Academic literature on the topic 'Self-adjoint operator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Self-adjoint operator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Self-adjoint operator"
Araujo, Vanilse S., F. A. B. Coutinho, and J. Fernando Perez. "Operator domains and self-adjoint operators." American Journal of Physics 72, no. 2 (2004): 203–13. http://dx.doi.org/10.1119/1.1624111.
Full textPodlevskii, B. M. "Self-adjoint polynomial operator pencils, spectrally equivalent to self-adjoint operators." Ukrainian Mathematical Journal 36, no. 5 (1985): 498–500. http://dx.doi.org/10.1007/bf01086780.
Full textAntoniou, I., and S. A. Shkarin. "Decay spectrum and decay subspace of normal operators." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, no. 6 (2001): 1245–55. http://dx.doi.org/10.1017/s0308210500001372.
Full textBerkics, Péter. "On Self-Adjoint Linear Relations." Mathematica Pannonica 27_NS1, no. 1 (2021): 1–7. http://dx.doi.org/10.1556/314.2020.00001.
Full textPavić, Zlatko. "Inequalities of Convex Functions and Self-Adjoint Operators." Journal of Operators 2014 (February 9, 2014): 1–5. http://dx.doi.org/10.1155/2014/382364.
Full textGhaedrahmati, Arezoo, and Ali Sameripour. "Investigation of the Spectral Properties of a Non-Self-Adjoint Elliptic Differential Operator." International Journal of Mathematics and Mathematical Sciences 2021 (May 13, 2021): 1–7. http://dx.doi.org/10.1155/2021/5564552.
Full textAnastassiou, George A. "Self adjoint operator harmonic polynomials induced Chebyshev-Gruss inequalities." Studia Universitatis Babes-Bolyai Matematica 62, no. 1 (2017): 39–56. http://dx.doi.org/10.24193/subbmath.2017.0004.
Full textKudryashov, Yu L. "Dilatations of Linear Operators." Contemporary Mathematics. Fundamental Directions 66, no. 2 (2020): 209–20. http://dx.doi.org/10.22363/2413-3639-2020-66-2-209-220.
Full textWalker, Philip W. "An expansion theory for non-self-adjoint boundary-value problems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 108, no. 1-2 (1988): 11–26. http://dx.doi.org/10.1017/s0308210500026470.
Full textKarabash, I. M., and S. Hassi. "Similarity between J-Self-Adjoint Sturm--Liouville Operators with Operator Potential and Self-Adjoint Operators." Mathematical Notes 78, no. 3-4 (2005): 581–85. http://dx.doi.org/10.1007/s11006-005-0159-z.
Full textDissertations / Theses on the topic "Self-adjoint operator"
Redparth, Paul Robert. "On the spectral and pseudospectral properties of non self adjoint Schrödinger operators". Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249528.
Full textMortad, Mohammed Hichem. "Normal products of self-adjoint operators and self-adjointness of the perturbed wave operator on L²(Rn)." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/15434.
Full textThelwall, Michael Arijan. "Bimodule theory in the study of non-self-adjoint operator algebras." Thesis, Lancaster University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280735.
Full textNguyen, Thi-Hien. "Etude de l'asymptotique du phénomène d'augmentation de diffusivité dans des flots à grande vitesse." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0072/document.
Full textMichel, Patricia L. "Eigenvalue gaps for self-adjoint operators." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/28795.
Full textStrömberg, Roland. "Spectral Theory for Bounded Self-adjoint Operators." Thesis, Uppsala University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121364.
Full textVerri, Alessandra Aparecida. "O átomo de hidrogênio em 1, 2 e 3 dimensões." Universidade Federal de São Carlos, 2007. https://repositorio.ufscar.br/handle/ufscar/5848.
Full textKlein, Guillaume. "Stabilisation et asymptotique spectrale de l’équation des ondes amorties vectorielle." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD050/document.
Full textNovak, Radek. "Mathematical analysis of Quantum mechanics with non-self-adjoint operators." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT4062/document.
Full textHobiny, Aatef. "Enclosures for the eigenvalues of self-adjoint operators and applications to Schrodinger operators." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2790.
Full textBooks on the topic "Self-adjoint operator"
Veliev, Oktay. Non-self-adjoint Schrödinger Operator with a Periodic Potential. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72683-6.
Full textSchmüdgen, Konrad. Unbounded Self-adjoint Operators on Hilbert Space. Springer Netherlands, 2012.
Find full textKopachevsky, Nikolay D. Operator Approach to Linear Problems of Hydrodynamics: Volume 1: Self-adjoint Problems for an Ideal Fluid. Birkhäuser Basel, 2001.
Find full textV, Tyutin I., Voronov B. L, and SpringerLink (Online service), eds. Self-adjoint Extensions in Quantum Mechanics: General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials. Birkhäuser Boston, 2012.
Find full textDunford, Nelson. Linear operators.: Self adjoint operators in Hilbert space. Interscience Publishers, 1988.
Find full textIlʹin, V. A. Spectral theory of differential operators: Self-adjoint differential operators. Consultants Bureau, 1995.
Find full textMöller, Manfred, Dr. rer. nat. habil., ed. Non-self-adjoint boundary eigenvalue problems. Elsevier, 2003.
Find full textSchmüdgen, Konrad. Unbounded Self-adjoint Operators on Hilbert Space. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4753-1.
Full textSpectral theory of families of self-adjoint operators. Kluwer Academic Publishers, 1991.
Find full textSamoilenko, Y. S. Spectral Theory of Families of Self-Adjoint Operators. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3806-2.
Full textBook chapters on the topic "Self-adjoint operator"
Stulpe, Werner. "Self-Adjoint Operator." In Compendium of Quantum Physics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_196.
Full textRodman, Leiba. "Self-Adjoint Operator Polynomials." In An Introduction to Operator Polynomials. Birkhäuser Basel, 1989. http://dx.doi.org/10.1007/978-3-0348-9152-3_6.
Full textPower, S. C. "Partly Self-Adjoint Limit Algebras." In Operator Algebras and Applications. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5500-7_13.
Full textAnastassiou, George A. "Self Adjoint Operator Ostrowski Inequalities." In Intelligent Comparisons II: Operator Inequalities and Approximations. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51475-8_5.
Full textGohberg, Israel, and Seymour Goldberg. "Spectral Theory of Compact Self Adjoint Operators." In Basic Operator Theory. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-5985-5_3.
Full textGitman, D. M., I. V. Tyutin, and B. L. Voronov. "Dirac Operator with Coulomb Field." In Self-adjoint Extensions in Quantum Mechanics. Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-4662-2_9.
Full textMaher, Philip J. "Self-Adjoint and Positive Approximants." In Operator Approximant Problems Arising from Quantum Theory. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61170-9_3.
Full textAnastassiou, George A. "Self Adjoint Operator Chebyshev-Grüss Inequalities." In Intelligent Comparisons II: Operator Inequalities and Approximations. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51475-8_7.
Full textSchmüdgen, Konrad. "Self-Adjoint Representations of Commutative *-Algebras." In Unbounded Operator Algebras and Representation Theory. Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7469-4_9.
Full textTkachenko, Vadim. "Non-self-adjoint Periodic Dirac Operators." In Operator Theory, System Theory and Related Topics. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8247-7_22.
Full textConference papers on the topic "Self-adjoint operator"
Bairamov, Elgiz, Meltem Sertbaş, and Zameddin I. Ismailov. "Self-adjoint extensions of singular third-order differential operator and applications." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4893826.
Full textZakirova, G. A. "An approximate solution of inverse spectral problem for perturbed self-adjoint operator." In 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2016. http://dx.doi.org/10.1109/icieam.2016.7911714.
Full textKadchenko, S. I., A. I. Kadchenko, G. A. Zakirova, and S. I. Kadchenko. "The numerical method of solving of inverse spectral problems generated by perturbed self-adjoint operator." In 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2016. http://dx.doi.org/10.1109/icieam.2016.7911720.
Full textAshyralyev, Allaberen, Ozgur Yildirim, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Second Order of Accuracy Stable Difference Schemes for Hyperbolic Problems Subject to Nonlocal Conditions with Self-Adjoint Operator." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636801.
Full textOpmeer, M. R., and O. V. Iftime. "A representation of all bounded self-adjoint solutions of the algebraic Riccati equation for systems with an unbounded observation operator." In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1428899.
Full textBalas, Mark J. "Augmentation of Fixed Gain Controlled Infinite Dimensional Systems With Direct Adaptive Control." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23179.
Full textManafov, Manaf Dzh. "Self-adjoint extensions of differential operators with potentials-point interactions." In 6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5020478.
Full textMoarref, Rashad, Makan Fardad, and Mihailo R. Jovanovic. "Perturbation analysis of eigenvalues of a class of self-adjoint operators." In 2008 American Control Conference (ACC '08). IEEE, 2008. http://dx.doi.org/10.1109/acc.2008.4586615.
Full textSCHULTZE, BERND. "PROBLEMS CONCERNING THE DEFICIENCY INDICES OF SINGULAR SELF-ADJOINT ORDINARY DIFFERENTIAL OPERATORS." In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0045.
Full text"Spectral Analysis for One Class Non-Self-Adjoint Operators with Almost Periodic Potentials." In IBRAS 2021 INTERNATIONAL CONFERENCE ON BIOLOGICAL RESEARCH AND APPLIED SCIENCE. Juw, 2021. http://dx.doi.org/10.37962/ibras/2021/153.
Full textReports on the topic "Self-adjoint operator"
Roberts, R. M. Spatial and angular variation and discretization of the self-adjoint transport operator. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/442191.
Full textTygert, Mark. Fast Algorithms for the Solution of Eigenfunction Problems for One-Dimensional Self-Adjoint Linear Differential Operators. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada458901.
Full text