Journal articles on the topic 'Selenophene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Selenophene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Skhiri, Aymen, Ridha Ben Salem, Jean-François Soulé, and Henri Doucet. "Reactivity of bromoselenophenes in palladium-catalyzed direct arylations." Beilstein Journal of Organic Chemistry 13 (December 22, 2017): 2862–68. http://dx.doi.org/10.3762/bjoc.13.278.
Full textHollinger, Jon, Dong Gao, and Dwight S. Seferos. "Selenophene Electronics." Israel Journal of Chemistry 54, no. 5-6 (April 3, 2014): 440–53. http://dx.doi.org/10.1002/ijch.201400011.
Full textHellwig, Paola S., Thiago J. Peglow, Filipe Penteado, Luana Bagnoli, Gelson Perin, and Eder J. Lenardão. "Recent Advances in the Synthesis of Selenophenes and Their Derivatives." Molecules 25, no. 24 (December 13, 2020): 5907. http://dx.doi.org/10.3390/molecules25245907.
Full textAlakhras, Fadi. "Electrochemical behavior and conductivity measurements of electropolymerized selenophene-based copolymers." Materials Science-Poland 33, no. 1 (March 1, 2015): 25–35. http://dx.doi.org/10.1515/msp-2015-0007.
Full textHollinger, Jon, Dong Gao, and Dwight S. Seferos. "ChemInform Abstract: Selenophene Electronics." ChemInform 45, no. 37 (August 28, 2014): no. http://dx.doi.org/10.1002/chin.201437245.
Full textPrediger, Patrícia, Ricardo Brandão, Cristina W. Nogueira, and Gilson Zeni. "Palladium-Catalyzed Carbonylation of 2-Haloselenophenes: Synthesis of Selenophene-2-carboxamides, Selenophene-2,5-dicarboxamides andN,N′-Bridged Selenophene-2-carboxamides." European Journal of Organic Chemistry 2007, no. 32 (November 2007): 5422–28. http://dx.doi.org/10.1002/ejoc.200700599.
Full textLe Gal, Yann, Thierry Roisnel, Frédéric Barrière, Takehiko Mori, and Dominique Lorcy. "Diselenolene proligands: reactivity and comparison with their dithiolene congeners." New Journal of Chemistry 45, no. 20 (2021): 8971–77. http://dx.doi.org/10.1039/d1nj01335a.
Full textWang, Sheng Tao, Bao Yang Lu, Jing Kun Xu, and Wei Qiang Zhou. "Electrosyntheses of Poly(selenophene-co-3-methylthiophene) with Improved Thermoelectric Property in Boron Trifluoride Diethyl Etherate." Advanced Materials Research 937 (May 2014): 17–22. http://dx.doi.org/10.4028/www.scientific.net/amr.937.17.
Full textHasegawa, Masashi, Shiori Haga, Tohru Nishinaga, and Yasuhiro Mazaki. "Selenacalix[4]selenophene: Synthesis, Structure, and Gel Formation of Cyclic Selenoether of Selenophene." Organic Letters 22, no. 10 (April 2, 2020): 3755–58. http://dx.doi.org/10.1021/acs.orglett.0c00839.
Full textNakayama, Juzo, Takashi Umezawa, Tomoki Matsui, Yoshiaki Sugihara, and Akihiko Ishii. "Thermolysis of Selenophene 1,1-Dioxides." HETEROCYCLES 48, no. 1 (1998): 61. http://dx.doi.org/10.3987/com-97-8000.
Full textMahrok, AnjanPreet K., Elisa I. Carrera, Andrew J. Tilley, Shuyang Ye, and Dwight S. Seferos. "Synthesis and photophysical properties of platinum-acetylide copolymers with thiophene, selenophene and tellurophene." Chemical Communications 51, no. 25 (2015): 5475–78. http://dx.doi.org/10.1039/c4cc09312g.
Full textGao, Dong, Gregory L. Gibson, Jon Hollinger, Pengfei Li, and Dwight S. Seferos. "‘Blocky’ donor–acceptor polymers containing selenophene, benzodithiophene and thienothiophene for improved molecular ordering." Polymer Chemistry 6, no. 17 (2015): 3353–60. http://dx.doi.org/10.1039/c5py00276a.
Full textLiang, Ziqi, Miaomiao Li, Xiaomei Zhang, Qi Wang, Yu Jiang, Hongkun Tian, and Yanhou Geng. "Near-infrared absorbing non-fullerene acceptors with selenophene as π bridges for efficient organic solar cells." Journal of Materials Chemistry A 6, no. 17 (2018): 8059–67. http://dx.doi.org/10.1039/c8ta00783g.
Full textShi, Xinzhe, Shuxin Mao, Thierry Roisnel, Henri Doucet, and Jean-François Soulé. "Palladium-catalyzed successive C–H bond arylations and annulations toward the π-extension of selenophene-containing aromatic skeletons." Organic Chemistry Frontiers 6, no. 14 (2019): 2398–403. http://dx.doi.org/10.1039/c9qo00218a.
Full textHitchcock, A. P., G. Tourillon, and W. Braun. "Inner-shell excitation studies of conducting organic polymers: selenophene, 3-methyl selenophene, and their polymers." Canadian Journal of Chemistry 67, no. 11 (November 1, 1989): 1819–27. http://dx.doi.org/10.1139/v89-282.
Full textMohr, Yorck, Gaëlle Hisler, Léonie Grousset, Yoann Roux, Elsje Alessandra Quadrelli, Florian M. Wisser, and Jérôme Canivet. "Nickel-catalyzed and Li-mediated regiospecific C–H arylation of benzothiophenes." Green Chemistry 22, no. 10 (2020): 3155–61. http://dx.doi.org/10.1039/d0gc00917b.
Full textCai, Yu, Pingping Liang, Weili Si, Baomin Zhao, Jinjun Shao, Wei Huang, Yewei Zhang, Qi Zhang, and Xiaochen Dong. "A selenophene substituted diketopyrrolopyrrole nanotheranostic agent for highly efficient photoacoustic/infrared-thermal imaging-guided phototherapy." Organic Chemistry Frontiers 5, no. 1 (2018): 98–105. http://dx.doi.org/10.1039/c7qo00755h.
Full textLee, Young Nam, Pankaj Attri, Seong Su Kim, Sang Jun Lee, Jun Heon Kim, Tae Jong Cho, and In Tae Kim. "Photovoltaic properties of novel thiophene- and selenophene-based conjugated low bandgap polymers: a comparative study." New Journal of Chemistry 41, no. 14 (2017): 6315–21. http://dx.doi.org/10.1039/c7nj00151g.
Full textLu, Baoyang, Shouli Ming, Kaiwen Lin, Shijie Zhen, Hongtao Liu, Hua Gu, Shuai Chen, Yuzhen Li, Zhengyou Zhu, and Jingkun Xu. "[1,2,5]Chalcogenodiazolo[3,4-c]pyridine and selenophene based donor–acceptor–donor electrochromic polymers electrosynthesized from high fluorescent precursors." New Journal of Chemistry 40, no. 10 (2016): 8316–23. http://dx.doi.org/10.1039/c5nj03432a.
Full textAl-Hashimi, Mohammed, Yang Han, Jeremy Smith, Hassan S. Bazzi, Siham Yousuf A. Alqaradawi, Scott E. Watkins, Thomas D. Anthopoulos, and Martin Heeney. "Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene–vinylene copolymers." Chemical Science 7, no. 2 (2016): 1093–99. http://dx.doi.org/10.1039/c5sc03501e.
Full textPark, Kwang Hun, Kwang Hee Cheon, Yun-Ji Lee, Dae Sung Chung, Soon-Ki Kwon, and Yun-Hi Kim. "Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility." Chemical Communications 51, no. 38 (2015): 8120–22. http://dx.doi.org/10.1039/c5cc02104a.
Full textYu, Peiting, Guitao Feng, Junyu Li, Cheng Li, Yunhua Xu, Chengyi Xiao, and Weiwei Li. "A selenophene substituted double-cable conjugated polymer enables efficient single-component organic solar cells." Journal of Materials Chemistry C 8, no. 8 (2020): 2790–97. http://dx.doi.org/10.1039/c9tc06667e.
Full textKroon, Renee, Armantas Melianas, Wenliu Zhuang, Jonas Bergqvist, Amaia Diaz de Zerio Mendaza, Timothy T. Steckler, Liyang Yu, et al. "Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells." Polymer Chemistry 6, no. 42 (2015): 7402–9. http://dx.doi.org/10.1039/c5py01245g.
Full textCao, Jinru, Shenya Qu, Jiangsheng Yu, Zhuohan Zhang, Renyong Geng, Linqiang Yang, Hongtao Wang, Fuqiang Du, and Weihua Tang. "13.76% efficiency nonfullerene solar cells enabled by selenophene integrated dithieno[3,2-b:2′,3′-d]pyrrole asymmetric acceptors." Materials Chemistry Frontiers 4, no. 3 (2020): 924–32. http://dx.doi.org/10.1039/c9qm00775j.
Full textLu, Futai, Liu Qian, Jiamin Cao, Yaqing Feng, Bin Du, and Liming Ding. "D–A copolymers containing lactam moieties for polymer solar cells." Polymer Chemistry 6, no. 42 (2015): 7373–76. http://dx.doi.org/10.1039/c5py01064k.
Full textChen, Shi-Yen, Yu-Chieh Pao, Santosh K. Sahoo, Wen-Chia Huang, Yu-Ying Lai, and Yen-Ju Cheng. "Synthesis of unsymmetrical benzotrichalcogenophenes by N-heterocyclic carbene–palladium-catalyzed intramolecular direct C3-arylation of chalcogenophenes." Chemical Communications 54, no. 12 (2018): 1517–20. http://dx.doi.org/10.1039/c7cc08852c.
Full textLu, Baoyang, Shijie Zhen, Shimin Zhang, Jingkun Xu, and Guoqun Zhao. "Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers." Polym. Chem. 5, no. 17 (2014): 4896–908. http://dx.doi.org/10.1039/c4py00529e.
Full textWang, Tianyu, Jichao Chen, Jia Wang, Shengtao Xu, Aijun Lin, Hequan Yao, Sheng Jiang, and Jinyi Xu. "Cobalt-catalyzed carbon–sulfur/selenium bond formation: synthesis of benzo[b]thio/selenophene-fused imidazo[1,2-a]pyridines." Organic & Biomolecular Chemistry 16, no. 20 (2018): 3721–25. http://dx.doi.org/10.1039/c8ob00743h.
Full textBraccini, Simona, Giacomo Provinciali, Lorenzo Biancalana, Guido Pampaloni, Federica Chiellini, and Fabio Marchetti. "The Cytotoxic Activity of Diiron Bis-Cyclopentadienyl Complexes with Bridging C3-Ligands." Applied Sciences 11, no. 10 (May 11, 2021): 4351. http://dx.doi.org/10.3390/app11104351.
Full textCuesta, Virginia, Maida Vartanian, Prateek Malhotra, Subhayan Biswas, Pilar de la Cruz, Ganesh D. Sharma, and Fernando Langa. "Increase in efficiency on using selenophene instead of thiophene in π-bridges for D-π-DPP-π-D organic solar cells." Journal of Materials Chemistry A 7, no. 19 (2019): 11886–94. http://dx.doi.org/10.1039/c9ta02415h.
Full textNakayama, Juzo, Tomoki Matsui, Yoshiaki Sugihara, Akihiko Ishii, and Shigekazu Kumakura. "First Synthesis of Selenophene 1,1-Dioxides." Chemistry Letters 25, no. 4 (April 1996): 269–70. http://dx.doi.org/10.1246/cl.1996.269.
Full textGronowitz, Salo. "Selenophene, a Twin-Brother of Thiophene?" Phosphorus, Sulfur, and Silicon and the Related Elements 136, no. 1 (January 1, 1998): 59–90. http://dx.doi.org/10.1080/10426509808545935.
Full textRampon, Daniel S., Ludger A. Wessjohann, and Paulo H. Schneider. "Palladium-Catalyzed Direct Arylation of Selenophene." Journal of Organic Chemistry 79, no. 13 (June 16, 2014): 5987–92. http://dx.doi.org/10.1021/jo500094t.
Full textWang, Dezhi, Xi Chen, Hua Yang, Daokun Zhong, Boao Liu, Xiaolong Yang, Ling Yue, Guijiang Zhou, Miaofeng Ma, and Zhaoxin Wu. "The synthesis of cyclometalated platinum(ii) complexes with benzoaryl-pyridines as C^N ligands for investigating their photophysical, electrochemical and electroluminescent properties." Dalton Transactions 49, no. 44 (2020): 15633–45. http://dx.doi.org/10.1039/d0dt02224a.
Full textJung, Eui Hyuk, Seunghwan Bae, Tae Woong Yoo, and Won Ho Jo. "The effect of different chalcogenophenes in isoindigo-based conjugated copolymers on photovoltaic properties." Polym. Chem. 5, no. 22 (2014): 6545–50. http://dx.doi.org/10.1039/c4py00791c.
Full textDakova, B., A. Walcarius, L. Lamberts, and M. Evers. "Electrochemical behaviour of seleno-organic compounds-part 2. Benzo(b)selenophene and dibenzo(b,d)selenophene." Electrochimica Acta 37, no. 8 (June 1992): 1453–56. http://dx.doi.org/10.1016/0013-4686(92)87021-q.
Full textKang, So-Huei, Myeonggeun Han, Yongjoon Cho, Jisu Hong, Seongmin Heo, Seonghun Jeong, Yong-Young Noh, and Changduk Yang. "Understanding of copolymers containing pyridine and selenophene simultaneously and their polarity conversion in transistors." Materials Chemistry Frontiers 4, no. 12 (2020): 3567–77. http://dx.doi.org/10.1039/c9qm00739c.
Full textCao, Jiamin, Chuantian Zuo, Bin Du, Xiaohui Qiu, and Liming Ding. "Hexacyclic lactam building blocks for highly efficient polymer solar cells." Chemical Communications 51, no. 60 (2015): 12122–25. http://dx.doi.org/10.1039/c5cc04375a.
Full textSahoo, Sumit, Mohandas Sangeetha, Soumita Bera, Dandamudi Usharani, and Harapriya Rath. "Targeted synthesis of meso-aryl substituted aromatic trans-doubly N-confused dithia/diselena [18] porphyrins (1.1.1.1) with NIR absorption: spectroscopic and theoretical characterization." Organic & Biomolecular Chemistry 18, no. 31 (2020): 6058–62. http://dx.doi.org/10.1039/d0ob01243b.
Full textHo, Po-Yu, Chi-Ho Siu, Wai-Hong Yu, Panwang Zhou, Tao Chen, Cheuk-Lam Ho, Lawrence Tien Lin Lee, et al. "Molecular engineering of starburst triarylamine donor with selenophene containing π-linker for dye-sensitized solar cells." Journal of Materials Chemistry C 4, no. 4 (2016): 713–26. http://dx.doi.org/10.1039/c5tc03308j.
Full textKim, Gyoungsik, A.-Reum Han, Hae Rang Lee, Joon Hak Oh, and Changduk Yang. "Use of heteroaromatic spacers in isoindigo-benzothiadiazole polymers for ambipolar charge transport." Physical Chemistry Chemical Physics 17, no. 40 (2015): 26512–18. http://dx.doi.org/10.1039/c4cp01787k.
Full textGhosh, Arindam, Syamasrit Dash, A. Srinivasan, Cherumuttathu H. Suresh, and Tavarekere K. Chandrashekar. "Two non-identical twins in one unit cell: characterization of 34π aromatic core-modified octaphyrins, their structural isomers and anion bound complexes." Chemical Science 10, no. 23 (2019): 5911–19. http://dx.doi.org/10.1039/c9sc01633c.
Full textFei, Zhuping, Raja Shahid Ashraf, Yang Han, Sarah Wang, Chin Pang Yau, Pabitra S. Tuladhar, Thomas D. Anthopoulos, Michael L. Chabinyc, and Martin Heeney. "Diselenogermole as a novel donor monomer for low band gap polymers." Journal of Materials Chemistry A 3, no. 5 (2015): 1986–94. http://dx.doi.org/10.1039/c4ta05703a.
Full textLiu, Kai-Kai, Xiaopeng Xu, Jin-Liang Wang, Chao Zhang, Gao-Yang Ge, Fang-Dong Zhuang, Han-Jian Zhang, Can Yang, Qiang Peng, and Jian Pei. "Achieving high-performance non-halogenated nonfullerene acceptor-based organic solar cells with 13.7% efficiency via a synergistic strategy of an indacenodithieno[3,2-b]selenophene core unit and non-halogenated thiophene-based terminal group." Journal of Materials Chemistry A 7, no. 42 (2019): 24389–99. http://dx.doi.org/10.1039/c9ta08328f.
Full textStoffregen, Stacey A., Stephanie Y. Lee, Pearl Dickerson, and William S. Jenks. "Computational investigation of the photochemical deoxygenation of thiophene-S-oxide and selenophene-Se-oxide." Photochem. Photobiol. Sci. 13, no. 2 (2014): 431–38. http://dx.doi.org/10.1039/c3pp50382h.
Full textChandak, Hemant S., and Sanjio S. Zade. "Fused oligothiophene and -selenophene: A DFT insight." Organic Electronics 15, no. 10 (October 2014): 2184–93. http://dx.doi.org/10.1016/j.orgel.2014.06.005.
Full textLi, Sheng, Keqiang He, Elisabeth Prince, Yuning Li, and Dwight S. Seferos. "Selenophene and Thiophene-Based Conjugated Polymer Gels." ACS Materials Letters 2, no. 12 (November 10, 2020): 1617–23. http://dx.doi.org/10.1021/acsmaterialslett.0c00406.
Full textDas, Soumyajit, and Sanjio S. Zade. "Poly(cyclopenta[c]selenophene): a new polyselenophene." Chemical Communications 46, no. 7 (2010): 1168. http://dx.doi.org/10.1039/b915826j.
Full textSato, Takuma, Itaru Nakamura, and Masahiro Terada. "Platinum-Catalyzed Multisubstituted Benzo[b]selenophene Synthesis." European Journal of Organic Chemistry 2009, no. 32 (November 2009): 5509–12. http://dx.doi.org/10.1002/ejoc.200900894.
Full textPeng, Shih-Hao, Wei-Yi Tu, Ganesh Gollavelli, and Chain-Shu Hsu. "Synthesis of diketopyrrolopyrrole based conjugated polymers containing thieno[3,2-b]thiophene flanking groups for high performance thin film transistors." Polymer Chemistry 8, no. 22 (2017): 3431–37. http://dx.doi.org/10.1039/c7py00402h.
Full text