Academic literature on the topic 'Seismic reflection exploration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic reflection exploration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Seismic reflection exploration"
Mark, Norman. "Case history: Seismic exploration in Egypt’s Eastern Desert." GEOPHYSICS 57, no. 2 (February 1992): 296–305. http://dx.doi.org/10.1190/1.1443243.
Full textSteeples, Don W., and Richard D. Miller. "Avoiding pitfalls in shallow seismic reflection surveys." GEOPHYSICS 63, no. 4 (July 1998): 1213–24. http://dx.doi.org/10.1190/1.1444422.
Full textPereira, Ângela, Rúben Nunes, Leonardo Azevedo, Luís Guerreiro, and Amílcar Soares. "Geostatistical seismic inversion for frontier exploration." Interpretation 5, no. 4 (November 30, 2017): T477—T485. http://dx.doi.org/10.1190/int-2016-0171.1.
Full textDraganov, Deyan, Xander Campman, Jan Thorbecke, Arie Verdel, and Kees Wapenaar. "Reflection images from ambient seismic noise." GEOPHYSICS 74, no. 5 (September 2009): A63—A67. http://dx.doi.org/10.1190/1.3193529.
Full textHutton, Laurie, Melanie Fitzell, Kinta Hoffmann, Ian Withnall, Bernie Stockill, Ben Jupp, and Paul Donchak. "The Millungera Basin—new geoscience supporting exploration." APPEA Journal 50, no. 2 (2010): 727. http://dx.doi.org/10.1071/aj09091.
Full textHeinonen, Suvi, Marcello Imaña, David B. Snyder, Ilmo T. Kukkonen, and Pekka J. Heikkinen. "Seismic reflection profiling of the Pyhäsalmi VHMS-deposit: A complementary approach to the deep base metal exploration in Finland." GEOPHYSICS 77, no. 5 (September 1, 2012): WC15—WC23. http://dx.doi.org/10.1190/geo2011-0240.1.
Full textStewart, Robert R., James E. Gaiser, R. James Brown, and Don C. Lawton. "Converted‐wave seismic exploration: Applications." GEOPHYSICS 68, no. 1 (January 2003): 40–57. http://dx.doi.org/10.1190/1.1543193.
Full textDrummond, Barry J., Bruce R. Goleby, A. J. Owen, A. N. Yeates, C. Swager, Y. Zhang, and J. K. Jackson. "Seismic reflection imaging of mineral systems: Three case histories." GEOPHYSICS 65, no. 6 (November 2000): 1852–61. http://dx.doi.org/10.1190/1.1444869.
Full textAzizah, Fitri Rizqi, Puguh Hiskiawan, and Sri Hartanto. "Time-Depth Curve Evaluation Method for Conversion Time to Depth at Penobscot Field, Nova-Scotia, Canada." Jurnal ILMU DASAR 17, no. 1 (January 24, 2017): 25. http://dx.doi.org/10.19184/jid.v17i1.2663.
Full textIKAWA, Takeshi. "Exploration of Subsurface Structures: Reflection Seismic Method and VSP (Vertical Seismic Profiling)." Zisin (Journal of the Seismological Society of Japan. 2nd ser.) 47, no. 1 (1994): 103–12. http://dx.doi.org/10.4294/zisin1948.47.1_103.
Full textDissertations / Theses on the topic "Seismic reflection exploration"
Carter, Andrew James. "Seismic waves from surface seismic reflection surveys : an exploration tool?" Thesis, University of Leeds, 2003. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633653.
Full textLaletsang, Kebabonye. "Seismic exploration for metallic mineral deposits /." Internet access available to MUN users only, 2001. http://collections.mun.ca/u?/theses,27435.
Full textAhmadi, Omid. "Application of the Seismic Reflection Method in Mineral Exploration and Crustal Imaging : Contributions to Hardrock Seismic Imaging." Doctoral thesis, Uppsala universitet, Geofysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-259396.
Full textAbdi, Amir. "Re-processing of reflection seismic data from line V2 of the HIRE Seismic Reflection Survey in the Suurikuusikko mining and exploration area, northern Finland." Thesis, Uppsala universitet, Geofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-156975.
Full textMoore, David Anton. "Processing and analysis of seismic reflection and transient electromagnetic data for kimberlite exploration in the Mackenzie Valley, NT." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/5027.
Full textALOFE, EMMANUEL. "Reflection Seismic Survey for Characterising Historical Tailings and Deep Targeting at the Blötberget Mine, Central Sweden." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-452482.
Full textJärn har varit ett viktigt grundämne för mänsklig utveckling och järnoxidavlagringar är kända för att innehålla mineral som är märkta som kritiska råmaterial (KRM), särskilt inom EU. Därför kräver säkerställandet av en hållbar tillgång till KRM tillgång till både primära och sekundära källor till deras värdfyndigheter, till exempel järnoxid. Blötberget är en gammal gruvplats i mellersta Sverige som är rik på både primära och sekundära järnoxidresurser (dvs. gruvavfall) från en lång gruvverksamhet. Således fokuserade denna avhandling att (1) förbättra karaktäriseringen av järnoxidmineralisering i det historiska gruvområdet genom utvinning och bearbetning av 2D-data från ett glest 3D-dataset, (2) karakterisering av gruvavfall för avgränsning av geometri och uppskattning av geomekaniska egenskaper genom att generera P-vågshastighetsmodeller för gruvavfallsområdet, och (3) förbättra tolkningen av befintliga resultat i området genom 3D-visualiseringar. Resultat från denna avhandling tyder på möjliga djup och laterala förlängningar av mineraliseringen om några hundratals meter bortom vad som tidigare var känt i området. Det antas att cirka 10 Mt primära järnoxidresurser finnas under avfallssområdet medan gruvavfallet innehåller uppskattningsvis 1 Mt sekundära järnoxidresurser. Dessutom visar denna avhandling att det historiska gruvavfallet är cirka 10-12 m tjockt, 650 m långt och 300 m brett och har ett Vp/Vs -förhållande mellan cirka 3-4, vilket indikerar en låg geomekanisk hållfasthet. Dessutom beräknades djupet till berggrunden i detta område vara 50 m vid dess djupaste delar, med en morfologi som indikerar komplex geologisk förekomst. Därför dras slutsatsen, baserat på dessa resultat, att Blötberget har en god potential att säkerställa leveransen av både järnmalm och dess ingående KRM
Dehghannejad, Mahdieh. "Reflection seismic investigation in the Skellefte ore district : A basis for 3D/4D geological modeling." Doctoral thesis, Uppsala universitet, Geofysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-221225.
Full textVINNOVA 4D modeling of the Skellefte district
Harrison, Christopher Bernard. "Feasibility of rock characterization for mineral exploration using seismic data." Curtin University of Technology, Western Australia School of Mines, Department of Exploration Geophysics, 2009. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=129417.
Full textIn 2002, two high resolution seismic lines, the East Victory and Intrepid, were acquired along with sonic logging, to assess the feasibility of seismic imaging and rock characterisation at the St. Ives gold camp in Western Australia. An innovative research project was undertaken combining seismic processing, rock characterization, reflection calibration, seismic inversion and seismic attribute analysis to show that volumetric predictions of rock type and gold-content may be viable in hard rock environments. Accurate seismic imaging and reflection identification proved to be challenging but achievable task in the all-out hard rock environment of the Yilgarn craton. Accurate results were confounded by crocked seismic line acquisition, low signal-to-noise ratio, regolith distortions, small elastic property variations in the rock, and a limited volume of sonic logging. Each of these challenges, however, did have a systematic solution which allowed for accurate results to be achieved.
Seismic imaging was successfully completed on both the East Victory and Intrepid data sets revealing complex structures in the Earth as shallow as 100 metres to as deep as 3000 metres. The successful imaging required homogenization of the regolith to eliminate regolith travel-time distortions and accurate constant velocity analysis for reflection focusing using migration. Verification of the high amplitude reflections within each image was achieved through integration of surface geological and underground mine data as well as calibration with log derived synthetic seismograms. The most accurate imaging results were ultimately achieved on the East Victory line which had good signal-to-noise ratio and close-to-straight data acquisition direction compared to the more crooked Intrepid seismic line.
The sonic logs from both the East Victory and Intrepid seismic lines were comprehensively analysed by re-sampling and separating the data based on rock type, structure type, alteration type, and Au assay. Cross plotting of the log data revealed statistically accurate separation between harder and softer rocks, as well as sheared and un-sheared rock, were possible based solely on compressional-wave, shear-wave, density, acoustic and elastic impedance. These results were used successfully to derive empirical relationships between seismic attributes and geology. Calibrations of the logs and seismic data provided proof that reflections, especially high-amplitude reflections, correlated well with certain rock properties as expected from the sonic data, including high gold content sheared zones. The correlation value, however, varied with signal-to-noise ratio and crookedness of the seismic line. Subsequent numerical modelling confirmed that separating soft from hard rocks can be based on both general reflectivity pattern and impedance contrasts.
Indeed impedance inversions on the calibrated seismic and sonic data produced reliable volumetric separations between harder rocks (basalt and dolerite) and softer rock (intermediate intrusive, mafic, and volcaniclastic). Acoustic impedance inversions produced the most statistically valid volumetric predictions with the simultaneous use of acoustic and elastic inversions producing stable separation of softer and harder rocks zones. Similarly, Lambda-Mu-Rho inversions showed good separations between softer and harder rock zones. With high gold content rock associated more with “softer” hard rocks and sheared zones, these volumetric inversion provide valuable information for targeted mining. The geostatistical method applied to attribute analysis, however, was highly ambiguous due to low correlations and thus produced overly generalized predictions. Overall reliability of the seismic inversion results were based on quality and quantity of sonic data leaving the East Victory data set, again with superior results as compared to the Intrepid data set.
In general, detailed processing and analysis of the 2D seismic data and the study of the relationship between the recorded wave-field and rock properties measured from borehole logs, core samples and open cut mining, revealed that positive correlations can be developed between the two. The results of rigorous research show that rock characterization using seismic methodology will greatly benefit the mineral industry.
Benazzouz, Omar. "New tools for subsurface imaging of 3D seismic node data in hydrocarbon exploration." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/16799.
Full textA aquisição de dados sísmicos de reflexão multicanal 3D/4D usando Ocean Bottom NODES de 4 componentes constitui atualmente um sector de importância crescente no mercado da aquisição de dados reflexão sísmica marinha na indústria petrolífera. Este tipo de dados permite obter imagens de sub-superfície de alta qualidade, com baixos níveis de ruído, banda larga, boa iluminação azimutal, offsets longos, elevada resolução e aquisição de tanto ondas P como S. A aquisição de dados é altamente repetitiva e portanto ideal para campanhas 4D. No entanto, existem diferenças significativas na geometria de aquisição e amostragem do campo de ondas relativamente aos métodos convencionais com streamers rebocados à superfície, pelo que é necessário desenvolver de novas ferramentas para o processamento deste tipo de dados. Esta tese investiga três aspectos do processamento de dados de OBSs/NODES ainda não totalmente resolvidos de forma satisfatória: a deriva aleatória dos relógios internos, o posicionamento de precisão dos OBSs e a implementação de algoritmos de migração prestack 3D em profundidade eficientes para obtenção de imagens precisas de subsuperfície. Foram desenvolvidos novos procedimentos para resolver estas situações, que foram aplicados a dados sintéticos e a dados reais. Foi desenvolvido um novo método para detecção e correcção de deriva aleatória dos relógios internos, usando derivadas de ordem elevada. Foi ainda desenvolvido um novo método de posicionamento de precisão de OBSs usando multilateração e foram criadas ferramentas de interpolação/extrapolação dos modelos de velocidades 3D de forma a cobrirem a extensão total área de aquisição. Foram implementados algoritmos robustos de filtragem para preparar o campo de velocidades para o traçado de raios e minimizar os artefactos na migração Krichhoff pre-stack 3D em profundidade. Os resultados obtidos mostram um melhoramento significativo em todas as situações analisadas. Foi desenvolvido o software necessário para o efeito e criadas soluções computacionais eficientes. As soluções computacionais desenvolvidas foram integradas num software standard de processamento de sísmica (SPW) utilizado na indústria, de forma a criar, conjuntamente com as ferramentas já existentes, um workflow de processamento integrado para dados de OBS/NODES, desde a aquisição e controle de qualidade à produção dos volumes sísmicos migrados pre-stack em profundidade.
Ocean bottom recording of 3D/4D multichannel seismic reflection data using 4 component Nodes is a recent and growing major segment in the marine seismic acquisition market in the oil and gas industry. These data provide high quality subsurface imaging with low ambient noise levels, broad bandwidth, wide azimuth illumination, long-offset, high resolution, and recordings of both P and S waves. In addition, data acquisition is highly repeatable and therefore ideal for 4D surveys. However, there are significant differences in acquisition geometry and wavefield sampling, compared to the conventional towed streamer data, which require new tools to be developed for data processing. This thesis investigates three key issues in OBS/NODE data processing that have not yet been satisfactorily fully solved: random clock drifts, accurate OBS positioning and efficient 3D pre-stack depth migration algorithms for accurate subsurface imaging. New procedures were developed to tackle these issues and these were tested on synthetic and real datasets. A new method for random clock drift was created using high order derivatives to detect and correct these residual drifts. A new accurate OBS/NODE positioning algorithm, using multilateration was developed. Tools were created for interpolation/extrapolation of 3D velocity functions across the full extent of the acquisition survey, and robust smoothing algorithms were used to prepare the velocity field to be used for ray tracing and prestack 3D Kirchhoff depth migration, so as to minimize migration artifacts. The results obtained show a clear improvement in all situations analyzed. Dedicated software tools were created and computationally efficient solutions were implemented. These were incorporated into an industry standard seismic processing software package (SPW), so as to provide, together with the already existing tools, a fully integrated processing workflow for OBS/NODE data, from data acquisition and quality control, to the production of the final pre-stack depth migrated seismic volumes.
Fitch, Simon, and Vincent L. Gaffney. "The application of extensive 3D Seismic Reflection Data for the exploration of extensive inundated Palaeolandscapes." 2013. http://hdl.handle.net/10454/15544.
Full textBooks on the topic "Seismic reflection exploration"
Waters, Kenneth Harold. Reflection seismology: A tool for energy resource exploration. 3rd ed. New York: Wiley, 1987.
Find full textWaters, Kenneth Harold. Reflection seismology: A tool for energy resource exploration. 3rd ed. Malabar, Fla: Krieger Pub. Co., 1992.
Find full textPeter, Kennett, ed. Vertical seismic profiling and its exploration potential. Dordrecht: D. Reidel, 1985.
Find full textSyntactic pattern recognition for seismic oil exploration. River Edge, NJ: World Scientific, 2002.
Find full textRobinson, Enders A. Digital imaging and deconvolution: The ABCs of seismic exploration and processing. Tulsa, Okla., U.S.A: Society of Exploration Geophysicists, 2008.
Find full textImaging the earth's interior. Oxford [England]: Blackwell Scientific Publications, 1985.
Find full text1947-, McCormack M. D., Neitzel E. B, and Winterstein D. F, eds. Multicomponent seismology in petroleum exploration. Tulsa, OK: Society of Exploration Geophysicists, 1991.
Find full textHai yang shi you di zhen kan tan: Zi liao cai ji yu chu li = Offshore Oil Seismic Exploration : Data Acquisition and Processing. Beijing: Shi you gong ye chu ban she, 2012.
Find full textRobinson, E. A. Seismic Inversion and Deconvolution (Handbook of Geophysical Exploration: Seismic Exploration). Pergamon, 1999.
Find full textRobinson, E. A. Seismic Inversion and Deconvolution (Handbook of Geophysical Exploration: Seismic Exploration). Pergamon, 1999.
Find full textBook chapters on the topic "Seismic reflection exploration"
Alsadi, Hamid N. "2D Seismic Reflection Surveying." In Seismic Hydrocarbon Exploration, 105–37. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40436-3_6.
Full textAlsadi, Hamid N. "3D Seismic Reflection Surveying." In Seismic Hydrocarbon Exploration, 139–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40436-3_7.
Full textAlsadi, Hamid N. "The Seismic Reflection Signal." In Seismic Hydrocarbon Exploration, 169–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40436-3_8.
Full textAlsadi, Hamid N. "Processing of Seismic Reflection Data." In Seismic Hydrocarbon Exploration, 245–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40436-3_10.
Full textAlsadi, Hamid N. "Interpretation of Seismic Reflection Data." In Seismic Hydrocarbon Exploration, 301–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40436-3_12.
Full textAlsadi, Hamid N. "Seismic Wave Reflection and Diffraction." In Seismic Hydrocarbon Exploration, 71–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40436-3_4.
Full textUpadhyay, S. K. "Exploration Value of Fracture-Induced Anisotropy." In Seismic Reflection Processing, 557–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09843-1_17.
Full textNanda, Niranjan C. "Seismic Reflection Principles: Basics." In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production, 19–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26491-2_2.
Full textNanda, Niranjan C. "Seismic Reflection Principles—Basics." In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production, 25–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75301-6_2.
Full textSinvhal, Amita, and Harsha Sinvhal. "Recognized Patterns and Seismic Reflection Data." In Seismic Modelling and Pattern Recognition in Oil Exploration, 145–64. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2570-3_8.
Full textConference papers on the topic "Seismic reflection exploration"
Mazzotti, Alfredo. "Reflection Seismic Methods for Deep Geothermal Exploration." In DGG/EAGE Workshop - Geophysics for Deep Thermal Energy. Netherlands: EAGE Publications BV, 2011. http://dx.doi.org/10.3997/2214-4609.201411918.
Full textMazzotti, Alfredo, Michele Casini, and Simonetta Ciuffi. "Reflection Seismic Methods for Deep Geothermal Exploration." In DGG/EAGE Workshop - Geophysics for Deep Thermal Energy. Netherlands: EAGE Publications BV, 2011. http://dx.doi.org/10.3997/2214-4609.201411930.
Full textUrosevic, M., A. Bona, S. Ziramov, R. Martin, J. Dwyer, and A. Foley. "Reflection Seismic with DAS, Why and Where?" In 2nd Conference on Geophysics for Mineral Exploration and Mining. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802736.
Full textKragh, E., and N. R. Goulty. "Hole-to-surface seismic reflection surveys for opencast coal exploration." In 53rd EAEG Meeting. European Association of Geoscientists & Engineers, 1991. http://dx.doi.org/10.3997/2214-4609.201410824.
Full textGil, A., A. Malehmir, S. Buske, J. Alcalde, P. Ayarza, L. Lindskog, B. Spicer, et al. "Reflection Seismic Imaging in the Zinkgruvan Mining Area, Central Sweden." In NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202020091.
Full textMenu, F., A. Greenwood, and A. Kepic. "Comparative Study of Crosshole Seismic Reflection and VSP Imaging." In Near Surface Geoscience 2016 - First Conference on Geophysics for Mineral Exploration and Mining. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602135.
Full textAshida, Y. "Data Processing of Reflection Seismic Data by Use of Neural Network." In International Symposium on Recent Advances in Exploration Geophysics (RAEG 1995). European Association of Geoscientists & Engineers, 1995. http://dx.doi.org/10.3997/2352-8265.20140003.
Full textJørgensen, F., E. Auken, H. Lykke-Andersen, and K. I. Sørensen. "Groundwater exploration by use of TEM, reflection seismic surveys and drillings." In 9th EAGE/EEGS Meeting. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609.201414538.
Full textDell‘Aversana, P., D. Colombo, S. Morandi, and M. Buia. "Thrust Belt Exploration by "Global Offset" Seismic and Reflection/Refraction Tomography." In 63rd EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609-pdb.15.p022.
Full textLiu, Guofeng, Xiaohong Meng, Handong Tan, and Zhaoxi Chen. "Reflection seismic and CSAMT in thrust controlled mineral exploration, Fujian, China." In SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018. http://dx.doi.org/10.1190/segam2018-2987762.1.
Full textReports on the topic "Seismic reflection exploration"
Owen, Thomas E., Jorge O. Parra, and James C. Baird. Shear-Wave Seismic Reflection Exploration for Cavities and Tunnels. Volume 1. Study and Design of Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada260671.
Full text