Contents
Academic literature on the topic 'Sels d’imidazolium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sels d’imidazolium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Sels d’imidazolium"
L'her, Matthieu. "Synthèse de matériaux ioniques luminescents pour la détection." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE010.
Full textDetector of ionizing radiation is a key challenge for both civil and military applications. New prototype of ionizing radiation discrimination helps us against technological accident and terrorism act. For instance, neutron of low energy is sign of fissile material. However current detectors require helium 3 which is scarce resource. Thus, a sustainable alternative has to be found. A convergent approach to synthesis active luminescent salt materials cope both. It identities and discriminate ionizing radiation. Especially for small cell in gas phase, this approach allows to develop new material to detect them. Based on imidazolium salt, ionic material has remarkable property with the benefit of being scalable.This project aims to explore new synthesis methods of luminescent imidazolium and their properties to identify ionizing radiation characteristic
Fouchet, Julien. "Couplage de type Ullmann : une méthodologie pour la synthèse de matériaux ioniques." Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAE019/document.
Full textIonic liquids based on imidazolium are an excellent platform that can be designed to promote liquid crystalline phases. In order to introduce additional properties, we synthesized compounds with a rigid expanded core. Herein, we reported an Ullmann-type coupling using only Cu(II)-NaY as catalyst and potassium carbonate as base. This synthetic approach avoids the use of solvents, inert atmosphere and ligands. We have optimized this coupling using the technique of microwave synthesis (reduction of reaction time and by-products formed). After studying this methodology, we have extended it to other behaviors. Thus we have synthesized ionic materials (scintillators) with properties of detection and discrimination of radiation neutrons/gamma by introducing chromophores in our compounds. This Ullmann-type coupling has allowed to prepare compounds that can have electronic properties (conduction and electrochromism)
Bouhrara, Mohamed. "Préparation de matériaux catalytiques bien définis à site unique de type complexe carbénique N-hétérocyclique d’Au(I) : application à la réaction d’addition des alcools sur les alcynes." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10193.
Full textN-heterocyclic carbene ligands have been described as interesting alternatives to tertiary phosphines in term of bonding and reactivity and have been therefore extensively studied as metallocarbene promotors. As a result, a large variety of homogeneous metal-NHC complexes have been developed and their impressive catalytic properties have been studied. However, such highly active homogeneous catalysts suffer from fast deactivation and separation problems from the reaction products. The immobilization of such complexes could overcome these drawbacks and that is the reason why this area has attracted much attention in the last ten years. The most common strategy for complexes immobilisation involves covalent grafting oforganosilane precursors onto solid support surfaces, via reaction with surface OH groups. Although this method provides a convenient way for introducing all kinds of organic moieties into solids, it does not permit the control of either their distribution in the final material or the nature of the surface species. The alternative methodology, to classical grafting, developed in this PhD project, is based on the design of organic-inorganic hybrid mesostructured materials containing NHC units along their pore channels or into their walls and the subsequent coordination on the NHC units with the Au organometallic precursor. These materials were prepared by sol-gel process using a templating route, via co-hydrolysis and co-polycondensation of an organotrialkoxysilane precursor and tetraethoxysilane. This strategy permits a control of: the ligands distribution into the silica matrix, the nature of the silica surface species and the organic moieties concentration. All the solids, from the starting hybrid material to the Au-NHC containing one, were fully characterized using various techniques: nitrogen adsorption-desorption at 77 K, transmission electron microscopy, small angle X-Ray diffraction, solid state NMR spectroscopy and elementary analysis. After screening the catalytic performances of these Au-NHC containing materials in several catalytic reactions (selective oxidation of alcohols, Suzuki cross-coupling and olefins diboration), their high catalytic activity in alcohols addition to alkynes reactions prompted us to study more deeply their catalytic behaviour (and that of their homogeneous homologues) in the reaction of methanol addition to 3-hexyne. To the best of our knowledge, it is the first use in catalysis of gold Nheterocyclic carbene complexes in this reaction
Monge, Marcet Amalia. "Silices hybrides dérivées de prolinamide et des sels d’imidazoliums : applications en catalyse." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2011. http://www.theses.fr/2011ENCM0007.
Full textThe recovery and recycling of catalytic systems in carbon – carbon bond forming reactions remains a scientific challenge of economical and environmental relevance. Their immobilization onto insoluble polymers allows a simple separation of the final compounds by filtration and an easy purification. Organosilicas are silica gels modified with organic moieties, which have been applied as versatile supports for a great variety of catalysts. In the present work, several organosilicas have been prepared by sol-gel procedures and post-functionalization methods. Some materials containing ruthenium alkylidenes were successfully tested in olefin metathesis reactions, whereas silica-supported prolinamides resulted in efficient chiral organocatalysts in asymmetric aldolizations (recycling up to 5 runs possible). Finally, the control of the morphologic and textural properties of self-assembled bridged silsesquioxanes was possible by adjusting the synthetic conditions in the hydrolytic polycondensation of silylated imidazolium salts containing urea functions
Elie, Claude-Rosny. "Propriétés anionophores et antibactériennes de sels d’imidazolium et benzimidazolium." Thèse, 2016. http://hdl.handle.net/1866/18433.
Full textThe emergence of antibiotic resistant bacteria is a serious problem that our health system faces. One recently proposed strategy to effectively and irreversibly kill these multi-resistant microorganisms is to directly target the integrity of their membrane, using small molecules able to induce an electrolyte imbalance. Moreover, the same molecules may find applications in the treatement od diseases originating from the dysfunction of ion transport, such as cystic fibrosis. Herein we present different imidazolium and benzimidazolium salts N,N-disubstituted with both antimicrobial and ionophoric potential. We first performed mechanistic studies where different structural changes have been made to the imidazolium and benzimidazolium salts to observe how these modifications modulate the efficiency of the anion transport in artificial membrane liposomes. We were able to conclude that the species formed of two aromatic arms phenylethynylbenzyl arranged symmetrically on either side of an imidazolium cation, induced a better transport of chloride anions, through a membrane of liposomes at the micromolar range. In addition, monocations imidazolium and benzimidazolium flanked with an bis(trifluorométhylsulfonyl)amide anion led to faster ionophore activity. Moreover, based on these results we presented the first example, to our knowledge, for an anions and cations benzimidazolium-based transporter, acting as well in liposomes as in bacteria. Secondly, the best anionophore agents were analyzed in more complex bacterias and human red blood cells membranes to study their bactericidal potential and innocuity. Among all the benzimidazolium salts studied, we identified one compound, which presents interesting antibacterial properties as a result of its ability to induce an electrolytic imbalance and to disrupt the integrity and the potential of the bacterial membranes. At the same time this antibacterial agent presented a low toxicity to human cells in bacteriostatic range concentrations.
Gauchot, Vincent. "Sels d’imidazolium avec des anions catalytiques : vers le développement de nouveaux catalyseurs bio-hybrides actifs en milieu liquide ionique." Thèse, 2014. http://hdl.handle.net/1866/11189.
Full textIonic liquids have gained a growing interest due to many interesting properties, such as low vapor pressure, reasonably low viscosity, poor miscibility with common organic solvents, and also exhibit supramolecular organization in solution, which make them interesting tools for several fields of applications in chemistry. As of today, imidazolium salts make up the largest family of ionic liquids. Their modulability allows them to be used for a wide range of applications, notably in organic chemistry, where they are mainly used as solvents, but also more recently as actual catalysts. The work presented in this thesis focuses on their use as solvents and chiral catalysts, in which the catalytic species is the anion of the imidazolium salts, adding more flexibility and mobility to the whole system. Taking advantage from the tolerance of ionic liquids toward biological macromolecules, the main goal of this work is the design and development of a new type of bio-hybrid catalyst based on the encapsulation of an imidazolium salt inside the cavity of a host protein. Based on the biotin-avidin technology, the supramolecular ligation of biotinylated imidazolium salts inside avidin, bearing catalytic counter-anion, is discussed. As a first step, the development and studies of two 1-butyl-3-methylimidazolium-based salts, bearing trans-4-hydroxy-L-proline-derived anions are reported. Their use for asymmetric catalysis in ionic liquids media is disclosed, both for the aldol and Michael additions. Results show that these compounds are viable and efficient organocatalysts in ionic liquids. Subsequently, the preparation of biotinylated imidazolium salts, bearing a racemic pyrrolidine-based counter-anion is reported. Avidin behaviour in ionic liquid media, as well as its contribution for the stereocontrol for the whole bio-hybrid system, is assessed. Results highlight the critical role of the ionic liquid reaction medium on the protein’s conformation, and thus the efficiency of the bio-hybrid catalyst towards aldol reactions. Finally, the influence of the structure of the cation and anion on the catalytic properties of the biohybrid system were investigated. Several spacers were inserted successively both in the cation and anion structures of the biotinylated imidazolium salts. Regarding the cation modifications, results show no major influence on the bio-hybrid catalyst behaviour. However, modifying the anion structure revealed the much more important role of the anion towards catalysis. Preparation of different anions, each bearing a different spacer, granting them different physico-chemical properties, gives rise to further information regarding the behaviour of the bio-hybrid catalyst, and possible cooperativity between avidin and the imidazolium salt. The ionic character of the interaction between the anion and the cation, allowing a greater freedom of movement of the anion inside the avidin’s cavity, and the tolerance of the bio-hybrid system to different substrates were studied.
Do, Tien Dat. "Développement de nouveaux sels d’imidazolium : application du milieu cristal liquide ionique pour la réaction de Diels-Alder Intramoléculaire et à la préparation des nanoparticules d’Or Anisotropes." Thèse, 2017. http://hdl.handle.net/1866/19283.
Full textIonic liquids based on imidazolium salts are an important class of compounds, possessing a very good compatibility with various organic reactions, and are widely used as solvents, catalysts and ligands in organic synthesis. Moreover, imidazolium salts possess interesting supramolecular organization in the solid, liquid and solution state. However, ionic liquids present some disadvantages when used as solvents for intramolecular reactions, especially in the case of apolar reactants. The low solubility of ionic compounds in ionic media promote the formation of intermolecular products. The main goal of the research presented in this thesis is to explore the supramolecular organization of imidazolium salts, first in the development of ionic liquid crystals as reaction media for intramolecular Diels-Alder reactions and secondly for the preparation of anisotropic gold nanoparticles. First, the development of dicationic imidazolium salts having a rigid core and flexible alkyl chains is reported. The rigid core is forned by direct attachment of two imidazoliums on a naphthalene moiety. Their thermal and mesomorphic analyses were then carried out. These dicationic salts show a high thermal stability and form a very ordered smectic T phase, over a wide range of temperatures. This mesophase was subsequently used as reaction medium for intramolecular Diels-Alder reactions. In this phase, reactants are trapped in the highly organized structure of the liquid crystal medium, limiting the formation of intermolecular products. Moreover, the ionic liquid crystal, was recoved at the end of reaction by simple extraction. Secondly, the influence of the mesophase’s structure on the Diels-Alder reaction was explored. Tricationic imidazolium satls having a C3 symmetry were developed in order to obtain columnar phases. The rigid core of these salts is composed of three imidazolium units directly attached to the benzene ring. Their thermal stabilities and mesomorphic properties were investigated. The columnar phase formed by these salts was then used as reaction media for Diels-Alder reactions, and it proved to be more efficient than the previously used smectic T phase, due to their more organized structure, as indicated by the higher enthalpy value of the liquid crystal - isotropic liquid transition. iv Finally, the supramolecular organization in solution of two imidazolium salts was explored with the aim to prepare anisotropic gold nanoparticles. Different binary mixtures composed of an imidazolium salt and dimethylformamide (DMF) were prepared and used both as solvent and capping agent in the synthesis of gold nanoparticles, at room temperature. The use of these binary mixture allowed us to synthesize nanoparticles with various geometries. The form of the gold nanoparticles prepared in these binary mixtures was influenced by both, the structre and the concentration of the imidazolium salt used.
Gravel, Julien. "Perturbation de la membrane cellulaire par des composés cationiques : transport transmembranaire contrôlé et applications biologiques." Thèse, 2017. http://hdl.handle.net/1866/20440.
Full textSanon, Samantha Herntz. "Étude sur l'utilisation de liquides ioniques à base imidazolium pour l'extraction sélective de phosphopeptides." Thèse, 2013. http://hdl.handle.net/1866/10248.
Full textProtein phosphorylation is one of the most important post-translational modifications because it is involved in multiple physiological processes such as growth, differentiation, apoptosis, etc. Despite its importance, the analysis of phosphoproteins remains a difficult task due to their dynamic nature (phosphorylation of proteins is a reversible process) and their low abundance. Indeed, the determination of phosphorylation sites is difficult because phosphopeptides are often difficult to detect by conventional chromatographic analysis and by mass spectrometric (MS) methods. Recent studies have shown that the existing methods of enrichment of phosphopeptides are not complete, and the total number of phosphopeptides detected does not overlap completely with those detected by these methods. The gaps in existing enrichment methods need to be filled in order to have more complete phosphoproteomic analyses. In the current study, ionic liquids (IL), specifically imidazolium salts, have been used in an alternative enrichment technique with potential for selective extraction of phosphopeptides from solution. Imidazolium salts were chosen because their physicochemical properties are readily adjustable depending on the nature of the substituent attached to the imidazolium core and the counter-anion. Monoimidazolium and bis-imidazolium salts with linear chains having respectively 4, 12, and 16 carbon atoms and with different anions were synthesized and used to carry out liquid-liquid and solid-liquid extractions of a phosphorylated peptide from a solution. At first, liquid-liquid extractions were carried out using an ionic liquid (IL) with a linear chain of 4 carbon atoms. These extractions performed with bis (trifluoromethanesulfonyl) amide 3-butyl-1-methylimidazolium (BMIM-NTf2) and hexafluorophosphate 3-butyl-1-methylimidazolium (BMIM-PF6) did not show a considerable extraction of PPS comparatively to the PN. Secondly, solid-liquid extractions were done by first functionalizing solid-phase particles with the imidazolium salts. The extractions were carried out using the phosphopentapeptide Ac-pTyr-Ile-Gly-Glu-Phe-NH2 (PPS) and its acidic non-phosphorylated analogues. It has been shown that the C12 chain imidazolium salts were better to extract PPS than the other two peptides PN (Ac-Ile-Tyr-Gly-Glu-Phe-NH2) and PE (Ac-Glu-Tyr-Gly-Glu-Phe-NH2). The extraction efficiency of these peptides was estimated by capillary electrophoresis (CE) and high performance liquid chromatography coupled with mass spectrometry (LC-MS).