Academic literature on the topic 'Seismic Loads'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic Loads.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Seismic Loads"
Goyal, Akash, A. N. Shankar, and S. K. Sethy. "Parametric Analysis of Hyperbolic Cooling Tower under Seismic Loads, Wind Loads and Dead Load through Staad. Pro." International Journal of Engineering Research and Science 3, no. 8 (August 31, 2017): 38–41. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-6.
Full textKim, Taeo, Sang Whan Han, and Soo Ik Cho. "Effect of Wind Loads on Collapse Performance and Seismic Loss for Steel Ordinary Moment Frames." Applied Sciences 12, no. 4 (February 15, 2022): 2011. http://dx.doi.org/10.3390/app12042011.
Full textRamakrishna, B., G. Swetha, SK Amreen Shazia, K. Kiran Sai, and S. Durga Venkata Dinesh. "Analysis of Multi-Storied Building in Different Seismic Zones using STAAD Pro." IOP Conference Series: Earth and Environmental Science 982, no. 1 (March 1, 2022): 012074. http://dx.doi.org/10.1088/1755-1315/982/1/012074.
Full textMAKINO, MINORU, and TADASHI SEIKE. "ON SEISMIC LOADS AND SEISMIC ZONING FACTORS." Journal of Structural and Construction Engineering (Transactions of AIJ) 399 (1989): 65–71. http://dx.doi.org/10.3130/aijsx.399.0_65.
Full textEasazadeh Far, Narges, and Majid Barghian. "Safety Identifying of Integral Abutment Bridges under Seismic and Thermal Loads." Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/757608.
Full textYang, Chun Xia, Qing Qing Liu, Li Juan Sun, and Jian Guo Liang. "Calculating Size Limitations of Non-Load-Bearing Walls under Seismic Loads." Applied Mechanics and Materials 204-208 (October 2012): 2646–52. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.2646.
Full textApostolopoulos, Charis, Argyro Drakakaki, and Maria Basdeki. "Seismic assessment of RC column under seismic loads." International Journal of Structural Integrity 10, no. 1 (February 4, 2019): 41–54. http://dx.doi.org/10.1108/ijsi-02-2018-0013.
Full textKuznetsova, Inna, Alexander Uzdin, and Oypasha Sabirova. "Load combinations in performance-based designing of earthquake-resisting structures." MATEC Web of Conferences 239 (2018): 05009. http://dx.doi.org/10.1051/matecconf/201823905009.
Full textBagio, Toni Hartono, Sofia W. Alisjahbana, Helmy Darjanto, and Najid Najid. "Orthotropic plates with dynamic vertical seismic load modeled as multi line." Engineering Solid Mechanics 11, no. 2 (2023): 135–50. http://dx.doi.org/10.5267/j.esm.2023.1.002.
Full textVostrov, V. K. "Specific and Emergency Seismic Loads." Occupational Safety in Industry, no. 1 (January 2018): 14–21. http://dx.doi.org/10.24000/0409-2961-2018-1-14-21.
Full textDissertations / Theses on the topic "Seismic Loads"
Jaafar, Kamal Rachid. "Spiral shear reinforcement for concrete structures under static and seismic loads." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616166.
Full textAbbasiverki, Roghayeh. "Analysis of underground concrete pipelines subjected to seismic high-frequency loads." Licentiate thesis, KTH, Betongbyggnad, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194076.
Full textNedgrävda rörledningar (pipelines) är rörformiga strukturer som används för transport av viktiga flytande material och gas för att säkerhetsställa samhälleliga funktioner. Denna typ av infrastruktursystem korsar stora områden med olika geologiska förhållanden. Under en jordbävning kan markdeformationer påverka rörledningar av betong vilka kan få allvarliga skador som i sin tur kan leda till störningar i vitala system, såsom till exempel kylning av kärnkraftsanläggningar. Den höga säkerhetsnivå som eftersträvas ger upphov till ett behov av tillförlitliga seismiska analyser, även för strukturer som byggs i regioner som traditionellt inte har ansetts som seismiskt aktiva. Fokus i denna licentiatuppsats ligger på områden med seismiska och geologiska villkor som motsvarar de i Sverige och norra Europa. Jordbävningar i Sverige klassas som händelser inom en tektonisk platta som för regioner med hårt berg kan resultera i jordbävningar som domineras av högfrekventa markvibrationer. Sådana högfrekventa vågor propagerar genom bergmassa och jordmaterial och kan där påverka underjordiska strukturer såsom rörledningar. Syftet med detta projekt är att undersöka vilka parametrar som har stor påverkan på nedgrävda rörledningar som utsätts för högfrekventa seismiska vibrationer. Tyngdpunkten i studien är på rörledningar av armerad betong men stålledningar studeras också i jämförande syfte. Två-dimensionella finita elementmodeller används, utvecklade för dynamisk analys av rörledningar belastas av seismiska vågor som propagerar från berggrunden genom jorden. Modellerna beskriver båda längsgående och tvärgående snitt av rörledningar. Samspelet mellan rörledningar och omgivande jord beskrivs av en icke-linjär modell. De studerade rörledningarna antas vara omgivna av friktionsjord med stor, medel eller liten styvhet. Effekterna av vattenmassa i rören, grundläggningsdjup, jordlagrens tjocklek och varierande jordtjocklek på grund av lutande berggrund studeras. Det visas hur två-dimensionella modellerbaserade på plan töjning kan användas för seismisk analys av rörledningar med cirkulära tvärsnitt. Resultaten jämförs med de som erhållits för lågfrekventa jordbävningar och förhållandet mellan markrörelseparametrar och responsen hos rörledningar undersöks. Det visas att den naturliga frekvensen för modellerna beror av jordtyp, tjocklek och variation hos jordlagret. Det visas att, särskilt för högfrekventa jordbävningar, olikformigt varierande markdjup på grund av lutande berggrund avsevärt ökar spänningarna i rörledningarna. För de förhållanden som studerats är det klart att det är mindre sannolikt att högfrekvent seismisk belastning ska orsaka skador på nedgrävda rörledningar av betong. Dock är den viktigaste slutsatsen att seismisk analys ändå motiveras, även för rörledningar i områden där jordbävningar med högt frekvensinnehåll förekommer eftersom lokala variationer i markförhållanden kan ha en betydande inverkan på säkerheten.
QC 20161014
Kim, Hongjin. "WAVELET-BASED ADAPTIVE CONTROL OF STRUCTURES UNDER SEISMIC AND WIND LOADS." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1039128747.
Full textHuaco, G., G. Huaco, and J. Jirsa. "Mechanical Splices for Seismic Retrofitting of Concrete Structures." Institute of Physics Publishing, 2020. http://hdl.handle.net/10757/651837.
Full textHite, Monique C. "Evaluation of the Performance of Bridge Steel Pedestals under Low Seismic Loads." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14485.
Full textErhan, Semih. "Effect Of Vehicular And Seismic Loads On The Performance Of Integral Bridges." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613739/index.pdf.
Full textSaldivar-Moguel, Emilio Enrique. "Investigation into the behaviour of displacement piles under cyclic and seismic loads." Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/7589.
Full textDechka, David Charles. "Response of shear-stud-reinforced continuous slab-column frames to seismic loads." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq64854.pdf.
Full textRydell, Cecilia. "Seismic high-frequency content loads on structures and components within nuclear facilities." Licentiate thesis, KTH, Betongbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145403.
Full textQC 20150519
Bouchard, Keith M. (Keith Michael). "A performance-based approach to retrofitting unreinforced masonry structures for seismic loads." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/38944.
Full textIncludes bibliographical references (leaves 58-59).
The structural inadequacy of existing unreinforced masonry (URM) buildings to resist possible seismic loading is a serious problem in many parts of the United States, including the Northeast and Midwest. The fact that many of these buildings are deemed historic structures or house critical facilities, like firehouses, emphasizes the need for an effective retrofitting program. The Federal Emergency Management Agency published a performance-based design code - FEMA 356 - in 2000 to use for analyzing and retrofitting existing structures. This code includes procedures for URM buildings. This paper applies these performance-based analysis procedures to a URM shear wall and compares the results to a modified analysis proposed by researchers. The wall is then rehabilitated using two common retrofit methods and again analyzed using the code. Recommendations are made for practicing engineers when evaluating URM structures for seismic loads.
by Keith M. Bouchard.
M.Eng.
Books on the topic "Seismic Loads"
Lyatkher, Victor M. Seismic Loads. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118946282.
Full textLi︠a︡tkher, V. M. Seismic loads. Hoboken, New Jersey: John Wiley & Sons, Inc., 2016.
Find full textSeismic loads: Guide to the seismic load provisions of ASCE 7-10. Reston, Virginia: ASCE Press, 2015.
Find full textAmerican Society of Civil Engineers., ed. Seismic loads: Guide to the seismic load provisions of ASCE 7-05. Reston, Va: ASCE Press, 2010.
Find full textCheng, Franklin Y. Structural optimization: Dynamic and seismic applications. New York: Spon Press, 2010.
Find full textCheng, Franklin Y. Structural optimization: Dynamic and seismic applications. New York: Spon Press, 2010.
Find full textW, Klamerus E., U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering., Sandia National Laboratories, and EQE Engineering Consultants, eds. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1994.
Find full textCrawley, Stanley W. Seismic and wind loads in architectural design: An architect's study guide. 2nd ed. Washington, DC: American Institute of Architects, 1990.
Find full textCrawley, Stanley W. The architect's study guide to seismic and lateral loads in architectural design. Washington, D.C. (1735 New York Ave., N.W., Washington 20006): American Institute of Architects, 1987.
Find full textApostolidi, Eftychia, Stephanos Dritsos, Christos Giarlelis, José Jara, Fatih Sutcu, Toru Takeuchi, and Joe White. Seismic Isolation and Response Control. Edited by Andreas Lampropoulos. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/sed019.
Full textBook chapters on the topic "Seismic Loads"
Charney, Finley A. "Interpolation Functions." In Seismic Loads, 201–3. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.apa.
Full textCharney, Finley A. "Using the USGS Seismic Hazards Mapping Utility." In Seismic Loads, 205–9. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.apb.
Full textCharney, Finley A. "Using the PEER NGA Ground Motion Database." In Seismic Loads, 211–14. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.apc.
Full textCharney, Finley A. "Risk Category." In Seismic Loads, 1–6. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch01.
Full textCharney, Finley A. "Importance Factor and Seismic Design Category." In Seismic Loads, 7–10. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch02.
Full textCharney, Finley A. "Site Classification Procedure for Seismic Design." In Seismic Loads, 11–17. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch03.
Full textCharney, Finley A. "Determining Ground Motion Parameters." In Seismic Loads, 19–23. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch04.
Full textCharney, Finley A. "Developing an Elastic Response Spectrum." In Seismic Loads, 25–27. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch05.
Full textCharney, Finley A. "Ground Motion Scaling for Response History Analysis." In Seismic Loads, 29–36. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch06.
Full textCharney, Finley A. "Selection of Structural Systems." In Seismic Loads, 37–43. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch07.
Full textConference papers on the topic "Seismic Loads"
Puri, Vijay K., and Shamsher Prakash. "Foundations for Seismic Loads." In Geo-Denver 2007. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40904(223)11.
Full textChang, Nien-Yin, Zeh-Zon Lee, and Trever Wang. "Hybrid T Walls under Seismic Loads." In GeoTrans 2004. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/40744(154)210.
Full textTiong, Timothy. "Transitioning to Seismic Design." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0419.
Full textFragiadakis, M., and S. Christodoulou. "RELIABILITY ASSESSMENT OF PIPE NETWORKS UNDER SEISMIC LOADS." In 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2014. http://dx.doi.org/10.7712/120113.4544.c1700.
Full textPerillo, G., and M. Rizzone. "Evaluation of seismic loads on elevated storage tanks." In SUSI 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/su120291.
Full text"GFRP-Reinforced Concrete Columns Subjected to Seismic Loads." In SP-326: Durability and Sustainability of Concrete Structures (DSCS-2018). American Concrete Institute, 2018. http://dx.doi.org/10.14359/51711039.
Full textSonawane, Mahesh, Rohit Vaidya, and Hunter Haeberle. "Structural Analysis of Rigid High-Pressure Risers for Seismic Loads." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31299-ms.
Full textKai, Satoru, and Akihito Otani. "Effect of Static Load Components in Seismic Loading on Gross Plastic Deformation on Structure." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84415.
Full textLi, Minghao, and Frank Lam. "Modelling Post-and-Beam Wooden Buildings under Seismic Loads." In 18th Analysis and Computation Specialty Conference at Structures Congress. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/41000(315)37.
Full textPardalopoulos, Stylianos, and Stavroula Pantazopoulou. "VULNERABILITY OF TORSIONALLY SENSITIVE HISTORICAL BUILDINGS UNDER SEISMIC LOADS." In 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120115.3507.1579.
Full textReports on the topic "Seismic Loads"
Giller, R. A. Structural evaluation of the 2736Z Building for seismic loads. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10103154.
Full textKlamerus, E. W., M. P. Bohn, J. J. Johnson, A. P. Asfura, and D. J. Doyle. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10134778.
Full textBardet, Philippe, and Guillaume Ricciardi. Validation Data and Model Development for Fuel Assembly Response to Seismic Loads. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1239276.
Full textSWENSON, C. E. Multi Canister Overpack (MCO) Handling Machine Trolley Seismic Uplift Constraint Design Loads. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/801892.
Full textMACKEY TC, DEIBLER JE, RINKER MW, JOHNSON KI, ABATT FG, KARRI NK, PILLI SP, and STOOPS KL. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/946829.
Full textMACKEY, T. C. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/878179.
Full textMarshall, Richard D., and Felix Y. Yokel. Recommended performance-based criteria for the design of manufactured home foundation systems to resist wind and seismic loads. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5664.
Full textPanek and Young. PR-312-12208-R02 Limitations and Costs Associated with Raising Existing RICE Stack Heights. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2014. http://dx.doi.org/10.55274/r0010556.
Full textRandell. L51857 Evaluation of Digital Image Acquisition and Processing Technologies for Ground Movement Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2008. http://dx.doi.org/10.55274/r0011244.
Full textChauhan, Vinod. L52307 Remaining Strength of Corroded Pipe Under Secondary Biaxial Loading. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2009. http://dx.doi.org/10.55274/r0010175.
Full text