Academic literature on the topic 'Seismic site response'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Seismic site response.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Seismic site response"

1

Heidebrecht, A. C., and N. Naumoski. "Evaluation of site-specific seismic design requirements for three Canadian cities." Canadian Journal of Civil Engineering 15, no. 3 (June 1, 1988): 409–23. http://dx.doi.org/10.1139/l88-056.

Full text
Abstract:
Siesmic design requirements as specified in building codes normally use a generic approach in which the seismic response is independent of the site location, except for a single intensity-related parameter used to define the severity of the expected ground motion. In reality, the characteristics of earthquakes that influence structural response depend on both the level of seismic motion and the seismo-tectonic environment at the specific location. This paper describes a methodology for determining seismic design requirements that uses both magnitude (M) and epicentral distance (R) to define the seismo-tectonic environment. Ensembles of actual seismic strong motion records are selected to match the combinations of M and R that dominate the seismic risk at a specific location. These time histories are used to determine both response spectra and seismic response factors (as used in the 1985 edition of the National Building Code, NBCC 1985) for the location in question. This paper applies this methodology to Vancouver, Ottawa, and Quebec City and compares the results with the response spectra and seismic response factors specified in NBCC 1985. The results indicate that a site-specific investigation of seismic design requirements is important in distinguishing between locations having different seismo-tectonic environments. Key words: structures, design, seismic, code, dynamic, acceleration, velocity, spectra, magnitude, epicentral distance.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Zhihui, Yongjiu Tang, Zhenning Ba, Kun Wang, and Wei Gong. "Seismic analysis of high-speed railway irregular bridge–track system considering V-shaped canyon effect." Railway Engineering Science 30, no. 1 (November 12, 2021): 57–70. http://dx.doi.org/10.1007/s40534-021-00262-x.

Full text
Abstract:
AbstractTo explore the effect of canyon topography on the seismic response of railway irregular bridge–track system that crosses a V-shaped canyon, seismic ground motions of the horizontal site and V-shaped canyon site were simulated through theoretical analysis with 12 earthquake records selected from the Pacific Earthquake Engineering Research Center (PEER) Strong Ground Motion Database matching the site condition of the bridge. Nonlinear seismic response analyses of an existing 11-span irregular simply supported railway bridge–track system were performed under the simulated spatially varying ground motions. The effects of the V-shaped canyon topography on the peak ground acceleration at bridge foundations and seismic responses of the bridge–track system were analyzed. Comparisons between the results of horizontal and V-shaped canyon sites show that the top relative displacement between adjacent piers at the junction of the incident side and the back side of the V-shaped site is almost two times that of the horizontal site, which also determines the seismic response of the fastener. The maximum displacement of the fastener occurs in the V-shaped canyon site and is 1.4 times larger than that in the horizontal site. Neglecting the effect of V-shaped canyon leads to the inappropriate assessment of the maximum seismic response of the irregular high-speed railway bridge–track system. Moreover, engineers should focus on the girder end to the left or right of the two fasteners within the distance of track seismic damage.
APA, Harvard, Vancouver, ISO, and other styles
3

Yuliastuti, Yuliastuti, Heri Syaeful, Arifan J. Syahbana, Euis E. Alhakim, and Tagor M. Sembiring. "ONE DIMENSIONAL SEISMIC RESPONSE ANALYSIS AT THE NON-COMMERCIAL NUCLEAR REACTOR SITE, SERPONG - INDONESIA." Rudarsko-geološko-naftni zbornik 36, no. 2 (2021): 1–10. http://dx.doi.org/10.17794/rgn.2021.2.1.

Full text
Abstract:
One dimensional seismic response analysis on the ground surface of the Non-Commercial Power Reactor (RDNK) site based on the mean uniform hazard spectrum (UHS) and disaggregation analysis has been conducted. The study’s objective was to perform an analysis on site-specific response spectra on the ground surface based on existing mean UHS and disaggregation data of the site that correspond to a 1,000 and 10,000 year return period of earthquakes in compliance with the national nuclear regulatory body requirements of Indonesia. Detailed site characterization was defined based on secondary data of a geotechnical drill-hole, seismic cross-hole, downhole data, and microtremor array data. The dynamic site characteristic analysis was presented along with strong motion selection and processing using two types of strong motion datasets. An investigation of strong motion selection, spectral matching, and scaling has been presented as an essential step in ground motion processing. One-dimensional equivalent linear analysis simulation was performed by computing the processed ground motions. A seismic design spectrum and ground surface response spectra from the two datasets of strong motion, both corresponding to a 10,000 and 1,000 year return period, are presented at the end of this study. This study has shown that in order to establish the appropriate seismic response design spectrum, site-specific data and seismic hazard analysis must be immensely considered.
APA, Harvard, Vancouver, ISO, and other styles
4

Zeghal, Mourad, and Ahmed-W. Elgamal. "Site response and vertical seismic arrays." Progress in Structural Engineering and Materials 2, no. 1 (January 2000): 92–101. http://dx.doi.org/10.1002/(sici)1528-2716(200001/03)2:1<92::aid-pse11>3.0.co;2-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Su, Jie, Zhenghua Zhou, You Zhou, Xiaojun Li, Qing Dong, Yafei Wang, Yuping Li, and Liu Chen. "The Characteristics of Seismic Response on Hard Interlayer Sites." Advances in Civil Engineering 2020 (June 25, 2020): 1–11. http://dx.doi.org/10.1155/2020/1425969.

Full text
Abstract:
Based on the engineering geological data of a nuclear power plant site, nine engineering geological profiles were created with hard interlayers of different thicknesses. The equivalent linearization method of seismic motion segment-input used for one-dimensional nonlinear seismic response analysis was applied to study the effect of the interlayer thickness on the peak acceleration and the acceleration response spectra of the site seismic response. The results showed that there was an obvious influence of hard interlayer thickness on site seismic responses. With the increase of hard interlayer thickness, the site nonlinear effect on seismic responses decreased. Under the same thickness of the hard interlayer, the nonlinear effect of the site was strengthened with the higher input peak acceleration. In addition, the short-period acceleration response spectrum was found to be significantly influenced by the hard interlayer and showed that the longer the period, the less influence of the hard interlayer on the acceleration response spectrum coordinates. Moreover, the influenced frequency band was wider with the increase in the thickness of hard interlayer.
APA, Harvard, Vancouver, ISO, and other styles
6

Rodríguez-Marek, Adrián, Jonathan D. Bray, and Norman A. Abrahamson. "An Empirical Geotechnical Seismic Site Response Procedure." Earthquake Spectra 17, no. 1 (February 2001): 65–87. http://dx.doi.org/10.1193/1.1586167.

Full text
Abstract:
A simplified empirically based seismic site response evaluation procedure that includes measures of the dynamic stiffness of the surficial materials and the depth to bedrock as primary parameters is introduced. This geotechnical site classification scheme provides an alternative to geologic-based and shear wave velocity-based site classification schemes. The proposed scheme is used to analyze the ground motion data from the 1989 Loma Prieta and 1994 Northridge earthquakes. Period-dependent and intensity-dependent spectral acceleration amplification factors for different site conditions are presented. The proposed scheme results in a significant reduction in standard error when compared with a simpler “rock vs. soil” classification system. Moreover, results show that sites previously grouped as “rock” should be subdivided as competent rock sites and weathered soft rock/shallow stiff soil sites to reduce uncertainty in defining site-dependent ground motions. Results also show that soil depth is an important parameter in estimating seismic site response. The standard errors resulting from the proposed site classification system are comparable with those obtained using the more elaborate code-based average shear-wave velocity classification system.
APA, Harvard, Vancouver, ISO, and other styles
7

Prevost, Jean H. "Effective stress analysis of seismic site response." International Journal for Numerical and Analytical Methods in Geomechanics 10, no. 6 (November 1986): 653–65. http://dx.doi.org/10.1002/nag.1610100607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forcellini, Davide, Marco Tanganelli, and Stefania Viti. "Response Site Analyses of 3D Homogeneous Soil Models." Emerging Science Journal 2, no. 5 (November 4, 2018): 238. http://dx.doi.org/10.28991/esj-2018-01148.

Full text
Abstract:
The seismic excitation at the surface can be determined through Site Response Analyses (SRA) as to account for the specific soil properties of the site. However, the obtained results are largely affected by the model choice and setting, and by the depth of the considered soil layer. This paper proposes a refined 3D analytical approach, by the application of OPENSEES platform. A preliminary analysis has been performed to check the model adequacy as regards the mesh geometry and the boundary conditions. After the model setting, a SRA has been performed on various soil profiles, differing for the shear velocity and representing the different soil classes as proposed by the Eurocode 8 (EC8). Three levels of seismic hazard have been considered. The seismic input at the bedrock has been represented consequently, through as much ensembles of seven ground motions each, spectrum-compatible to the elastic spectra provided by EC8 for the soil-type A (bedrock). Special attention has been paid to the role of the considered soil depth on the evaluation of the surface seismic input. Different values of depth have been considered for each soil type and seismic intensity, in order to check its effect on the obtained results.
APA, Harvard, Vancouver, ISO, and other styles
9

Gupta, Ravindra K., Mohit Agrawal, S. K. Pal, and M. K. Das. "Seismic site characterization and site response study of Nirsa (India)." Natural Hazards 108, no. 2 (April 28, 2021): 2033–57. http://dx.doi.org/10.1007/s11069-021-04767-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yunita, Halida, Bambang Setiawan, Taufiq Saidi, and Nora Abdullah. "Site response analysis for estimating seismic site amplification in the case of Banda Aceh - Indonesia." MATEC Web of Conferences 197 (2018): 10002. http://dx.doi.org/10.1051/matecconf/201819710002.

Full text
Abstract:
The city of Banda Aceh is potentially exposed to a significant seismic hazard of seismic site amplification. Estimation of seismic site amplification of the city is urgently required for any mitigation efforts as the city is founded on a thick, soft layer. This study aims to estimate seismic site amplification of Banda Aceh's soil. Analytical models have demonstrated that they can simulate reasonably well the seismic ground motions amplification. The most widely used model is the equivalent linear approach. The approach computes the ground response of horizontally layered soil deposits subjected to transient and vertically propagating shear waves through a one-dimensional soil column. As aforementioned, this study focuses on Banda Aceh-Indonesia which is founded on thick alluvium. Three actual historical time histories and three developed sub-surface models were used to estimate the seismic site amplification of Banda Aceh's soft soil. The used time histories are of 2012 M8.1 Simeulue earthquake, 2013 M6.0 Mane-Geumpang earthquake and 2013 M6.2 Bener Meriah earthquake. Three sub-surface models of three separate sites across the city of Banda Aceh were developed. The site response analysis results reveal the ground motions amplification of Banda Aceh's soils of up to 4.3. Thus, applying the seismic site amplification for structural design at Banda Aceh can be further works.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Seismic site response"

1

Panzera, Francesco. "Approaches to earthquake scenarios validation using seismic site response." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1084.

Full text
Abstract:
A seismic hazard assessment was carried out for the Catania and Siracusa towns providing a comprehensive re-examination and re-processing of all the available seismic data. The site approach and the seismotectonic one were used and compared. The hazard assessment, using both methods, was performed following a logic-tree approach in order to consider and reduce the epistemic uncertainties. The combined use and comparison of these approaches is recommended since it allows to verify the robustness of the hazard estimates and allowed us to obtain useful elements to define the seismic hazard in Catania and Siracusa. Experimental data and numerical modeling were used to study the effect of local geology on the seismic response in the Catania area. Available boreholes data and elastic parameters were used to reconstruct a geotechnical model in order to perform 1D numerical modeling. Seismic urban scenarios were simulated considering destructive (Mw=7.0), strong (Mw=6.2) and moderate (Mw=5.7) earthquakes. PGA and spectral acceleration at different periods were obtained in the urban area through the equivalent linear numerical code EERA, and contour maps of different levels of shaking were drawn. Standard and horizontal-to-vertical spectral ratios were achieved making use of a dataset of 172 seismic events recorded at ten stations located on the main outcropping lithotypes. Spectral ratios inferred from earthquake data were compared with theoretical transfer functions. Both experimental and numerical results confirm the role of the geologic and morphologic setting of Catania. A study aimed to investigate on the dynamic properties of main lithotypes outcropping in the Siracusa area and their relationships with the local seismic response was performed. Non-invasive seismic prospecting techniques using the vertical component of surface waves (MASW and ReMi) were adopted, as well as ambient noise measurements, processed through the Nakamura technique. Moreover, a cluster analysis was performed to subdivide into homogeneous groups the experimentally obtained noise spectral ratios. Results pointed out that the use of combined different methods provides a more robust way to characterized the investigated soils and to reduce the problems linked to the non-uniqueness of solutions during the interpretation of geophysical data. The role of local geology and topography on the site response of a small hill, located in the northern part of Catania, was investigated. Ambient noise and earthquake data were processed through standard and horizontal-to-vertical spectral ratios. Directional effects were also investigated by computing the spectral ratios after rotating the horizontal components of motion and performing polarization analysis. Results of noise and earthquakes analysis, although show significant differences in amplitude, are comparable in frequency, especially in the sedimentary terrains. Pronounced directional effects are mostly observed on the slopes rather than at the hill top. Our findings appear linked to the complex wavefield generated by the lithologic heterogeneities existing in the area which seem to have a stronger influence with respect to the simple topographic effect. Seismic noise recorded by mobile stations in the Ortigia peninsula (downtown Siracusa) was analyzed through H/V spectral ratios, to investigate local site effects. Moreover, shear wave velocities were investigated through non-invasive techniques (MASW and ReMi) in order to assess the theoretical resonant frequency of the hill. Experimental results coming out from the spectral ratios show peaks in the frequency range 1.0-3.0 Hz which are consistent with the theoretical resonance frequency at Ortigia. The H/V azimuthal spectral analysis shows a clearly predominant E-W directional effect, transversal to the main axis of the peninsula, which is also confirmed by the polarization analysis in the time domain.
APA, Harvard, Vancouver, ISO, and other styles
2

Cortez-Flores, Adel M. "Site response of the 2001 Southern Peru earthquake." Online access for everyone, 2004. http://www.dissertations.wsu.edu/Thesis/Fall2004/a%5Fcortez-flores%5F121004.pdf.

Full text
Abstract:
Thesis (M.S. in civil engineering)--Washington State University, 2004.
Title from PDF t.p. (viewed on Nov. 6, 2005). Pages 1-5 appear in duplicate. Includes bibliographical references (p. 158-168).
APA, Harvard, Vancouver, ISO, and other styles
3

Papaspiliou, Myrto Ioanna. "On the Incorporation of Site Response in Probabilistic Seismic Hazard Analyses." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jeong, Seokho. "Topographic amplification of seismic motion including nonlinear response." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50325.

Full text
Abstract:
Topography effects, the modification of seismic motion by topographic features, have been long recognized to play a key role in elevating seismic risk. Site response, the modification of ground motion by near surface soft soils, has been also shown to strongly affect the amplitude, frequency and duration of seismic motion. Both topography effects and 1-D site response have been extensively studied through field observations, small-scale and field experiments, analytical models and numerical simulations, but each one has been studied independently of the other: studies on topography effects are based on the assumption of a homogeneous elastic halfspace, while 1-D site response studies are almost exclusively formulated for flat earth surface conditions. This thesis investigates the interaction between topographic and soil amplification, focusing on strong ground motions that frequently trigger nonlinear soil response. Recently, a series of centrifuge experiments tested the seismic response of single slopes of various inclination angles at the NEES@UCDavis facility, to investigate the effects of nonlinear soil response on topographic amplification. As part of this collaborative effort, we extended the search space of these experiments using finite element simulations. We first used simulations to determine whether the centrifuge experimental results were representative of free-field conditions. We specifically investigated whether wave reflections caused by the laminar box interfered with mode conversion and wave scattering that govern topographic amplification; and whether this interference was significant enough to qualitatively alter the observed amplification compared to free-field conditions. We found that the laminar box boundaries caused spurious reflections that affected the response near the boundaries; however its effect to the crest-to-free field spectral ratio was found to be insignificant. Most importantly though, we found that the baseplate was instrumental in trapping and amplifying waves scattered and diffracted by the slope, and that in absence of those reflections, topographic amplification would have been negligible. We then used box- and baseplate-free numerical models to study the coupling between topography effects and soil amplification in free-field conditions. Our results showed that the complex wavefield that characterizes the response of topographic features with non-homogeneous soil cannot be predicted by the superposition of topography effects and site response, as is the widespread assumption of engineering and seismological models. We also found that the coupling of soil and topographic amplification occurs both for weak and strong motions, and for pressure-dependent media (Nevada sand), nonlinear soil response further aggravates topographic amplification; we attributed this phenomenon to the reduction of apparent velocity that the low velocity layers suffer during strong ground motion, which intensifies the impedance contrast and accentuates the energy trapping and reverberations in the low strength surficial layers. We finally highlighted the catalytic effects that soil stratigraphy can have in topographic amplification through a case study from the 2010 Haiti Earthquake. Results presented in this thesis imply that topography effects vary significantly with soil stratigraphy, and the two phenomena should be accounted for as a coupled process in seismic code provisions and seismological ground motion predictive models.
APA, Harvard, Vancouver, ISO, and other styles
5

Motamed, Maryam. "Effects of Site Response on the Correlation Structure of Ground Motion Residuals." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25333.

Full text
Abstract:
Seismic hazard analyses require an estimate of earthquake ground motions from future events. These predictions are achieved through Ground Motion Prediction Equations, which include a prediction of the median and the standard deviation of ground motion parameters. The differences between observed and predicted ground motions, when normalized by the standard deviation, are referred to as epsilon (𝜖). For spectral accelerations, the correlation structure of normalized residuals across oscillator periods is important for guiding ground motion selection. Correlation structures for large global datasets have been studied extensively. These correlation structures reflect effects that are averaged over the entire dataset underlying the analyses. This paper considers the effects of site response, at given sites, on the correlation structure of normalized residuals. This is achieved by performing site response analyses for two hypothetical soil profiles using a set of 85 rock input motions. Results show that there is no significant difference between correlation coefficients for rock ground motions and correlation coefficients after considering the effects of site response for the chosen sites.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
6

Cabas, Mijares Ashly Margot. "Improvements to the Assessment of Site-Specific Seismic Hazards." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82352.

Full text
Abstract:
The understanding of the impact of site effects on ground motions is crucial for improving the assessment of seismic hazards. Site response analyses (SRA) can numerically accommodate the mechanics behind the wave propagation phenomena near the surface as well as the variability associated with the input motion and soil properties. As a result, SRA constitute a key component of the assessment of site-specific seismic hazards within the probabilistic seismic hazard analysis framework. This work focuses on limitations in SRA, namely, the definition of the elastic half-space (EHS) boundary condition, the selection of input ground motions so that they are compatible with the assumed EHS properties, and the proper consideration of near-surface attenuation effects. Input motions are commonly selected based on similarities between the shear wave velocity (Vs) at the recording station and the materials below the reference depth at the study site (among other aspects such as the intensity of the expected ground motion, distance to rupture, type of source, etc.). This traditional approach disregards the influence of the attenuation in the shallow crust and the degree to which it can alter the estimates of site response. A Vs-κ correction framework for input motions is proposed to render them compatible with the properties of the assumed EHS at the site. An ideal EHS must satisfy the conditions of linearity and homogeneity. It is usually defined at a horizon where no strong impedance contrast will be found below that depth (typically the top of bedrock). However, engineers face challenges when dealing with sites where this strong impedance contrast takes place far beyond the depth of typical Vs measurements. Case studies are presented to illustrate potential issues associated with the selection of the EHS boundary in SRA. Additionally, the relationship between damping values as considered in geotechnical laboratory-based models, and as implied by seismological attenuation parameters measured using ground motions recorded in the field is investigated to propose alternative damping models that can match more closely the attenuation of seismic waves in the field.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Chunquan. "Fault zone damage, nonlinear site response, and dynamic triggering associated with seismic waves." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41143.

Full text
Abstract:
My dissertation focuses primarily on the following three aspects associated with passing seismic waves in the field of earthquake seismology: temporal changes of fault zone properties, nonlinear site response, and dynamic triggering. Quantifying the temporal changes of material properties within and around active fault zones (FZ) is important for better understanding of rock rheology and estimating the strong ground motion that can be generated by large earthquakes. As high-amplitude seismic waves propagate through damaged FZ rocks and/or shallow surface layers, they may produce additional damage leading to nonlinear wave propagation effects and temporal changes of material properties (e.g., seismic velocity, attenuation). Previous studies have found several types of temporal changes in material properties with time scales of tens of seconds to several years. Here I systematically analyze temporal changes of fault zone (FZ) site response along the Karadere-Düzce branch of the North Anatolian fault that ruptured during the 1999 İzmit and Düzce earthquake sequences. The coseismic changes are on the order of 20-40%, and are followed by a logarithmic recovery over an apparent time scale of ~1 day. These results provide a bridge between the large-amplitude near-instantaneous changes and the lower-amplitude longer-duration variations observed in previous studies. The temporal changes measured from this high-resolution spectral ratio analysis also provide a refinement for the beginning of the longer more gradual process typically observed by analyzing repeating earthquakes. An improved knowledge on nonlinear site response is critical for better understanding strong ground motions and predicting shaking induced damages. I use the same sliding-window spectral ratio technique to analyze temporal changes in site response associated with the strong ground motion of the Mw6.6 2004 Mid-Niigata earthquake sequence recorded by the borehole stations in Japanese Digital Strong-Motion Seismograph Network (KiK-Net). The coseismic peak frequency drop, peak spectral ratio drop, and the postseismic recovery time roughly scale with the input ground motions when the peak ground velocity (PGV) is larger than ~5 cm/s, or the peak ground acceleration (PGA) is larger than ~100 Gal. The results suggest that at a given site the input ground motion plays an important role in controlling both the coseismic change and postseismic recovery in site response. In a follow-up study, I apply the same sliding-window spectral ratio technique to surface and borehole strong motion records at 6 KiK-Net sites, and stack results associated with different earthquakes that produce similar PGAs. In some cases I observe a weak coseismic drop in the peak frequency when the PGA is as small as ~20-30 Gal, and near instantaneous recovery after the passage of the direct S waves. The percentage of drop in the peak frequency starts to increase with increasing PGA values. A coseismic drop in the peak spectral ratio is also observed at 2 sites. When the PGA is larger than ~60 Gal to more than 100 Gal, considerably stronger coseismic drops of the peak frequencies are observed, followed by a logarithmic recovery with time. The observed weak reductions of peak frequencies with near instantaneous recovery likely reflect nonlinear response with essentially fixed level of damage, while the larger drops followed by logarithmic recovery reflect the generation (and then recovery) of additional rock damage. The results indicate clearly that nonlinear site response may occur during medium-size earthquakes, and that the PGA threshold for in situ nonlinear site response is lower than the previously thought value of ~100-200 Gal. The recent Mw9.0 off the Pacific coast of Tohoku earthquake and its aftershocks generated widespread strong shakings as large as ~3000 Gal along the east coast of Japan. I systematically analyze temporal changes of material properties and nonlinear site response in the shallow crust associated with the Tohoku main shock, using seismic data recorded by the Japanese Strong Motion Network KIK-Net. I compute the spectral ratios of windowed records from a pair of surface and borehole stations, and then use the sliding-window spectral ratios to track the temporal changes in the site response of various sites at different levels of PGA The preliminary results show clear drop of resonant frequency of up to 70% during the Tohoku main shock at 6 sites with PGA from 600 to 1300 Gal. In the site MYGH04 where two distinct groups of strong ground motions were recorded, the resonant frequency briefly recovers in between, and then followed by an apparent logarithmic recovery. I investigate the percentage drop of peak frequency and peak spectral ratio during the Tohoku main shock at different PGA levels, and find that at most sites they are correlated. The third part of my thesis mostly focuses on how seismic waves trigger additional earthquakes at long-range distance, also known as dynamic triggering. Previous studies have shown that dynamic triggering in intraplate regions is typically not as common as at plate-boundary regions. Here I perform a comprehensive analysis of dynamic triggering around the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, China. The triggered earthquakes are identified as impulsive seismic arrivals with clear P- and S-waves in 5 Hz high-pass-filtered three-component velocity seismograms during the passage of large amplitude body and surface waves of large teleseismic earthquakes. I find that this region was repeatedly triggered by at least four earthquakes in East Asia, including the 2001 Mw7.8 Kunlun, 2003 Mw8.3 Tokachi-oki, 2004 Mw9.2 Sumatra, and 2008 Mw7.9 Wenchuan earthquakes. In most instances, the microearthquakes coincide with the first few cycles of the Love waves, and more are triggered during the large-amplitude Rayleigh waves. Such an instantaneous triggering by both the Love and Rayleigh waves is similar to recent observations of remotely triggered 'non-volcanic' tremor along major plate-boundary faults, and can be explained by a simple Coulomb failure criterion. Five earthquakes triggered by the Kunlun and Tokachi-oki earthquakes were recorded by multiple stations and could be located. These events occurred at shallow depth (< 5 km) above the background seismicity near the boundary between NW-striking Babaoshan and Huangzhuang-Gaoliying faults and the Fangshan Pluton. These results suggest that triggered earthquakes in this region likely occur near the transition between the velocity strengthening and weakening zones in the top few kms of the crust, and are likely driven by relatively large dynamic stresses on the order of few tens of KPa.
APA, Harvard, Vancouver, ISO, and other styles
8

Kazemeini, Sayed Hesammoddin. "Seismic Investigations at the Ketzin CO2 Injection Site, Germany: Applications to Subsurface Feature Mapping and CO2 Seismic Response Modeling." Doctoral thesis, Uppsala universitet, Geofysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-105032.

Full text
Abstract:
3D seismic data are widely used for many different purposes. Despite different objectives, a common goal in almost all 3D seismic programs is to attain better understanding of the subsurface features. In gas injection projects, which are mainly for Enhanced Oil Recovery (EOR) and recently for environmental purposes, seismic data have an important role in the gas monitoring phase. This thesis deals with a 3D seismic investigation at the CO2 injection site at Ketzin, Germany. I focus on two critical aspects of the project: the internal architecture of the heterogeneous Stuttgart reservoir and the detectability of the CO2 response from surface seismic data. Conventional seismic methods are not able to conclusively map the internal reservoir architecture due to their limited seismic resolution. In order to overcome this limitation, I use the Continuous Wavelet Transform (CWT) decomposition technique, which provides frequency spectra with high temporal resolution without the disadvantages of the windowing process associated with the other techniques. Results from applying this technique reveal more of the details of sand bodies within the Stuttgart Formation. The CWT technique also helps to detect and map remnant gas on the top of the structure. In addition to this method, I also show that the pre-stack spectral blueing method, which is presented for the first time in this research, has an ability to enhance seismic resolution with fewer artifacts in comparison with the post-stack spectral blueing method. The second objective of this research is to evaluate the CO2 response on surface seismic data as a feasibility study for CO2 monitoring. I build a rock physics model to estimate changes in elastic properties and seismic velocities caused by injected CO2. Based on this model, I study the seismic responses for different CO2 injection geometries and saturations using one dimensional (1D) elastic modeling and two dimensional (2D) acoustic finite-difference modeling. Results show that, in spite of random and coherent noises and reservoir heterogeneity, the CO2 seismic response should be strong enough to be detectable on surface seismic data. I use a similarity-based image registration method to isolate amplitude changes due to the reservoir from amplitude changes caused by time shifts below the reservoir. In support of seismic monitoring using surface seismic data, I also show that acoustic impedance versus Poisson’s ratio cross-plot is a suitable attribute for distinguishing gas-bearing sands from brine-bearing sands.
CO2SINK Project
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Chunquan. "Temporal change of seismic velocity and site response for different scales and implications for nonlinearity." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/24619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carpenter, Nicholas von Seth. "CHARACTERIZATIONS OF LINEAR GROUND MOTION SITE RESPONSE IN THE NEW MADRID AND WABASH VALLEY SEISMIC ZONES AND SEISMICITY IN THE NORTHERN EASTERN TENNESSEE SEISMIC ZONE AND ROME TROUGH, EASTERN KENTUCKY." UKnowledge, 2019. https://uknowledge.uky.edu/ees_etds/77.

Full text
Abstract:
The central and eastern United States is subject to seismic hazards from both natural and induced earthquakes, as evidenced by the 1811-1812 New Madrid earthquake sequence, consisting of at least three magnitude 7 and greater earthquakes, and by four magnitude 5 and greater induced earthquakes in Oklahoma since 2011. To mitigate seismic hazards, both earthquake sources and their effects need to be characterized. Ground motion site response can cause additional damage to susceptible infrastructure and buildings. Recent studies indicate that Vs30, one of the primary site-response predictors used in current engineering practice, is not reliable. To investigate site response in the New Madrid Seismic Zone, ratios of surface-to-bedrock amplitude spectra, TFT, from S-wave recordings at the two deep vertical seismic arrays in the sediment-filled upper Mississippi Embayment (i.e., VSAP and CUSSO) were calculated. The mean TFT curves were compared with theoretical transfer functions; the results were comparable, indicating that TFT estimates of the empirical, linear SH-wave site responses at these sites. The suitability of surface S-wave horizontal-to-vertical spectral ratios, H/V, for estimating the empirical site transfer function was also evaluated. The results indicate that mean S-wave H/V curves are similar to TFT at low frequencies (less than the fifth natural frequencies) at both CUSSO and VSAP. SH-wave fundamental frequency, f0, and fundamental-mode amplification, A0, were evaluated as alternatives to the Vs30 proxy to estimate primary linear site-response characteristics at VSAP, CUSSO, and nine other seismic stations in the CEUS. In addition, calculated f0 and A0 were compared with the first peaks of S-wave H/V spectral ratios. The f0 and A0 were found to approximate the 1-D linear, viscoelastic, fundamental-mode responses at most stations. Also, S-wave H/V from weak-motion earthquakes can be used to measure f0. However, S-wave H/V does not reliably estimate A0 in the project area. S-wave H/V observations reveal site response within the frequency band of engineering interest from deeper, unmodeled geological structures. Because damaging or felt earthquakes induced by hydraulic fracturing and wastewater disposal have occurred in the CEUS, characterizing background seismicity prior to new large-scale subsurface fluid injection is important to identify cases of and the potential for induced seismicity. The Rogersville Shale in the Rome Trough of eastern Kentucky is being tested for unconventional oil and gas potential; production of this shale requires hydraulic fracturing, which has been linked to induced seismicity elsewhere in the CEUS. To characterize natural seismicity and to monitor induced seismicity during testing, a temporary seismic network was deployed in the Rome Trough near the locations of new, Rogersville Shale oil and gas test wells. Using the real-time recordings of this network and those of other regional seismic stations, three years of local seismicity were cataloged. Only three earthquakes occurred in the Rome Trough of eastern Kentucky, none of which was associated with the deep Rogersville Shale test wells that were stimulated during the time the network was in operation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Seismic site response"

1

Mehmet, Çelebi, and Geological Survey (U.S.), eds. Seismic site-response experiments following the March 3, 1985 central Chile earthquake: Topographical and geological effects. [Reston, Va.?]: U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mehmet, Çelebi, and Geological Survey (U.S.), eds. Seismic site-response experiments following the March 3, 1985 central Chile earthquake: Topographical and geological effects. [Reston, Va.?]: U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mehmet, Çelebi, and Geological Survey (U.S.), eds. Seismic site-response experiments following the March 3, 1985 central Chile earthquake: Topographical and geological effects. [Reston, Va.?]: U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

M, Hsiung S., Chowdhury A. H, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Regulatory Applications., and Center for Nuclear Waste Regulatory Analyses (Southwest Research Institute), eds. Seismic response of rock joints and jointed rock mass. Washington, DC: U.S. Nuclear Regulatory Commission, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Canada, Atomic Energy of. Nuclear Fuel Waste Repository Seismic Response and Rock Dynamic Study: Design Response Spectra For Rock Sites. S.l: s.n, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

IAEA. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response. International Atomic Energy Agency, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seismic site-response experiments following the March 3, 1985 central Chile earthquake: Topographical and geological effects. [Reston, Va.?]: U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seismic site-response experiments following the March 3, 1985 central Chile earthquake: Topographical and geological effects. [Reston, Va.?]: U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Seismic site response"

1

Elia, Gaetano. "Site Response for Seismic Hazard Assessment." In Encyclopedia of Earthquake Engineering, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36197-5_241-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elia, Gaetano. "Site Response for Seismic Hazard Assessment." In Encyclopedia of Earthquake Engineering, 3266–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Psarropoulos, Prodromos N. "Local Site Effects and Seismic Response of Bridges." In Coupled Site and Soil-Structure Interaction Effects with Application to Seismic Risk Mitigation, 77–88. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2697-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Triantafyllidis, P., P. Suhadolc, P. M. Hatzidimitriou, A. Anastasiadis, and N. Theodulidis. "PART I: Theoretical Site Response Estimation for Microzoning Purposes." In Seismic Ground Motion in Large Urban Areas, 1185–203. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7355-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ElGabry, Mohamed, Hany M. Hassan, Franco Vaccari, Andrea Magrin, Fabio Romanelli, and Guiliano Panza. "Seismic Site Response Characterization for Suez Canal Region, Egypt." In Advancements in Geotechnical Engineering, 59–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62908-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Luna, Roy Anthony C., Ramon D. Quebral, Patrick Adrian Y. Selda, Francis Jenner T. Bernales, and Stanley Brian R. Sayson. "Integrating Local Site Response Evaluations in Seismic Hazard Assessments." In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 792–800. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trifunac, Mihailo D. "The Nature of Site Response During Earthquakes." In Coupled Site and Soil-Structure Interaction Effects with Application to Seismic Risk Mitigation, 3–31. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2697-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hashash, Youssef M. A., Byungmin Kim, Scott M. Olson, and Sungwoo Moon. "Geotechnical Issues and Site Response in the Central U.S." In Seismic Hazard Design Issues in the Central United States, 71–90. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413203.ch06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Rui, and Wanwan Qi. "Quantitative Evaluation of Four Kinds of Site Seismic Response Analysis Methods Using DTW." In Lecture Notes in Civil Engineering, 495–502. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1748-8_43.

Full text
Abstract:
AbstractIn order to quantitatively evaluate the one-dimensional site seismic response analysis methods, this article selected 2418 ground motion records of Japan KiK-net strong-motion seismograph network and 2418 groups of acceleration response spectra calculated by DEEPSOIL, SHAKE2000, SOILQUAKE and SOILRESPONSE, and then` used the dynamic time warping (DTW) algorithm to calculate the DTW distance between the measured acceleration response spectrum and the calculated acceleration response spectrum. The average DTW distance and change trend in different PGA ranges were compared and analyzed. The average DTW distance of the four methods in weak ground motion were similar, and in the strong ground motion, the average DTW distance of SOILRESPONSE was smaller than the other three methods. The DTW distance of the four methods increased with the increase of PGA, the growth rate of SOILRESPONSE was significantly lower than the other three methods. DTW distance can accurately and effectively reflect the difference between response spectrum, which provides a new method for quantitative evaluation of one-dimensional site seismic response analysis method.
APA, Harvard, Vancouver, ISO, and other styles
10

Sahare, Anurag, and Deepankar Choudhury. "Seismic Ground Response Analysis for Soil Site in Johor, Malaysia." In Lecture Notes in Civil Engineering, 411–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6233-4_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Seismic site response"

1

Ansal, A., T. Gokce, and A. Kurtulus. "UNCERTAINTIES IN SITE SPECIFIC RESPONSE ANALYSIS." In The 16th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures. Russian Association for Earthquake Engineering and Protection from Natural and Manmade Hazards, 2019. http://dx.doi.org/10.37153/2686-7974-2019-16-18-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gang, Ge, and Liu Jian-min. "Effects of ground treatment on site seismic response." In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5769380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adam, M. A., A. M. Elleboudy, and M. F. Soliman. "Seismic Site Response Analysis of a Cairo Metro Tunnel." In Geotechnical and Structural Engineering Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479742.093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sullya, J. P., E. Gajardo, M. Paga, A. Fermindez, and G. Cascanteb. "Seismic Hazard And Site Response Analyses For Rio Caribe." In Offshore Technology Conference. Offshore Technology Conference, 1995. http://dx.doi.org/10.4043/7663-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhan, Weiwei, Laurie G. Baise, and James Kaklamanos. "Predicting Within-Site Variability of Seismic Site Response Using a Geospatial Modeling Approach." In Geo-Risk 2023. Reston, VA: American Society of Civil Engineers, 2023. http://dx.doi.org/10.1061/9780784484975.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ghosh, A. K., and H. S. Kushwaha. "Seismic Hazard Analysis for an NPP Site." In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49475.

Full text
Abstract:
The various uncertainties and randomness associated with the occurrence of earthquakes and the consequences of their effects on the NPP components and structures call for a probabilistic seismic risk assessment (PSRA). However, traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to be computed for PGA only. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for Kakrapar Atomic Power Station site. Sensitivity of the results to the changes in various parameters has also been presented. These results determine the seismic hazard at the given site and the associated uncertainties. The paper also presents some results of the seismic fragility for an existing containment structure. The various parameters that could affect the seismic structural response include material strength of concrete, structural damping available within the structure and the normalized ground motion response spectral shape. Based on this limited case study the seismic fragility of the structure is developed. The results are presented as families of conditional probability curves plotted against the peak ground acceleration (PGA). The procedure adopted incorporates the various randomness and uncertainty associated with the parameters under consideration.
APA, Harvard, Vancouver, ISO, and other styles
7

Olgun, C. Guney, Morgan Eddy, Elizabeth A. Godfrey, Martin C. Chapman, Mark Tilashalski, James R. Martin, II, and William M. Camp, III. "Investigation of Seismic Site Amplification for Non-NEHRP Site Conditions: Site Response Study of Columbia, SC." In Geo-Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413272.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bhingarde, Nika S., and Nisha P. Naik. "Site-Specific Seismic Ground Response for Mormugao Port, Goa, India." In Geo-Chicago 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784480120.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grouse, C. B. "Seismic Exposure and Site Response Characteristics for Offshore Platform Design." In Offshore Technology Conference. Offshore Technology Conference, 1996. http://dx.doi.org/10.4043/8105-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ramaiah, B. J., G. V. Ramana, and B. K. Bansal. "Site-Specific Seismic Response Analyses of a Municipal Solid Waste Dump Site at Delhi, India." In Fourth Geo-China International Conference. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784480007.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Seismic site response"

1

Rohay, Alan C., and Steve P. Reidel. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington. Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/859995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benjumea, B., S. E. Pullan, J. A. Hunter, R. A. Burns, M. Douma, and D. Eaton. Near-surface seismic methods applied to site-response charcterization at an earthquake monitoring station near London, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/212690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nema, Arpit, and Jose Restrep. Low Seismic Damage Columns for Accelerated Bridge Construction. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, December 2020. http://dx.doi.org/10.55461/zisp3722.

Full text
Abstract:
This report describes the design, construction, and shaking table response and computation simulation of a Low Seismic-Damage Bridge Bent built using Accelerated Bridge Construction methods. The proposed bent combines precast post-tensioned columns with precast foundation and bent cap to simplify off- and on-site construction burdens and minimize earthquake-induced damage and associated repair costs. Each column consists of reinforced concrete cast inside a cylindrical steel shell, which acts as the formwork, and the confining and shear reinforcement. The column steel shell is engineered to facilitate the formation of a rocking interface for concentrating the deformation demands in the columns, thereby reducing earthquake-induced damage. The precast foundation and bent cap have corrugated-metal-duct lined sockets, where the columns will be placed and grouted on-site to form the column–beam joints. Large inelastic deformation demands in the structure are concentrated at the column–beam interfaces, which are designed to accommodate these demands with minimal structural damage. Longitudinal post-tensioned high-strength steel threaded bars, designed to respond elastically, ensure re-centering behavior. Internal mild steel reinforcing bars, debonded from the concrete at the interfaces, provide energy dissipation and impact mitigation.
APA, Harvard, Vancouver, ISO, and other styles
4

Rodgers, A., H. Tkalcic, and D. McCallen. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/15015168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mazzoni, Silvia, Nicholas Gregor, Linda Al Atik, Yousef Bozorgnia, David Welch, and Gregory Deierlein. Probabilistic Seismic Hazard Analysis and Selecting and Scaling of Ground-Motion Records (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/zjdn7385.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER) and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 3 (WG3), Task 3.1: Selecting and Scaling Ground-motion records. The objective of Task 3.1 is to provide suites of ground motions to be used by other working groups (WGs), especially Working Group 5: Analytical Modeling (WG5) for Simulation Studies. The ground motions used in the numerical simulations are intended to represent seismic hazard at the building site. The seismic hazard is dependent on the location of the site relative to seismic sources, the characteristics of the seismic sources in the region and the local soil conditions at the site. To achieve a proper representation of hazard across the State of California, ten sites were selected, and a site-specific probabilistic seismic hazard analysis (PSHA) was performed at each of these sites for both a soft soil (Vs30 = 270 m/sec) and a stiff soil (Vs30=760 m/sec). The PSHA used the UCERF3 seismic source model, which represents the latest seismic source model adopted by the USGS [2013] and NGA-West2 ground-motion models. The PSHA was carried out for structural periods ranging from 0.01 to 10 sec. At each site and soil class, the results from the PSHA—hazard curves, hazard deaggregation, and uniform-hazard spectra (UHS)—were extracted for a series of ten return periods, prescribed by WG5 and WG6, ranging from 15.5–2500 years. For each case (site, soil class, and return period), the UHS was used as the target spectrum for selection and modification of a suite of ground motions. Additionally, another set of target spectra based on “Conditional Spectra” (CS), which are more realistic than UHS, was developed [Baker and Lee 2018]. The Conditional Spectra are defined by the median (Conditional Mean Spectrum) and a period-dependent variance. A suite of at least 40 record pairs (horizontal) were selected and modified for each return period and target-spectrum type. Thus, for each ground-motion suite, 40 or more record pairs were selected using the deaggregation of the hazard, resulting in more than 200 record pairs per target-spectrum type at each site. The suites contained more than 40 records in case some were rejected by the modelers due to secondary characteristics; however, none were rejected, and the complete set was used. For the case of UHS as the target spectrum, the selected motions were modified (scaled) such that the average of the median spectrum (RotD50) [Boore 2010] of the ground-motion pairs follow the target spectrum closely within the period range of interest to the analysts. In communications with WG5 researchers, for ground-motion (time histories, or time series) selection and modification, a period range between 0.01–2.0 sec was selected for this specific application for the project. The duration metrics and pulse characteristics of the records were also used in the final selection of ground motions. The damping ratio for the PSHA and ground-motion target spectra was set to 5%, which is standard practice in engineering applications. For the cases where the CS was used as the target spectrum, the ground-motion suites were selected and scaled using a modified version of the conditional spectrum ground-motion selection tool (CS-GMS tool) developed by Baker and Lee [2018]. This tool selects and scales a suite of ground motions to meet both the median and the user-defined variability. This variability is defined by the relationship developed by Baker and Jayaram [2008]. The computation of CS requires a structural period for the conditional model. In collaboration with WG5 researchers, a conditioning period of 0.25 sec was selected as a representative of the fundamental mode of vibration of the buildings of interest in this study. Working Group 5 carried out a sensitivity analysis of using other conditioning periods, and the results and discussion of selection of conditioning period are reported in Section 4 of the WG5 PEER report entitled Technical Background Report for Structural Analysis and Performance Assessment. The WG3.1 report presents a summary of the selected sites, the seismic-source characterization model, and the ground-motion characterization model used in the PSHA, followed by selection and modification of suites of ground motions. The Record Sequence Number (RSN) and the associated scale factors are tabulated in the Appendices of this report, and the actual time-series files can be downloaded from the PEER Ground-motion database Portal (https://ngawest2.berkeley.edu/)(link is external).
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.

Full text
Abstract:
Bridges often serve as key links in local and national transportation networks. Bridge closures can result in severe costs, not only in the form of repair or replacement, but also in the form of economic losses related to medium- and long-term interruption of businesses and disruption to surrounding communities. In addition, continuous functionality of bridges is very important after any seismic event for emergency response and recovery purposes. Considering the importance of these structures, the associated structural design philosophy is shifting from collapse prevention to maintaining functionality in the aftermath of moderate to strong earthquakes, referred to as “resiliency” in earthquake engineering research. Moreover, the associated construction philosophy is being modernized with the utilization of accelerated bridge construction (ABC) techniques, which strive to reduce the impact of construction on traffic, society, economy and on-site safety. This report presents two bridge systems that target the aforementioned issues. A study that combined numerical and experimental research was undertaken to characterize the seismic performance of these bridge systems. The first part of the study focuses on the structural system-level response of highway bridges that incorporate a class of innovative connecting devices called the “V-connector,”, which can be used to connect two components in a structural system, e.g., the column and the bridge deck, or the column and its foundation. This device, designed by ACII, Inc., results in an isolation surface at the connection plane via a connector rod placed in a V-shaped tube that is embedded into the concrete. Energy dissipation is provided by friction between a special washer located around the V-shaped tube and a top plate. Because of the period elongation due to the isolation layer and the limited amount of force transferred by the relatively flexible connector rod, bridge columns are protected from experiencing damage, thus leading to improved seismic behavior. The V-connector system also facilitates the ABC by allowing on-site assembly of prefabricated structural parts including those of the V-connector. A single-column, two-span highway bridge located in Northern California was used for the proof-of-concept of the proposed V-connector protective system. The V-connector was designed to result in an elastic bridge response based on nonlinear dynamic analyses of the bridge model with the V-connector. Accordingly, a one-third scale V-connector was fabricated based on a set of selected design parameters. A quasi-static cyclic test was first conducted to characterize the force-displacement relationship of the V-connector, followed by a hybrid simulation (HS) test in the longitudinal direction of the bridge to verify the intended linear elastic response of the bridge system. In the HS test, all bridge components were analytically modeled except for the V-connector, which was simulated as the experimental substructure in a specially designed and constructed test setup. Linear elastic bridge response was confirmed according to the HS results. The response of the bridge with the V-connector was compared against that of the as-built bridge without the V-connector, which experienced significant column damage. These results justified the effectiveness of this innovative device. The second part of the study presents the HS test conducted on a one-third scale two-column bridge bent with self-centering columns (broadly defined as “resilient columns” in this study) to reduce (or ultimately eliminate) any residual drifts. The comparison of the HS test with a previously conducted shaking table test on an identical bridge bent is one of the highlights of this study. The concept of resiliency was incorporated in the design of the bridge bent columns characterized by a well-balanced combination of self-centering, rocking, and energy-dissipating mechanisms. This combination is expected to lead to minimum damage and low levels of residual drifts. The ABC is achieved by utilizing precast columns and end members (cap beam and foundation) through an innovative socket connection. In order to conduct the HS test, a new hybrid simulation system (HSS) was developed, utilizing commonly available software and hardware components in most structural laboratories including: a computational platform using Matlab/Simulink [MathWorks 2015], an interface hardware/software platform dSPACE [2017], and MTS controllers and data acquisition (DAQ) system for the utilized actuators and sensors. Proper operation of the HSS was verified using a trial run without the test specimen before the actual HS test. In the conducted HS test, the two-column bridge bent was simulated as the experimental substructure while modeling the horizontal and vertical inertia masses and corresponding mass proportional damping in the computer. The same ground motions from the shaking table test, consisting of one horizontal component and the vertical component, were applied as input excitations to the equations of motion in the HS. Good matching was obtained between the shaking table and the HS test results, demonstrating the appropriateness of the defined governing equations of motion and the employed damping model, in addition to the reliability of the developed HSS with minimum simulation errors. The small residual drifts and the minimum level of structural damage at large peak drift levels demonstrated the superior seismic response of the innovative design of the bridge bent with self-centering columns. The reliability of the developed HS approach motivated performing a follow-up HS study focusing on the transverse direction of the bridge, where the entire two-span bridge deck and its abutments represented the computational substructure, while the two-column bridge bent was the physical substructure. This investigation was effective in shedding light on the system-level performance of the entire bridge system that incorporated innovative bridge bent design beyond what can be achieved via shaking table tests, which are usually limited by large-scale bridge system testing capacities.
APA, Harvard, Vancouver, ISO, and other styles
7

Gunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay, and Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/svks9397.

Full text
Abstract:
Considering the importance of the transportation network and bridge structures, the associated seismic design philosophy is shifting from the basic collapse prevention objective to maintaining functionality on the community scale in the aftermath of moderate to strong earthquakes (i.e., resiliency). In addition to performance, the associated construction philosophy is also being modernized, with the utilization of accelerated bridge construction (ABC) techniques to reduce impacts of construction work on traffic, society, economy, and on-site safety during construction. Recent years have seen several developments towards the design of low-damage bridges and ABC. According to the results of conducted tests, these systems have significant potential to achieve the intended community resiliency objectives. Taking advantage of such potential in the standard design and analysis processes requires proper modeling that adequately characterizes the behavior and response of these bridge systems. To evaluate the current practices and abilities of the structural engineering community to model this type of resiliency-oriented bridges, the Pacific Earthquake Engineering Research Center (PEER) organized a blind prediction contest of a two-column bridge bent consisting of columns with enhanced response characteristics achieved by a well-balanced contribution of self-centering, rocking, and energy dissipation. The parameters of this blind prediction competition are described in this report, and the predictions submitted by different teams are analyzed. In general, forces are predicted better than displacements. The post-tension bar forces and residual displacements are predicted with the best and least accuracy, respectively. Some of the predicted quantities are observed to have coefficient of variation (COV) values larger than 50%; however, in general, the scatter in the predictions amongst different teams is not significantly large. Applied ground motions (GM) in shaking table tests consisted of a series of naturally recorded earthquake acceleration signals, where GM1 is found to be the largest contributor to the displacement error for most of the teams, and GM7 is the largest contributor to the force (hence, the acceleration) error. The large contribution of GM1 to the displacement error is due to the elastic response in GM1 and the errors stemming from the incorrect estimation of the period and damping ratio. The contribution of GM7 to the force error is due to the errors in the estimation of the base-shear capacity. Several teams were able to predict forces and accelerations with only moderate bias. Displacements, however, were systematically underestimated by almost every team. This suggests that there is a general problem either in the assumptions made or the models used to simulate the response of this type of bridge bent with enhanced response characteristics. Predictions of the best-performing teams were consistently and substantially better than average in all response quantities. The engineering community would benefit from learning details of the approach of the best teams and the factors that caused the models of other teams to fail to produce similarly good results. Blind prediction contests provide: (1) very useful information regarding areas where current numerical models might be improved; and (2) quantitative data regarding the uncertainty of analytical models for use in performance-based earthquake engineering evaluations. Such blind prediction contests should be encouraged for other experimental research activities and are planned to be conducted annually by PEER.
APA, Harvard, Vancouver, ISO, and other styles
8

Welch, David, and Gregory Deierlein. Technical Background Report for Structural Analysis and Performance Assessment (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/yyqh3072.

Full text
Abstract:
This report outlines the development of earthquake damage functions and comparative loss metrics for single-family wood-frame buildings with and without seismic retrofit of vulnerable cripple wall and stem wall conditions. The underlying goal of the study is to quantify the benefits of the seismic retrofit in terms of reduced earthquake damage and repair or reconstruction costs. The earthquake damage and economic losses are evaluated based on the FEMA P-58 methodology, which incorporates detailed building information and analyses to characterize the seismic hazard, structural response, earthquake damage, and repair/reconstruction costs. The analyses are informed by and include information from other working groups of the Project to: (1) summarize past research on performance of wood-frame houses; (2) identify construction features to characterize alternative variants of wood-frame houses; (3) characterize earthquake hazard and ground motions in California; (4) conduct laboratory tests of cripple wall panels, wood-frame wall subassemblies and sill anchorages; and (5) validate the component loss models with data from insurance claims adjustors. Damage functions are developed for a set of wood-frame building variants that are distinguished by the number of stories (one- versus two-story), era (age) of construction, interior wall and ceiling materials, exterior cladding material, and height of the cripple walls. The variant houses are evaluated using seismic hazard information and ground motions for several California locations, which were chosen to represent the range seismicity conditions and retrofit design classifications outlined in the FEMA P-1100 guidelines for seismic retrofit. The resulting loss models for the Index Building variants are expressed in terms of three outputs: Mean Loss Curves (damage functions), relating expected loss (repair cost) to ground-motion shaking intensity, Expected Annual Loss, describing the expected (mean) loss at a specific building location due to the risk of earthquake damage, calculated on an annualized basis, and Expected RC250 Loss, which is the cost of repairing damage due to earthquake ground shaking with a return period of 250 years (20% chance of exceedance in 50 years). The loss curves demonstrate the effect of seismic retrofit by comparing losses in the existing (unretrofitted) and retrofitted condition across a range of seismic intensities. The general findings and observations demonstrate: (1) cripple walls in houses with exterior wood siding are more vulnerable than ones with stucco siding to collapse and damage; (2) older pre-1945 houses with plaster on wood lath interior walls are more susceptible to damage and losses than more recent houses with gypsum wallboard interiors; (3) two-story houses are more vulnerable than one-story houses; (4) taller (e.g., 6-ft-tall) cripple walls are generally less vulnerable to damage and collapse than shorter (e.g., 2-ft-tall) cripple walls; (5) houses with deficient stem wall connections are generally observed to be less vulnerable to earthquake damage than equivalent unretrofitted cripple walls with the same superstructure; and (6) the overall risk of losses and the benefits of cripple wall retrofit are larger for sites with higher seismicity. As summarized in the report, seismic retrofit of unbraced cripple walls can significantly reduce the risk of earthquake damage and repair costs, with reductions in Expected RC250 Loss risk of up to 50% of the house replacement value for an older house with wood-frame siding at locations of high seismicity. In addition to the reduction in repair cost risk, the seismic retrofit has an important additional benefit to reduce the risk of major damage that can displace residents from their house for many months.
APA, Harvard, Vancouver, ISO, and other styles
9

Schiller, Brandon, Tara Hutchinson, and Kelly Cobeen. Comparison of the Response of Small- and Large-Component Cripple Wall Specimens Tested under Simulated Seismic Loading (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/iyca1674.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 4: Testing, whose central focus was to experimentally investigate the seismic performance of retrofitted and existing cripple walls. Two testing programs were conducted; the University of California, Berkeley (UC Berkeley) focused on large-component tests; and the University of California San Diego (UC San Diego) focused on small-component tests. The primary objectives of the tests were to develop descriptions of the load-deflection behavior of components and connections for use by Working Group 5 in developing numerical models and collect descriptions of damage at varying levels of drift for use by Working Group 6 in developing fragility functions. This report considers two large-component cripple wall tests performed at UC Berkeley and several small-component tests performed at UC San Diego that resembled the testing details of the large-component tests. Experiments involved imposition of combined vertical loading and quasi-static reversed cyclic lateral load on cripple wall assemblies. The details of the tests are representative of era-specific construction, specifically the most vulnerable pre-1945 construction. All cripple walls tested were 2 ft high and finished with stucco over horizontal lumber sheathing. Specimens were tested in both the retrofitted and unretrofitted condition. The large-component tests were constructed as three-dimensional components (with a 20-ft  4-ft floor plan) and included the cripple wall and a single-story superstructure above. The small-component tests were constructed as 12-ft-long two-dimensional components and included only the cripple wall. The pairing of small- and large-component tests was considered to make a direct comparison to determine the following: (1) how closely small-component specimen response could emulate the response of the large-component specimens; and (2) what boundary conditions in the small-component specimens led to the best match the response of the large-component specimens. The answers to these questions are intended to help identify best practices for the future design of cripple walls in residential housing, with particular interest in: (1) supporting the realistic design of small-component specimens that may capture the response large-component specimen response; and (2) to qualitatively determine where the small-component tests fall in the range of lower- to upper-bound estimation of strength and deformation capacity for the purposes of numerical modelling. Through these comparisons, the experiments will ultimately advance numerical modeling tools, which will in turn help generate seismic loss models capable of quantifying the reduction of loss achieved by applying state-of-practice retrofit methods as identified in FEMA P-1100Vulnerability-Base Seismic Assessment and Retrofit of One- and Two-Family Dwellings. To this end, details of the test specimens, measured as well as physical observations, and comparisons between the two test programs are summarized in this report.
APA, Harvard, Vancouver, ISO, and other styles
10

Reis, Evan. Development of Index Buildings, (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/fudb2072.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. This report is a product of Working Group 2: Development of Index Buildings and focuses on the identification of common variations and combinations of materials and construction characteristics of California single-family dwellings. These were used to develop “Index Buildings” that formed the basis of the PEER–CEA Project testing and analytical modeling programs (Working Groups 4 and 5). The loss modeling component of the Project (Working Group 6) quantified the damage-seismic hazard relationships for each of the Index Buildings.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography