Books on the topic 'Self-adjoint operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 35 books for your research on the topic 'Self-adjoint operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Dunford, Nelson. Linear operators.: Self adjoint operators in Hilbert space. New York: Interscience Publishers, 1988.
Find full textIlʹin, V. A. Spectral theory of differential operators: Self-adjoint differential operators. New York: Consultants Bureau, 1995.
Find full textSchmüdgen, Konrad. Unbounded Self-adjoint Operators on Hilbert Space. Dordrecht: Springer Netherlands, 2012.
Find full textSchmüdgen, Konrad. Unbounded Self-adjoint Operators on Hilbert Space. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4753-1.
Full textSamoilenko, Y. S. Spectral Theory of Families of Self-Adjoint Operators. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3806-2.
Full textSpectral theory of families of self-adjoint operators. Dordrecht: Kluwer Academic Publishers, 1991.
Find full textMöller, Manfred, Dr. rer. nat. habil., ed. Non-self-adjoint boundary eigenvalue problems. Amsterdam: Elsevier, 2003.
Find full textBirman, M. Sh. Spectral theory of self-adjoint operators in Hilbert space. Dordrecht: D. Reidel Pub. Co., 1987.
Find full textBirman, M. S., and M. Z. Solomjak. Spectral Theory of Self-Adjoint Operators in Hilbert Space. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4586-9.
Full textSpectral theory of non-self-adjoint two-point differential operators. Providence, R.I: American Mathematical Society, 2000.
Find full textBernstein, Herbert J. An inequality for self-adjoint operators on a Hilbert space. New York: Courant Institute of Mathematical Sciences, New York University, 1985.
Find full textBernstein, Herbert J. An inequality for self-adjoint operators on a Hilbert space. New York: Courant Institute of Mathematical Sciences, New York University, 1985.
Find full textSjöstrand, Johannes. Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10819-9.
Full textTembo, Isaac D. Self-adjoint differential operators and norm estimates of integral operators on a finite interval. Birmingham: University of Birmingham, 1996.
Find full textHardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Providence, R.I: American Mathematical Society, 2011.
Find full textKoshmanenko, Volodymyr, and Mykola Dudkin. The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29535-0.
Full textDunford, Nelson. Linear operations.: Self adjoint operations in Hilbert space. New York: Interscience Publishers, 1988.
Find full textVeliev, Oktay. Non-self-adjoint Schrödinger Operator with a Periodic Potential. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72683-6.
Full textKopachevsky, Nikolay D. Operator Approach to Linear Problems of Hydrodynamics: Volume 1: Self-adjoint Problems for an Ideal Fluid. Basel: Birkhäuser Basel, 2001.
Find full textV, Tyutin I., Voronov B. L, and SpringerLink (Online service), eds. Self-adjoint Extensions in Quantum Mechanics: General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials. Boston: Birkhäuser Boston, 2012.
Find full textSchmüdgen, Konrad. Unbounded Self-adjoint Operators on Hilbert Space. Springer, 2012.
Find full textSamoilenko, A. M. Spectral Theory of Families of Self-Adjoint Operators. Springer, 1991.
Find full textDunford, Neilson, and Jacob T. Schwartz. Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space, Part 2. Wiley-Interscience, 1988.
Find full textSjöstrand, Johannes. Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations. Birkhäuser, 2019.
Find full textGitman, Dmitry, Igor Tyutin, and Boris Voronov. Self-adjoint Extensions As a Quantization Problem (Progress in Mathematical Physics). Springer, 2007.
Find full textMennicken, R., and M. Möller. Non-Self-Adjoint Boundary Eigenvalue Problems (North-Holland Mathematics Studies). North Holland, 2003.
Find full textKoshmanenko, Volodymyr, Mykola Dudkin, and Nataliia Koshmanenko. The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators. Birkhäuser, 2016.
Find full textKoshmanenko, Volodymyr, Mykola Dudkin, and Nataliia Koshmanenko. The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators. Birkhäuser, 2018.
Find full textEdmunds, D. E., and W. D. Evans. Unbounded Linear Operators. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0003.
Full textEdmunds, D. E., and W. D. Evans. Essential Spectra. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0009.
Full textEdmunds, D. E., and W. D. Evans. Second-Order Differential Operators on Arbitrary Open Sets. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0007.
Full textForrester, Peter. Wigner matrices. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.21.
Full textEdmunds, D. E., and W. D. Evans. Estimates for the Singular Values of −Δ + q when q is Complex. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0012.
Full textKopachevskii, Nikolay D., and Selim G. Krein. Operator Approach in Linear Problems of Hydrodynamics: Volume 1: Self-adjoint Problems for an Ideal Fluid (Operator Theory: Advances and Applications). Birkhauser, 2001.
Find full text