Academic literature on the topic 'Self-assembled fibrous network'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Self-assembled fibrous network.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Self-assembled fibrous network"

1

Włodarczyk-Biegun, Małgorzata K., Cornelis J. Slingerland, Marc W. T. Werten, Ilse A. van Hees, Frits A. de Wolf, Renko de Vries, Martien A. Cohen Stuart, and Marleen Kamperman. "Heparin as a Bundler in a Self-Assembled Fibrous Network of Functionalized Protein-Based Polymers." Biomacromolecules 17, no. 6 (May 23, 2016): 2063–72. http://dx.doi.org/10.1021/acs.biomac.6b00276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bag, Braja Gopal, and Shaishab Kumar Dinda. "Arjunolic acid: A renewable template in supramolecular chemistry and nanoscience." Pure and Applied Chemistry 79, no. 11 (January 1, 2007): 2031–38. http://dx.doi.org/10.1351/pac200779112031.

Full text
Abstract:
Arjunolic acid, a triterpenoid, renewably resourced from Terminalia arjuna sawdust, has the potential of being used as a structural molecular framework in supramolecular chemistry and nanoscience. The nanosized chiral triterpenoid on derivatization could immobilize varieties of organic solvents at low concentrations. The low-molecular-mass organic compounds self-assembled in organic media to form fibrous network structures having fibers of nano- to micrometer diameters. A dual-component supramolecular gelation has been demonstrated, exhibiting interesting thermochromic property. An arjunolic acid-derived crown ether showed efficient binding to monovalent cations, including a primary ammonium ion paving the way for chiral recognition of amino acids.
APA, Harvard, Vancouver, ISO, and other styles
3

Tétreault, Nicolas, Endre Horváth, Thomas Moehl, Jérémie Brillet, Rita Smajda, Stéphane Bungener, Ning Cai, et al. "High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO2 Nanowires." ACS Nano 4, no. 12 (November 17, 2010): 7644–50. http://dx.doi.org/10.1021/nn1024434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Xuan, Zhiwei Wang, Shiyu Tao, Guixia Li, and Jie Zhu. "Observing Effects of Calcium/Magnesium Ions and pH Value on the Self-Assembly of Extracted Swine Tendon Collagen by Atomic Force Microscopy." Journal of Food Quality 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/9257060.

Full text
Abstract:
Self-assembly of extracted collagen from swine trotter tendon under different conditions was firstly observed using atomic force microscopy; then the effects of collagen concentration, pH value, and metal ions to the topography of the collagen assembly were analyzed with the height images and section analysis data. Collagen assembly under 0.1 M, 0.2 M, 0.3 M CaCl2, and MgCl2 solutions in different pH values showed significant differences (P < 0.05) in the topographical properties including height, width, and roughness. With the concentration being increased, the width of collagen decreased significantly (P < 0.05). The width of collagen fibers was first increased significantly (P < 0.05) and then decreased with the increasing of pH. The collagen was assembled with network structure on the mica in solution with Ca2+ ions. However, it had shown uniformed fibrous structure with Mg2+ ions on the new cleaved mica sheet. In addition, the width of collagen fibrous was 31~58 nm in solution with Mg2+ but 21~50 nm in Ca2+ solution. The self-assembly collagen displayed various potential abilities to construct fibers or membrane on mica surfaces with Ca2+ ions and Mg2+ irons. Besides, the result of collagen self-assembly had shown more relations among solution pH value, metal ions, and collagen molecular concentration, which will provide useful information on the control of collagen self-assembly in tissue engineering and food packaging engineering.
APA, Harvard, Vancouver, ISO, and other styles
5

Sinko, Robert, and Sinan Keten. "Understanding emergent functions in self-assembled fibrous networks." Nanotechnology 26, no. 35 (August 12, 2015): 352501. http://dx.doi.org/10.1088/0957-4484/26/35/352501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ryan, Kate, Jason Beirne, Gareth Redmond, Jason I. Kilpatrick, Jill Guyonnet, Nicolae-Viorel Buchete, Andrei L. Kholkin, and Brian J. Rodriguez. "Nanoscale Piezoelectric Properties of Self-Assembled Fmoc–FF Peptide Fibrous Networks." ACS Applied Materials & Interfaces 7, no. 23 (June 3, 2015): 12702–7. http://dx.doi.org/10.1021/acsami.5b01251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gong, Chaoyang, Zhen Qiao, Song Zhu, Wenjie Wang, and Yu-Cheng Chen. "Self-Assembled Biophotonic Lasing Network Driven by Amyloid Fibrils in Microcavities." ACS Nano 15, no. 9 (September 17, 2021): 15007–16. http://dx.doi.org/10.1021/acsnano.1c05266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Shichao, Hui Liu, Ning Tang, Nadir Ali, Jianyong Yu, and Bin Ding. "Highly Efficient, Transparent, and Multifunctional Air Filters Using Self-Assembled 2D Nanoarchitectured Fibrous Networks." ACS Nano 13, no. 11 (October 30, 2019): 13501–12. http://dx.doi.org/10.1021/acsnano.9b07293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Swanekamp, Ria J., Jade J. Welch, and Bradley L. Nilsson. "Proteolytic stability of amphipathic peptide hydrogels composed of self-assembled pleated β-sheet or coassembled rippled β-sheet fibrils." Chem. Commun. 50, no. 70 (2014): 10133–36. http://dx.doi.org/10.1039/c4cc04644g.

Full text
Abstract:
Hydrogel networks composed of rippled β-sheet fibrils of coassembled d- and l-Ac-(FKFE)2-NH2 amphipathic peptides exhibit proteolytic stability and increased rheological strength compared to networks of self-assembled l-Ac-(FKFE)2-NH2 pleated β-sheet fibrils.
APA, Harvard, Vancouver, ISO, and other styles
10

Dasgupta, Debarshi, Zakaria Kamar, Cyrille Rochas, Mohammed Dahmani, Philippe Mesini, and Jean Michel Guenet. "Design of hybrid networks by sheathing polymer fibrils with self-assembled nanotubules." Soft Matter 6, no. 15 (2010): 3573. http://dx.doi.org/10.1039/b923282f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Self-assembled fibrous network"

1

Zhang, Meng. "Supramolecular hydrogels based on bile acids and their derivatives." Thèse, 2016. http://hdl.handle.net/1866/18440.

Full text
Abstract:
Les hydrogels moléculaires avec un réseau de fibres auto-assembles sont utilisés dans différents domaines dont le relargage de médicaments, les senseurs, l’ingénierie tissulaire et la nano-modélisation. Les hydrogels moléculaires à base d’acides biliaires, qui sont une classe de biocomposés d’origine naturelle, montrent une biocompatibilité améliorée et sont de bons candidats pour des applications dans le domaine biomédical. Ces hydrogels présentent une bonne bio-dégradabilité et une diversité fonctionnelle grâce aux faibles interactions supramoléculaires et aux structures chimiques précisément contrôlées. Dans cette thèse, des nouveaux hydrogels moléculaires à base des acides biliaires et leurs dérivés ont été étudiés pour mieux comprendre la relation entre la structure chimique du gélifiant et la formation de gels moléculaires. Un dimère de l'acide cholique avec un groupe diéthylènetriamine est insoluble dans l'eau. Par contre, il peut former des hydrogels grâce à un réseau tri-dimensionnel de fibres en présence de certains acides carboxyliques. L'addition d'acide carboxylique peut protoner le groupe amine secondaire et défaire les interactions intermoléculaires entre les dimères et favoriser la formation des liaisons hydrogènes acide-dimère. Seuls les acides carboxyliques faibles et hydrophiles causent la gélation des dimères. La résistance mécanique des hydrogels formés peut être modifiée par un choix judicieux d'acides. Les interactions hydrophobes et les liaisons hydrogènes entre les chaînes latérales d'acides carboxyliques peuvent améliorer les propriétés mécaniques des hydrogels. La solubilité marginale du complexe acide-dimère a été considérée comme un facteur critique pour la formation d'hydrogels. Un autre système d’hydrogélation à base d’acides biliaires a été développé par l’introduction de dioxyde de carbone (CO2) dans des solutions aqueuses de certains sels d’acides biliaires, qui donne un hydrogel composé de molécules biologiques entièrement naturelles et fournit un réservoir commode du CO2 dans l’eau. Le groupement carboxylate des sels d’acides biliaires peut être partiellement protoné dans les solutions aqueuses, ce qui amène la dissolution marginale dans l’eau et la formation d’hydrogels avec une structure fibreuse. L’aspect et les propriétés mécaniques des hydrogels dépendent de la concentration de CO2. Le bullage avec CO2 pendant une ou deux secondes génère un hydrogel transparent avec des nanofibres. Le bullage supplémentaire forme des hydrogels plus forts. Mais réduit la transparence et la force mécanique des hydrogels. D’ailleurs, les hydrogels transparents ou opaques redeviennent des solutions transparentes quand ils sont chauffés avec bullage de N2. La transition sol-gel est réversible et reproductible. La force mécanique et la transparence des hydrogels peuvent être améliorées par l’addition de sels inorganiques comme NaCl par l’effet de relargage. Toutes les composantes de ces hydrogels sont naturelles, donnant des hydrogels biocompatibles et potentiellement utiles pour des applications dans le domaine biomédical. Le dimère mentionné ci-dessus possède des propriétés d’auto-assemblage dépendamment de sa concentration. Ceci a été étudié en utilisant un sel organique de dimère/acide formique avec un rapport molaire 1/1. Le sel du dimère s’auto-assemble dans l’eau et ainsi forme des nanofibres isolées et mono-dispersées à des concentrations faibles. Les fibres enchevêtrées donnent des réseaux fibreux 3D bien dispersés de façon aléatoire à des concentrations plus élevées. Quand la concentration du sel du dimère est supérieure à la concentration critique de gélation, le réseau fibreux est assez fort pour immobiliser la solution, qui provoque la formation d’un hydrogel isotrope. L’augmentation supplémentaire de la concentration du sel du dimère peut augmenter l’anisotropie de l’hydrogel et former ainsi un hydrogel nématique. La formation de domaines ordonnés des nanofibres alignées donne ces propriétés optiques à l’hydrogel. L’agitation de systèmes aqueux du sel de dimère favorise aussi la formation de nanofibres alignées.
Molecular hydrogels are soft materials formed by the self-assembly of small molecules in aqueous solutions via supramolecular interactions. Although much effort has been made in the past several decades in the study of these hydrogels, the mechanism of their formation remains to be understood and the prediction of their formation is a challenge. The main purpose of this thesis is to develop novel molecular hydrogels derived from bile acids, which are naturally occurring biocompounds, and to find the relationship between the gelator structure and the gelation ability. Two new molecular gelation systems based on bile acids and their derivatives have been developed, which may be useful in biomedical applications. The marginal solubility of the solute in water has been found to be a prerequisite for the formation of such molecular hydrogels. The alignment of the nanofibers in the gels leads to the formation of nematic hydrogels. The first gelation system is based on a cholic acid dimer as a gelator, which has two cholic acid molecules covalently linked by a diethylenetriamine spacer. This dimer is insoluble in water, but it forms hydrogels with 3-D fibrous networks in the presence of selected carboxylic acids. The carboxylic acids protonate the dimer, making it marginally soluble in water to yield hydrogels. Only weak and hydrophilic carboxylic acids were capable of inducing the gelation of the dimer and the mechanical strength of the hydrogels could be varied by judicious choice of the acids. Hydrophobic interactions and hydrogen bonding between the side chains of carboxylic acids improve the mechanical properties of hydrogels. The marginal solubility of the acid-dimer complex is regarded to be the critical factor for the formation of hydrogels. Another hydrogelation system was developed by purging to the aqueous solutions of a series of bile salts with carbon dioxide (CO2), yielding hydrogels made of entire natural biological molecules and providing a convenient storage reservoir of CO2 in water. Bile salts are well dissolved in water, while the solubility of bile acids is limited. The carboxylate group of bile salts may be partially protonated in aqueous solutions by bubbling CO2, making them only marginally soluble in water. This forms fibrous structures. Both the appearance and mechanical properties of the hydrogels depend on the amount of CO2 purged. Bubbling CO2 initially induced the formation of transparent hydrogels with nanofibers. Continued purging with CO2 strengthened the hydrogel mechanically, while further addition of CO2 reduced the transparency and mechanical strength of the hydrogel. Both the transparent and opaque hydrogels reverted to transparent solutions when heated and bubbling N2. The sol-gel transition process was reversible and repeatable. The mechanical strength and transparency of the hydrogels could be improved by adding inorganic salts such as NaCl via a salting-out effect. All the hydrogel components are naturally biological compounds, making such hydrogels biocompatible and potentially useful in biomedical applications. The cholic acid dimer linked with a diethylenetriamine spacer was able to assemble in water and form isolated nanofibers in the presence of certain carboxylic acids at a much lower concentration than the CMC of sodium cholate. These nanofibers entangle with each other to yield well-dispersed and randomly-directed 3-D fibrous networks at higher concentrations. When the concentration of dimer salt is above the minimum gelation concentration, the fibrous network is strong enough to immobilize the solution, leading to the formation of an isotropic hydrogel. Further increase of the dimer salt concentration may transit the hydrogels to be anisotropic, thus the formation of nematic hydrogels. The formation of ordered domains of the aligned nanofibers led to anisotropic optical properties of the hydrogels. Stirring the aqueous systems of dimer salt also promoted the alignment of the nanofibers. These molecular hydrogels with ordered aggregates may be useful in applications such as cell culture and mechano-optical sensing.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography