériaux volcaniques mélangés à de l’eau avec une évolution de la dynamique d’écoulement dans l’espace et dans le temps. L’érosion des édifices volcaniques est encore mal connue, particulièrement en raison de la difficulté d’acquisition de données sur le terrain. Pourtant, les lahars ont causé à eux seuls au moins 44 250 morts de 1600 à 2010 dont 52 % à cause d’un seul évènement en 1985 (Nevado del Ruiz, Colombie). Cette étude propose une approche multiscalaire pour mieux comprendre la nature de l’érosion des édifices volcaniques sur le déclenchement et la dynamique des lahars. L’éruption du volcan Merapi (Indonésie) en2010 fut l’occasion de produire de nouvelles données de terrain. La première partie de la thèse, relative au déclenchement des lahars, repose sur des données de terrain et des expérimentations en laboratoire. Le travail de terrain avait pour but de comparer un bassin versant bouleversé par l’éruption de 2010 et un autre bassin versant non bouleversé, par le biais d’observations in-situ et d’instrumentation de terrain. En laboratoire, l’approche expérimentale fut réalisée en utilisant 8 scénarios différents sur un plan incliné. La deuxième partie, liée à la dynamique des lahars en mouvement, fut étudiée à partir du couplage vidéo signaux sismiques. Les dépôts liés à ces lahars furent également analysés et mis en regard de la chronologie des écoulements. Trois ans après l’éruption du Merapi en 2010, les lahars se sont raréfiés. Cependant, les dépôts de cendres juvéniles issues d’une autre éruption d’un volcan voisin (Kelud à Java Est) eurent comme résultat une augmentation significative du nombre de lahars à partir de février 2014. Le déclenchement des lahars fut également favorisé par des glissements de terrain connectés aux thalwegs, comme celui produit dans la nuit du 6 au 7 décembre 2012, que nous avons étudié en détail. La dynamique des deux lahars observés et filmés les 28 février et 18 mars 2014 fut divisée en 4 phases : (1) écoulement hyperconcentré, (2) pic de coulée de débris, (3) corps du lahar, (4) queue du lahar. L’analyse vidéo et l’observation in-situ sur les lahars en mouvement a permis de créer des hydrogrammes détaillés indiquant la profondeur, la vitesse, le débit et le nombre des blocs métriques flottés. La dynamique des lahars sur les différentes topographies du chenal a provoqué une fréquence sismique très différente. La formation des dépôts de lahars fut corrélée à la dynamique des écoulements et nécessita une observation in-situ pour la validation d’interprétation<br>The erosion of volcanic edifices is a series of geomorphological processes that occurs during, before or without eruption. This process also involves the term "lahar" which is characterized by dense mixtures of volcanic materials and water, rapidly flowing from a volcano with important spatio-temporal rheological changes. The erosion of volcanic edifices is still poorly understood, particularly because data collection in the field is difficult. However, lahars have caused at least 44,250 deaths from 1600 to 2010 of which 52%due to a single event in 1985 (Nevado del Ruiz, Colombia).This study proposes a multi-scalar approach to better understand the nature of the erosion of volcanic edifices, especially on lahar initiation process and dynamics. The eruption of the Merapi volcano(Indonesia) in 2010 was an opportunity to produce new data. The first part of this thesis focused on the lahar initiation process, was based on field data and laboratory experiments. The field work was intended to compare a volcanically disturbed watershed by the eruption of 2010 and an undisturbed watershed, by conducting in-situ observations and field instrumentation. In the laboratory, an experimental approach was performed using 8 different scenarios on a flume. The second part of the thesis related to the dynamics of two lahars in motion was conducted using coupling between video footage and seismic signal. Lahar deposits were also analyzed based on the chronology of the flows. Three years after the eruption of Merapi in 2010, the frequency of lahar occurrence decreased. However, juvenile ash fall deposits (volcanic ash) from another eruption of a nearby volcano (Kelud in East Java) in February 2014 resulted a significant increase of lahars occurrence. Lahars triggering process was also favored by a landslides occurring in the night of 6 to 7 December 2012, of which the deposit was connected to the thalweg. The dynamics of the two lahars were observed and filmed on 28 February and18 March 2014. Those lahars were divided into four phases: (1) hyperconcentrated flow, (2) the peak of debris flow, (3) lahar body, and (4) lahar tail. Video analysis and in-situ observation on active lahars allowed us to create detailed hydrographs indicating flow depth, velocity, discharge and the number of floated boulders. Lahar dynamics on different topography of the channel caused a very different seismic frequency. The formation of lahar deposits was correlated with the flow dynamics and required an in-situ observation for the validation of the interpretation<br>Erosi kerucut vulkanik merupakan hasil dari serangkaian proses geomorfologi yang terjadi baik selama,sebelum atau tanpa erupsi. Proses ini juga melibatkan "lahar" yang didefinisikan sebagai aliran cepat daridaerah puncak gunung menuju hilir dengan membawa material vulkanik yang bercampur dengan airdimana dinamika alirannya terus berubah secara spasial dan temporal. Erosi struktur vulkanik masihsedikit ditelaah, terutama karena sulitnya pengumpulan data di lapangan. Padahal, lahar telahmenyebabkan setidaknya 44.250 kematian dari tahun 1600 sampai 2010, dimana 52% -nya terkait denganbencana pada tahun 1985 di gunung Nevado del Ruiz (Kolombia).Penelitian ini mengusulkan pendekatan multi-skalar untuk lebih memahami karakteristik erosi kerucutvulkanik terutama yang terkait dengan pemicu dan dinamika aliran lahar. Letusan Gunung Merapi(Indonesia) pada tahun 2010 memberikan kesempatan untuk menghasilkan data lapangan baru. Bagianpertama dari disertasi ini, mengenai pemicu lahar, dilakukan berdasarkan data lapangan dan experimenlaboratorium. Kegiatan lapangan dimaksudkan untuk membandingkan DAS yang terdampak oleh letusan2010 dan DAS alami, melalui pengamatan in-situ dan instrumentasi lapangan. Di laboratorium,pendekatan eksperimental dilakukan dengan menggunakan 8 skenario yang berbeda pada flume. Bagiankedua dari disertasi ini berkaitan dengan dinamika aliran lahar aktif yang dipelajari dari perpaduanrekaman video dan sinyal seismik. Proses sedimentasi juga dianalisis dengan dipertimbangkan kronologialiran lahar.Tiga tahun setelah letusan Merapi pada tahun 2010, frekuensi kejadian lahar berkurang. Namun,sedimentasi abu vulkanik yang berasal dari gunung api lain (Kelud di Jawa Timur) telah mengakibatkanpeningkatan jumlah lahar yang signifikan sejak Februari 2014. Pembentukan lahar juga dipicu oleh tanahlongsor yang terjadi pada pada malam 6 menuju 7 Desember 2012 dimana materialnya terhubunglangsung ke thalweg. Dinamika dua aliran lahar diamati dan difilmkan pada tanggal 28 Februari dan 18Maret 2014. Lahar tersebut dibagi menjadi empat fase: (1) aliran hyperconcentrated, (2) puncak alirandebris, (3) tubuh lahar, (4) ekor lahar. Analisis video dan pengamatan in-situ pada lahar aktif sangatmembantu pembuatan hidrograf secara rinci terkait dengan kedalaman aliran, kecepatan, debit dan jumlahbatu yang terapung. Dinamika lahar pada topografi sungai yang berbeda menimbulkan frekuensi seismikyang sangat berbeda. Proses sedimentasi lahar sangat berkaitan dengan dinamika aliran lahar dandiperlukan pengamatan in-situ untuk memvalidasi interpretasi yang dibuat<br>La erosión de los edificios volcánicos es el resultado de una serie de procesos geomorfológicos que ocurre durante, antes o sin erupción. Este proceso también involucra el término "lahar", un flujo rápido de la cumbre de volcán hacia el rio que contiene una mezcla de materiales volcánicos y agua con cambio espacial y temporal. La erosión de los edificios volcánicos aún es poco estudiado debido a las dificultades para la obtención de los datos en el campo y además es peligroso. Mientras, los lahares han causado 44 250 muertos desde 1600 a 2010, en el cual de 52% ha sido causado por un evento único en 1985 (Nevado del Ruiz, Colombia). Esta investigación propone un acercamiento multiescalar para entender mejor las características de erosión de los edificios volcánicos, en particular el proceso de descenso y la dinámica de lahares. La erupción del volcán Merapi (Indonesia) en 2010 fue una oportunidad para generar nuevos datos. La primera parte de esta tesis enfocada al proceso de iniciación de descenso de lahares, que fue basada en la obtención de los datos de campo y experimentos en el laboratorio. El trabajo de campo fue realizado con el objetivo de comparar una cuenca hidrográfica afectada por la erupción de 2010 y una otra cuenca natural, a través de la observación in-situ y la instrumentación geofísica en el campo. En el laboratorio, el trabajo fue realizado con 8 escenarios diferentes usando un canal artificial. La segunda parte de esta tesis fue relacionada a la dinámica de movimiento de lahares que se realizó a través del acoplamiento de vídeos y señales sísmicas. Se analizó también el proceso de sedimentación basado en la cronología de los flujos de lahares. Tres años después de la erupción del Merapi en 2010, la frecuencia de ocurrencia de lahares se disminuye. Sin embargo, la sedimentación de ceniza volcánica de otra erupción de un volcán cercano (Kelud en Java Oriental) causó un aumento significativo de la ocurrencia de lahares desde febrero de 2014. La formación de lahares también se provocó por deslizamiento de tierra que se ocurrió en la noche de 6 a 7 de diciembre de 2012, en la que los materiales se juntaron directamente a la vaguada. La dinámica de dos flujos de lahares fue observada y grabada en video el 28 de febrero y 18 de marzo 2014. Estos dos lahares se dividieron en cuatro fases: (1) flujo hiperconcentrado, (2) el pico de flujo de escombros, (3) cuerpo de lahar, (4) cola de lahar. El análisis de video y la observación in-situ de lahares activos nos han ayudado a crear los hidrogramas en detalle que muestran la profundidad del flujo, la velocidad, la descarga y el número de rocas flotadas. La dinámica de lahares en diferentes topografías del canal causó una frecuencia sísmica muy diferente. El proceso de sedimentación de lahares se correlacionó con la dinámica de flujo y se requiere una observación in-situ para validar la interpretación
APA, Harvard, Vancouver, ISO, and other styles
10

RICHARD, JOEL. "Application de methodes de traitements numeriques de signaux a la detection, compression et reconnaissance d'evenements d'origines sismiques dans une station autonome de type sismographe fond de mer." Rennes 1, 1988. http://www.theses.fr/1988REN10121.

Full text
Abstract:
Les conditions de fonctionnement des sismographes fond de mer imposent le conditionnement des signaux pour limiter les debits d'information lors de l'enregistrement ou de la transmission. Trois methodes deduites de la transformation de fourier, de la transformation de walsh et de la modelisation autoregression sont examines et testes
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Seismic instrumentation"

1

Geological Survey (U.S.), ed. Seismic instrumentation of buildings. U.S. Dept. of the Interior, U.S. Geological Survey, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Çelebi, Mehmet. Seismic instrumentation of buildings. U.S. Dept. of the Interior, U.S. Geological Survey, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Geological Survey (U.S.), ed. Seismic instrumentation of buildings. U.S. Dept. of the Interior, U.S. Geological Survey, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

L, Kramer Steven, Washington (State). Dept. of Transportation., Washington State Transportation Center, and Washington State Transportation Commission. Planning and Capital Program Management., eds. Seismic instrumentation for the Alaskan Way Viaduct. Washington State Dept. of Transportation, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stephens, Todd W. Kealakaha Stream Bridge Replacement Project: Seismic instrumentation plan. Available from National Technical Information Service, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Workshop Instrumentation of Dams Including Seismic Instrumentation (1999 Nāsik, India). Workshop Instrumentation of Dams Including Seismic Instrumentation, 24-26 February 1999, Nashik: Proceedings. Edited by Varma C. V. J, Rao A. R. G, Sundaraiya E, India. Central Board of Irrigation and Power., Indian Committee on Large Dams., and Maharashtra (India). Irrigation Dept. Central Board of Irrigation and Power, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Workshop Instrumentation of Dams Including Seismic Instrumentation (3rd 2000 Rishikēsh, India). Workshop Instrumentation of Dams Including Seismic Instrumentation, 19-21 April 2000, Rishikesh, Uttar Pradesh: Proceedings. Central Board of Irrigation and Power, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Geological Survey (U.S.), ed. Report on recommended list of structures for seismic instrumentation in southeastern United States. U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mehmet, Çelebi, and Geological Survey (U.S.), eds. Report on recommended list of structures for seismic instrumentation in the Boston Region. U.S. Dept. of the Interior, Geological Survey, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mehmet, Çelebi, and Geological Survey (U.S.), eds. Seismic instrumentation of federal buildings: A proposal document for consideration by federal agencies. U.S. Dept. of the Interior, Geological Survey, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Seismic instrumentation"

1

Agnew, Duncan Carr. "Seismic Instrumentation." In Encyclopedia of Solid Earth Geophysics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_27-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Agnew, Duncan Carr. "Seismic Instrumentation." In Encyclopedia of Solid Earth Geophysics. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agnew, Duncan Carr. "Seismic Instrumentation." In Encyclopedia of Solid Earth Geophysics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Havskov, Jens, and Gerardo Alguacil. "Seismic Sensors." In Instrumentation in Earthquake Seismology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21314-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Havskov, Jens, and Gerardo Alguacil. "Seismic Noise." In Instrumentation in Earthquake Seismology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21314-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Havskov, Jens, and Gerardo Alguacil. "Seismic Recorders." In Instrumentation in Earthquake Seismology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21314-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Havskov, Jens, and Gerardo Alguacil. "Seismic Stations." In Instrumentation in Earthquake Seismology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21314-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Havskov, Jens, and Gerardo Alguacil. "Seismic Networks." In Instrumentation in Earthquake Seismology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21314-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Havskov, Jens, and Gerardo Alguacil. "Seismic Arrays." In Instrumentation in Earthquake Seismology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21314-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Havskov, Jens, and Gerardo Alguacil. "Seismic sensors." In Instrumentation in Earthquake Seismology. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2969-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Seismic instrumentation"

1

Brusamarello, Beatriz, João P. Bazzo, Uilian José Dreyer, et al. "Seismic tomography of dams using surface wave analysis and distributed acoustic sensing." In Photonic Instrumentation Engineering XII, edited by Yakov Soskind and Lynda E. Busse. SPIE, 2025. https://doi.org/10.1117/12.3054319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elias, Jonathan H., Freddy Muñoz, Michael Warner, Rossano Rivera, and Manuel Martínez. "SOAR Telescope seismic performance II: seismic mitigation." In SPIE Astronomical Telescopes + Instrumentation, edited by Helen J. Hall, Roberto Gilmozzi, and Heather K. Marshall. SPIE, 2016. http://dx.doi.org/10.1117/12.2233063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Claudiu-Sorin, Dragomir. "PROTECTION OF BUILT ENVIRONMENT BY SEISMIC INSTRUMENTATION." In 13th SGEM GeoConference on SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/ba1.v2/s05.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neill, Douglas R. "Seismic analysis of the LSST telescope." In SPIE Astronomical Telescopes + Instrumentation, edited by Larry M. Stepp, Roberto Gilmozzi, and Helen J. Hall. SPIE, 2012. http://dx.doi.org/10.1117/12.926258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neill, Douglas R., Mike Warner, and Jacques Sebag. "Seismic design accelerations for the LSST telescope." In SPIE Astronomical Telescopes + Instrumentation, edited by Larry M. Stepp, Roberto Gilmozzi, and Helen J. Hall. SPIE, 2012. http://dx.doi.org/10.1117/12.926264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Robertson, Norna A., Benjamin Abbott, R. Abbott, et al. "Seismic isolation and suspension systems for Advanced LIGO." In SPIE Astronomical Telescopes + Instrumentation, edited by James Hough and Gary H. Sanders. SPIE, 2004. http://dx.doi.org/10.1117/12.552469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kan, Frank W., Samuel Park, Andrew T. Sarawit, and P. Graham Cranston. "Concept design for seismic upgrade of Keck telescopes." In SPIE Astronomical Telescopes + Instrumentation, edited by Helen J. Hall, Roberto Gilmozzi, and Heather K. Marshall. SPIE, 2016. http://dx.doi.org/10.1117/12.2233945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gómez, Celia, Alexander Avilés, Armando Bilbao, Daniel Siepe, and Peter Nawrotzki. "E-ELT seismic devices analysis and prototype testing." In SPIE Astronomical Telescopes + Instrumentation, edited by George Z. Angeli and Philippe Dierickx. SPIE, 2012. http://dx.doi.org/10.1117/12.925001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsang, Dominic, Glenn Austin, Mike Gedig, et al. "TMT telescope structure system: seismic analysis and design." In SPIE Astronomical Telescopes + Instrumentation, edited by Larry M. Stepp and Roberto Gilmozzi. SPIE, 2008. http://dx.doi.org/10.1117/12.790288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kan, Frank W., and Joseph Antebi. "Seismic hazard: analysis and design of large ground-based telescopes." In SPIE Astronomical Telescopes + Instrumentation, edited by Larry M. Stepp and Roberto Gilmozzi. SPIE, 2008. http://dx.doi.org/10.1117/12.791243.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Seismic instrumentation"

1

Kennedy, W. N. Seismic Instrumentation Placement Recommendations Report. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/4920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Phan, Long T. Seismic instrumentation of existing buildings. National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kelley, J. P. Seismic instrumentation placement recommendations report. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/750913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reidel, S. P. Hanford site seismic monitoring instrumentation plan. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/483405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ballard, Robert F., Grau Jr, and Tina H. U.S. Army Corps of Engineers Seismic Strong-Motion Instrumentation Program. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada353954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bent, A. L., and P. Voss. Seismicity in the Labrador-Baffin Seaway and surrounding onshore regions. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/321857.

Full text
Abstract:
Studying earthquakes in Baffin Bay and the surrounding regions is challenging. There is no knowledge of earthquake activity in this region prior to 1933 when a moment magnitude (MW) 7.4 earthquake occurred in Baffin Bay. With improved instrumentation, increased seismograph coverage in the north, and modern analysis techniques, knowledge and understanding of earthquakes in the Baffin region is improving. Active seismic zones include Baffin Bay, the east coast of Baffin Island, and the Labrador Sea, separated by areas of low seismicity. Focal-mechanism solutions show a mix of faulting styles, predominantly strike-slip and thrust. Regional stress-axes orientations show more consistency, which suggests that activity is occurring on previously existing structures in response to the current stress field. There is little correlation between earthquake epicentres in Baffin Bay and mapped structures. Glacial isostatic adjustment may be a triggering mechanism for earthquakes in the Baffin region, but modelling efforts have yielded equivocal results.
APA, Harvard, Vancouver, ISO, and other styles
7

Motamed, Ramin, David McCallen, and Swasti Saxena. An International Workshop on Large-Scale Shake Table Testing for the Assessment of Soil-Foundation-Structure System Response for Seismic Safety of DOE Nuclear Facilities, A Virtual Workshop – 17-18 May 2021. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2024. http://dx.doi.org/10.55461/jjvo9762.

Full text
Abstract:
Aging infrastructure within the US Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) nuclear facilities poses a major challenge to their resiliency against natural phenomenon hazards. Examples of mission-critical facilities located in regions of high seismicity can be found at a number of NNSA sites including Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and the Nevada National Security Site. Most of the nation’s currently operating nuclear facilities have already reached their operating lifetime, and most currently operating nuclear power plants (NPPs) have already reached the extent of their operating license period. While the domestic demand for electrical energy is expected to grow, if currently operating NPPs do not extend their operations and additional plants are not built quickly enough to replace them, the total fraction of electrical energy generated from carbon-free nuclear power will rapidly decline. The decision to extend operation is ultimately an economic one; however, economics can often be improved through technical advancements (McCarthy et al. 2015) and research and development (R&amp;D) activities. Similarly, the operating lifetime of the current DOE- and NNSA-owned critical infrastructure can be extended using the Probabilistic Risk Assessment (PRA) framework to systematically identify the risk associated with designing and operating existing facilities and building new ones. Using this framework consists of several steps, including (1) system analysis considering the interaction between components, such as evaluating the soil-foundation-structure system response; and (2) assessment of areas of uncertainty. Both of these steps are essential to assessing and reducing risks to the DOE and NNSA nuclear facilities. While the risks to the DOE’s facilities are primarily due to natural hazard phenomena, data from large-scale tests of the soil-foundation-structural system response to seismic shaking is currently lacking. This workshop aimed to address these key areas by organizing an international workshop focused on advancing the seismic safety of nuclear facilities using large-scale shake table testing. As a result, this workshop, which was held virtually, brought together a select group of international experts in large-scale shake table testing from the U.S., Japan, and Europe to discuss state-of-the-art experimental techniques and emerging instrumentation technologies that can produce unique experimental data to advance knowledge in natural hazards that impact the safety of the DOE’s nuclear facilities. The generated experimental data followed by research and development activities will ultimately result in updates to ASCE 4-16, one of the primary design guides for DOE nuclear facilities per DOE-STD-1020-2016. The ultimate objective of the workshop was to develop a “road map” for the future experimental campaign and innovative instrumentations using the newly constructed DOE-funded large-scale shake table facility at the University of Nevada, Reno (UNR) as well as other large-scale shake table testing facilities. This new facility resulted from a collaborative project engagement between UNR and Lawrence Berkeley National Laboratory. (LBNL). This report summarizes the proceedings of the workshop and highlights the key outcomes from presentations and discussions.
APA, Harvard, Vancouver, ISO, and other styles
8

Cobeen, Kelly, Vahid Mahdavifar, Tara Hutchinson, et al. Large-Component Seismic Testing for Existing and Retrofitted Single-Family Wood-Frame Dwellings (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/hxyx5257.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. Quantifying the difference of seismic performance of un-retrofitted and retrofitted single-family wood-frame houses has become increasingly important in California due to the high seismicity of the state. Inadequate lateral bracing of cripple walls and inadequate sill bolting are the primary reasons for damage to residential homes, even in the event of moderate earthquakes. Physical testing tasks were conducted by Working Group 4 (WG4), with testing carried out at the University of California San Diego (UCSD) and University of California Berkeley (UCB). The primary objectives of the testing were as follows: (1) development of descriptions of load-deflection behavior of components and connections for use by Working Group 5 in development of numerical modeling; and (2) collection of descriptions of damage at varying levels of peak transient drift for use by Working Group 6 in development of fragility functions. Both UCSD and UCB testing included companion specimens tested with and without retrofit. This report documents the portions of the WG4 testing conducted at UCB: two large-component cripple wall tests (Tests AL-1 and AL-2), one test of cripple wall load-path connections (Test B-1), and two tests of dwelling superstructure construction (Tests C-1 and C-2). Included in this report are details of specimen design and construction, instrumentation, loading protocols, test data, testing observations, discussion, and conclusions.
APA, Harvard, Vancouver, ISO, and other styles
9

Schiller, Brandon, Tara Hutchinson, and Kelly Cobeen. Cripple Wall Small-Component Test Program: Dry Specimens (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/vsjs5869.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER) and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measures and documents seismic performance of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Three primary tasks support the earthquake loss-modeling effort. They are: (1) the development of ground motions and loading protocols that accurately represent the diversity of seismic hazard in California; (2) the execution of a suite of quasi-static cyclic experiments to measure and document the performance of cripple wall and sill anchorage deficiencies to develop and populate loss models; and (3) nonlinear response history analysis on cripple wall-supported buildings and their components. This report is a product of Working Group 4: Testing, whose central focus was to experimentally investigate the seismic performance of retrofitted and existing cripple walls. This present report focuses on non-stucco or “dry” exterior finishes. Paralleled by a large-component test program conducted at the University of California, Berkeley (UC Berkeley) [Cobeen et al. 2020], the present report involves two of multiple phases of small-component tests conducted at University of California San Diego (UC San Diego). Details representative of era-specific construction–specifically the most vulnerable pre-1960s construction–are of predominant focus in the present effort. Parameters examined are cripple wall height, finish style, gravity load, boundary conditions, anchorage, and deterioration. This report addresses all eight specimens in the second phase of testing and three of the six specimens in the fourth phase of testing. Although conducted in different testing phases, their results are combined here to co-locate observations regarding the behavior of all dry finished specimens. Experiments involved imposition of combined vertical loading and quasi-static reversed cyclic lateral load onto eleven cripple walls. Each specimen was 12 ft in length and 2-ft or 6-ft in height. All specimens in this report were constructed with the same boundary conditions on the top, bottom, and corners of the walls. Parameters addressed in this report include: dry exterior finish type (shiplap horizontal lumber siding, shiplap horizontal lumber siding over diagonal lumber sheathing, and T1-11 wood structural panels), cripple wall height, vertical load, and the retrofitted condition. Details of the test specimens, testing protocol (including instrumentation), and measured as well as physical observations are summarized. Results from these experiments are intended to support advancement of numerical modeling tools, which ultimately will inform seismic loss models capable of quantifying the reduction of loss achieved by applying state-of-practice retrofit methods as identified in FEMA P-1100 Vulnerability-Base Seismic Assessment and Retrofit of One- and Two-Family Dwellings.
APA, Harvard, Vancouver, ISO, and other styles
10

Schiller, Brandon, Tara Hutchinson, and Kelly Cobeen. Cripple Wall Small-Component Test Program: Wet Specimens II (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/ldbn4070.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 4 (WG4): Testing, whose central focus was to experimentally investigate the seismic performance of retrofitted and existing cripple walls. This report focuses stucco or “wet” exterior finishes. Paralleled by a large-component test program conducted at the University of California, Berkeley (UC Berkeley) [Cobeen et al. 2020], the present study involves two of multiple phases of small-component tests conducted at the University of California San Diego (UC San Diego). Details representative of era-specific construction, specifically the most vulnerable pre-1960s construction, are of predominant focus in the present effort. Parameters examined are cripple wall height, finish style, gravity load, boundary conditions, anchorage, and deterioration. This report addresses the third phase of testing, which consisted of eight specimens, as well as half of the fourth phase of testing, which consisted of six specimens where three will be discussed. Although conducted in different phases, their results are combined here to co-locate observations regarding the behavior of the second phase the wet (stucco) finished specimens. The results of first phase of wet specimen tests were presented in Schiller et al. [2020(a)]. Experiments involved imposition of combined vertical loading and quasi-static reversed cyclic lateral load onto ten cripple walls of 12 ft long and 2 or 6 ft high. One cripple wall was tested with a monotonic loading protocol. All specimens in this report were constructed with the same boundary conditions on the top and corners of the walls as well as being tested with the same vertical load. Parameters addressed in this report include: wet exterior finishes (stucco over framing, stucco over horizontal lumber sheathing, and stucco over diagonal lumber sheathing), cripple wall height, loading protocol, anchorage condition, boundary condition at the bottom of the walls, and the retrofitted condition. Details of the test specimens, testing protocol, including instrumentation; and measured as well as physical observations are summarized in this report. Companion reports present phases of the tests considering, amongst other variables, impacts of various boundary conditions, stucco (wet) and non-stucco (dry) finishes, vertical load, cripple wall height, and anchorage condition. Results from these experiments are intended to support advancement of numerical modeling tools, which ultimately will inform seismic loss models capable of quantifying the reduction of loss achieved by applying state-of-practice retrofit methods as identified in FEMA P-1100,Vulnerability-Base Seismic Assessment and Retrofit of One- and Two-Family Dwellings.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!