Dissertations / Theses on the topic 'Self-adjoint operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Self-adjoint operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Michel, Patricia L. "Eigenvalue gaps for self-adjoint operators." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/28795.
Full textStrömberg, Roland. "Spectral Theory for Bounded Self-adjoint Operators." Thesis, Uppsala University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121364.
Full textHobiny, Aatef. "Enclosures for the eigenvalues of self-adjoint operators and applications to Schrodinger operators." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2790.
Full textNovak, Radek. "Mathematical analysis of Quantum mechanics with non-self-adjoint operators." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT4062/document.
Full textThe importance of non-self-adjoint operators in modern physics increases every day as they start to play more prominent role in Quantum mechanics. However, the significance of their examination is much more recent than the interest in the examination of their selfadjoint counterparts. Thus, since many selfadjoint techniques fail to be generalized to this context, there are not many well-developed methods for examining their properties. This thesis aims to contribute to filling this gap and demonstrates several non-self-adjoint models and the means of their study. The topics include pseudospectrum as a suitable analogue of the spectrum, a model of a quantum layer with balanced gain and loss at the boundary, and the Kramers-Fokker-Planck equation with a short-range potential
Mortad, Mohammed Hichem. "Normal products of self-adjoint operators and self-adjointness of the perturbed wave operator on L²(Rn)." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/15434.
Full textShlapunov, Alexander. "Iterations of self-adjoint operators and their applications to elliptic systems." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2540/.
Full textRedparth, Paul Robert. "On the spectral and pseudospectral properties of non self adjoint Schrödinger operators." Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249528.
Full textBruder, Andrea S. Littlejohn Lance L. "Applied left-definite theory the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators /." Waco, Tex. : Baylor University, 2009. http://hdl.handle.net/2104/5327.
Full textSubscript in abstract: n and n=0 in {Pn([alpha],[beta])(x)} [infinity] n=0, [mu] in (f,g)[mu], and R in [integral]Rfgd[mu]. Superscript in abstract: ([alpha],[beta]) and [infinity] in {Pn([alpha],[beta])(x)} [infinity] n=0. Includes bibliographical references (p. 115-119).
Chonchaiya, Ratchanikorn. "Computing the Spectra aand Pseudospectra of Non-Self Adjoint Random Operators Arising in Mathematical Physics." Thesis, University of Reading, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533744.
Full textLee, Gyou-Bong. "A study of the computation and convergence behavior of eigenvalue bounds for self-adjoint operators." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39916.
Full textPh. D.
Tian, Feng. "On commutativity of unbounded operators in Hilbert space." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1095.
Full textJasper, John 1981. "Infinite dimensional versions of the Schur-Horn theorem." Thesis, University of Oregon, 2011. http://hdl.handle.net/1794/11575.
Full textWe characterize the diagonals of four classes of self-adjoint operators on infinite dimensional Hilbert spaces. These results are motivated by the classical Schur-Horn theorem, which characterizes the diagonals of self-adjoint matrices on finite dimensional Hilbert spaces. In Chapters II and III we present some known results. First, we generalize the Schur-Horn theorem to finite rank operators. Next, we state Kadison's theorem, which gives a simple necessary and sufficient condition for a sequence to be the diagonal of a projection. We present a new constructive proof of the sufficiency direction of Kadison's theorem, which is referred to as the Carpenter's Theorem. Our first original Schur-Horn type theorem is presented in Chapter IV. We look at operators with three points in the spectrum and obtain a characterization of the diagonals analogous to Kadison's result. In the final two chapters we investigate a Schur-Horn type problem motivated by a problem in frame theory. In Chapter V we look at the connection between frames and diagonals of locally invertible operators. Finally, in Chapter VI we give a characterization of the diagonals of locally invertible operators, which in turn gives a characterization of the sequences which arise as the norms of frames with specified frame bounds. This dissertation includes previously published co-authored material.
Committee in charge: Marcin Bownik, Chair; N. Christopher Phillips, Member; Yuan Xu, Member; David Levin, Member; Dietrich Belitz, Outside Member
Manoel, João Paulo Pitelli 1982. "Singularidades quânticas." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306262.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-18T20:03:53Z (GMT). No. of bitstreams: 1 Manoel_JoaoPauloPitelli_D.pdf: 2670867 bytes, checksum: 990119329fe5abbf22d8a42384ff3e72 (MD5) Previous issue date: 2011
Resumo: Espaços-tempo classicamente singulares serão estudados de um ponto de vista quântico. A utilização da mecânica quântica será feita de duas maneiras. A primeira consiste em encontrar a função de onda do Universo, resolvendo a equação de Wheeler-DeWitt para as variáveis canônicas do espaço-tempo. A segunda consiste em acoplar conformemente campos escalares e spinoriais ao campo gravitacional, estudando o comportamento de pacotes de ondas neste espaço-tempo curvo
Abstract: Classically singular spacetimes will be studied from a quantum mechanical point of view. The use of quantum mechanics will be handled in two different ways. The first consists in finding the wave function of the universe by solving the Wheeler-DeWitt equation for the canonical variables of spacetime. The second is through the conformal coupling of scalar and spinorial fields with the gravitational field, where we will study the behavior of wave packets in this curved spacetime
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Vogel, Martin. "Propriétés spectrales des opérateurs non-auto-adjoints aléatoires." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS018/document.
Full textIn this thesis we are interested in the spectral properties of random non-self-adjoint operators. Weare going to consider primarily the case of small random perturbations of the following two types of operators: 1. a class of non-self-adjoint h-differential operators Ph, introduced by M. Hager [32], in the semiclassical limit (h→0); 2. large Jordan block matrices as the dimension of the matrix gets large (N→∞). In case 1 we are going to consider the operator Ph subject to small Gaussian random perturbations. We let the perturbation coupling constant δ be e (-1/Ch) ≤ δ ⩽ h(k), for constants C, k > 0 suitably large. Let ∑ be the closure of the range of the principal symbol. Previous results on the same model by M. Hager [32], W. Bordeaux-Montrieux [4] and J. Sjöstrand [67] show that if δ ⪢ e(-1/Ch) there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudospectrumup to a distance ⪢ (-h ln δ h) 2/3 to the boundary of ∑. We will study the one- and two-point intensity measure of the random point process of eigenvalues of the randomly perturbed operator and prove h-asymptotic formulae for the respective Lebesgue densities describing the one- and two-point behavior of the eigenvalues in ∑. Using the density of the one-point intensity measure, we will give a complete description of the average eigenvalue density in ∑ describing as well the behavior of the eigenvalues at the pseudospectral boundary. We will show that there are three distinct regions of different spectral behavior in ∑. The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly. Using the h-asymptotic formula for density of the two-point intensity measure we will show that two eigenvalues of randomly perturbed operator in the interior of ∑ exhibit close range repulsion and long range decoupling. In case 2 we will consider large Jordan block matrices subject to small Gaussian random perturbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however, only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle. We study the expected eigenvalue density of the perturbed Jordan block in the interior of thatcircle and give a precise asymptotic description. Furthermore, we show that the leading contribution of the density is given by the Lebesgue density of the volume form induced by the Poincarémetric on the disc D(0, 1)
Manoel, João Paulo Pitelli 1982. "Singularidades quanticas associadas a defeitos topologicos em espaços-tempos classicamente singulares." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306272.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T23:13:00Z (GMT). No. of bitstreams: 1 Manoel_JoaoPauloPitelli_M.pdf: 2107794 bytes, checksum: 5fe60d22c5d7bd4e165a24c4c9c6d375 (MD5) Previous issue date: 2008
Resumo: Espaços-tempos classicamente singulares são estudados utilizando-se partículas quânticas (ao invés de clássicas) obedecendo as equações de Klein-Gordon e Dirac, a fim de determinar se estes espaços permanecem singulares do ponto de vista quântico. Primeiramente é apresentada uma revisão do ferramental matemático necessário para o estudo de singularidades quânticas, cujo principal resultado utilizado é a teoria de índices deficientes devido a von Neumann. No apêndice A é apresentado um primeiro estudo sobre singularidades quânticas em espaços-tempos com defeitos topológicos numa superfície 2-dimensional (paredes cósmicas), em especial superfícies esféricas e cilíndricas. Estes espaços continuam singulares nesta teoria e todas as informações extras (que em mecânica quântica se apresentam sob a forma de condições de contorno) necessárias para se remover a singularidade são encontradas. No apêndice B, é estudado um espaço-tempo 2+1 dimensional com curvatura negativa constante. É mostrado que este espaço permanece singular quando visto pela mecânica quântica e as condições de contorno possíveis são encontradas utilizando-se resultados obtidos no caso plano
Abstract: Classical singular spacetimes are studied using quantum particles (instead of classical ones) obeying Klein-Gordon and Dirac equations, to determine if these spacetimes remain singular in the view of quantum mechanics. First we give a review of the mathematical framework necessary to study quantum singularities, wich the main result to be used later is von Neumann¿s theory of deficient indices. In appendix A, a first work on quantum singularities in spacetimes with topological defects on a 2-dimensional hypersurface (cosmic walls), specifically spherical and cylindrical surfaces, is presented. These spacetimes remain singular in this theory and all extra informations (which in quantum mechanics correspond to boundary conditions) necessary to remove the naked singularity are found. In Apendix B, a 2+1 dimensional spacetime with constant negative curvature is studied. It is shown that this spacetime remains quantum mechanically singular and all possible boundary conditions are found using results obtained in plane case
Mestrado
Relatividade Geral/Gravitação Quantica
Mestre em Matemática Aplicada
Thelwall, Michael Arijan. "Bimodule theory in the study of non-self-adjoint operator algebras." Thesis, Lancaster University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280735.
Full textNguyen, Thi-Hien. "Etude de l'asymptotique du phénomène d'augmentation de diffusivité dans des flots à grande vitesse." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0072/document.
Full textIn application, we would like to generate random numbers with a precise law MCMC (Markov Chaine Monte Carlo). The method consists in finding a diffusion which has the desired invariant law and in showing the convergence of this diffusion towards its equilibrium with an exponential rate. The exponent of this convergence is the spectral gap of the generator. It was shown by C.-R. Hwang, S.-Y. Hwang-Ma and S.-J. Sheu that the spectral gap can grow up by adding a non-symmetric term to the self-adjoint generator.This corresponds to passing from a reversible diffusion to a non-reversible diffusion. A means of constructing a non-reversible diffusion with the same invariant measure is to add an incompressible flow to the dynamics of the reversible diffusion.In this thesis, we study the behavior of diffusion when the flow is accelerated by multiplying the field of the vectors which describes it by a large constant. In 2008, P. Constantin, A. Kisekev, L. Ryzhik and A. Zlatoˇs have shown that if the flow was weakly mixing then the acceleration of the flow was sufficient to converge the diffusion towards its equilibrium after finite time. In this work, the speed of this phenomenon is explained under a condition of correlation of the flow. The article by B. Franke, C.-R.Hwang, H.-M. Pai and S.-J.Sheu (2010) gives the asymptotic expression of the spectral gap when the large constant goes to infinity. Here we are also interested in the speed with which the phenomenon manifests itself. First, we study the special case of an Ornstein-Uhlenbeck diffusion which is perturbed by a flow preserving the Gaussian measure. In this case, thanks to a result of G. Metafune, D. Pallara and E. Priola (2002), we can reduce the study of the generator spectrum to eigenvalues of a family of matrices. We study this problem with methods of limited development of eigenvalues. This problem is solved explicitly in this thesis and we also give a boundary for the convergence radius of the development. We then generalize this method in the case of a general diffusion in a formal way. These results may be useful to have a first idea on the speeds of convergence of the spectral gap described in the article by Franke et al. (2010)
Verri, Alessandra Aparecida. "O átomo de hidrogênio em 1, 2 e 3 dimensões." Universidade Federal de São Carlos, 2007. https://repositorio.ufscar.br/handle/ufscar/5848.
Full textFinanciadora de Estudos e Projetos
In this work we study the Hamiltonian of the hydrogen atom in 1, 2 and 3 dimensions. Especifically, it is defined as a self-adjoint operator in the Hilbert space L2(Rn), n = 1, 2, 3. Nevertheless, the main goal is to study the hydrogen atom 1-D. Particularly, for this is model we address some problens related to the singularity of the Coulomb potential.
Neste trabalho vamos estudar o Hamiltoniano do átomo de hidrogênio em 1, 2 e 3 dimensões. Especificamente, queremos defini-lo como um operador auto-adjunto no espaço de Hilbert L2(Rn), n = 1, 2, 3. No entanto, o principal objetivo é estudar o átomo de hidrogênio 1-D. Em particular, para este modelo, abordaremos algumas questões relacionadas à singularidade do potencial de Coulomb −1/|x|.
Klein, Guillaume. "Stabilisation et asymptotique spectrale de l’équation des ondes amorties vectorielle." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD050/document.
Full textIn this thesis we are considering the vectorial damped wave equation on a compact and smooth Riemannian manifold without boundary. The damping term is a smooth function from the manifold to the space of Hermitian matrices of size n. The solutions of this équation are thus vectorial. We start by computing the best exponential energy decay rate of the solutions in terms of the damping term. This allows us to deduce a sufficient and necessary condition for strong stabilization of the vectorial damped wave equation. We also show the appearance of a new phenomenon of high-frequency overdamping that did not exists in the scalar case. In the second half of the thesis we look at the asymptotic distribution of eigenfrequencies of the vectorial damped wave equation. Were show that, up to a null density subset, all the eigenfrequencies are in a strip parallel to the imaginary axis. The width of this strip is determined by the Lyapunov exponents of a dynamical system defined from the damping term
Alkanjo, Hasan. "Spectre étendu des opérateurs et applications." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10271/document.
Full textThis thesis is based on a relatively new spectral notion, called extended spectrum of operators. In the first part, we provide general properties of extended spectrum of an operator in some special cases, such as the case of finite dimension and the case of invertible operator. We focused in the second part on characterizing the extended spectrum of truncated shift operator Su. In particular, we give a complete description of the extended eigenvectors associated to each extended eigenvalue of Sb, where b is a Blaschke product. In the third part, we describe the extended spectrum and the extended eigenvectors of a very important class of operators , that is the normal operators. We first start by describing these last sets for the product of a positive and a self-adjoint operator which are both injective. After, we use the Fuglede-Putnam theorem to describe the same sets for normal operators, in terms of their spectral measure. In the last part, we apply our results from the last three parts on concrete examples. In particular, we address the problem of extended eigenvectors of operators defined in a finite dimension space. Next, we show the existence of a quasinilpotent compact operator whose extended spectrum is reduced to {1}. Finally, we study two Cesaro operators which are very important in applications
Castillon, Philippe. "Sur les sous-variétés à courbure moyenne constante dans l'espace hyperbolique." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10006.
Full text陳新富. "On Products of Two Self-Adjoint Operators." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/22026057770511958132.
Full textBoshego, Norman. "Spectral analysis of self-adjoint second order differential operators." Thesis, 2015. http://hdl.handle.net/10539/18592.
Full textThe primary purpose of this study is to investigate the asymptotic distribution of the eigenvalues of self-adjoint second order di erential operators. We rst analyse the problem where the functions g and h are equal to zero. To improve on the terms of the eigenvalue problem for g; h = 0, we consider the eigenvalue problem for general functions g and h. Here we calculate explicitly the rst four terms of the eigenvalue asymptotics problem.
Martin, Robert. "Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators." Thesis, 2008. http://hdl.handle.net/10012/3698.
Full textZinsou, Bertin. "Self-adjoint fourth order differential operators with eigenvalue parameter dependent boundary conditions." Thesis, 2009. http://hdl.handle.net/10539/7250.
Full textZinsou, Bertin. "Spectral theory of self-adjoint higher order differential operators with eigenvalue parameter dependent boundary conditions." Thesis, 2012. http://hdl.handle.net/10539/11886.
Full textHao, Yufang. "Generalizing sampling theory for time-varying Nyquist rates using self-adjoint extensions of symmetric operators with deficiency indices (1,1) in Hilbert spaces." Thesis, 2011. http://hdl.handle.net/10012/6311.
Full textChang, Yun-Ching, and 張芸菁. "Self-adjoint solutions for a class of operator equations in Hilbert space." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/11639810403348458923.
Full textIsraelsson, Anders. "Mathematical Foundations of Quantum Mechanics." Thesis, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-210078.
Full text