Academic literature on the topic 'Semantic classification of nouns'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semantic classification of nouns.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semantic classification of nouns"
Abubakari, Hasiyatu. "Noun class system of Kusaal." Studies in African Linguistics 50, no. 1 (April 27, 2021): 116–39. http://dx.doi.org/10.32473/sal.v50i1.128792.
Full textSagna,, Serge. "Physical properties and culture-specific factors as principles of semantic categorisation of the Gújjolaay Eegimaa noun class system." Cognitive Linguistics 23, no. 1 (February 2012): 129–63. http://dx.doi.org/10.1515/cog-2012-0005.
Full textJoon-Kyung Cha. "Semantic Classification of Korean Abstract Nouns." Discourse and Cognition 16, no. 2 (August 2009): 149–68. http://dx.doi.org/10.15718/discog.2009.16.2.149.
Full textShubina, E. L. "Problem of the Classification of Quantitative Noun in the German Language." MGIMO Review of International Relations, no. 1(40) (February 28, 2015): 237–43. http://dx.doi.org/10.24833/2071-8160-2015-1-40-237-243.
Full textSevdiyevna, Nuritdinova Rano. "Thematic Classification Of Onomastic Terms." American Journal of Social Science and Education Innovations 02, no. 11 (November 28, 2020): 193–200. http://dx.doi.org/10.37547/tajssei/volume02issue11-35.
Full textPhu, Vo Ngoc, Vo Thi Ngoc Tran, Vo Thi Ngoc Chau, Dat Nguyen Duy, and Khanh Ly Doan Duy. "Semantic lexicons of English nouns for classification." Evolving Systems 10, no. 3 (June 12, 2017): 501–65. http://dx.doi.org/10.1007/s12530-017-9188-6.
Full textLammert, Marie. "Lexical plurals through meronymy and hyperonymy." Lexical plurals and beyond 39, no. 2 (December 31, 2016): 335–54. http://dx.doi.org/10.1075/li.39.2.07lam.
Full textStolbovskaya, Margarita Anatol'evna. "STRUCTURAL-SEMANTIC CLASSIFICATION OF COMPOUND NOUNS OF AVIATION ENGLISH." Philological Sciences. Issues of Theory and Practice, no. 4-2 (April 2018): 395–99. http://dx.doi.org/10.30853/filnauki.2018-4-2.41.
Full textCUCCHIARELLI, ALESSANDRO, DANILO LUZI, and PAOLA VELARDI. "Semantic tagging of unknown proper nouns." Natural Language Engineering 5, no. 2 (June 1999): 171–85. http://dx.doi.org/10.1017/s135132499900220x.
Full textNULTY, PAUL, and FINTAN COSTELLO. "General and specific paraphrases of semantic relations between nouns." Natural Language Engineering 19, no. 3 (May 20, 2013): 357–84. http://dx.doi.org/10.1017/s1351324913000089.
Full textDissertations / Theses on the topic "Semantic classification of nouns"
DINIZ, PAULA SANTOS. "THE SEMANTIC CLASSIFICATION OF TECHNICAL COMPOUND NOUNS AND THEIR TRANSLATION TO PORTUGUESE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30060@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Este trabalho propõe uma classificação semântica dos compostos nominais técnicos em língua inglesa e a análise sintática e semântica das traduções para o português. Para tanto, faz-se um panorama da literatura sobre as relações semânticas dos compostos nominais em língua inglesa. A tipologia aqui proposta é, portanto, baseada em estudos clássicos sobre a semântica dos compostos nominais (Levi, 1978; Warren, 1978) e em pesquisas mais recentes — inseridas no escopo da Linguística Computacional e ou influenciadas pela Teoria do Léxico Gerativo, de Pustejovsky (1995) —, e adaptada para a natureza dos compostos nominais selecionados. A presente dissertação também analisa as traduções dos compostos nominais técnicos para o português, bem como a função das preposições nas estruturas com sintagmas preposicionados. O corpus foi retirado de um livro técnico da área de engenharia elétrica/eletrônica traduzido pela autora. Além da classificação semântica dos compostos nominais técnicos, propõe-se a criação de ontologias que contemplem os compostos com os mesmos núcleos ou modificadores, de modo a observar se núcleos ou modificadores iguais implicam a mesma categorização, e se é respeitada a relação de hiperonímia e hiponímia entre os compostos nominais inseridos na mesma ontologia.
The major purpose of this thesis is to suggest a semantic categorization of English technical noun compounds, as well as to analyze the semantics and syntax of the Portuguese renderings. First, the literature on semantic relations in English compound nouns is reviewed. The classification here suggested is therefore based on classic studies on the semantics of compound nouns (Levi, 1978; Warren, 1978) and on more recent research within the scope of Computational Linguistics, which are influenced by the Generative Lexicon Theory (Pustejovsky, 1995). The semantic categorization is also adapted to the data collected in this work. This thesis also analyzes the Portuguese translation of the English compound nouns, as well as the role of the prepositions in prepositional phrases. The data was taken from an electrical/electronics engineering book which was translated by the author. In addition to the semantic classification, the technical compound nouns are grouped together according to the head or modifiers of the structure, and assembled into ontologies. Compound nouns sharing a common head or modifier are grouped together, so as to investigate if there is a hypernym-hyponym relation among the compounds assembled in the same ontology.
Watson, Rachel. "Kujireray : morphosyntax, noun classification and verbal nouns." Thesis, SOAS, University of London, 2015. http://eprints.soas.ac.uk/22829/.
Full textKauṇḍabhaṭṭa, Deshpande Madhav. "The meaning of nouns : semantic theory in classical and medieval India /." Dordrecht ; Boston ; London : Kluwer academic publishers, 1992. http://catalogue.bnf.fr/ark:/12148/cb37062128q.
Full textCobbinah, Alexander Yao. "Nominal classification and verbal nouns in Baïnounk Gubëeher." Thesis, SOAS, University of London, 2013. http://eprints.soas.ac.uk/17370/.
Full textSudre, Gustavo. "Characterizing the Spatiotemporal Neural Representation of Concrete Nouns Across Paradigms." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/315.
Full textMichalkova, Marcela. "Gender Asymmetries in Slovak Personal Nouns." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1262189760.
Full textHartung, Matthias [Verfasser], and Anette [Akademischer Betreuer] Frank. "Distributional Semantic Models of Attribute Meaning in Adjectives and Nouns / Matthias Hartung ; Betreuer: Anette Frank." Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180609360/34.
Full textFallgren, Per. "Thoughts don't have Colour, do they? : Finding Semantic Categories of Nouns and Adjectives in Text Through Automatic Language Processing." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138641.
Full textRomeo, Lauren Michele. "The Structure of the lexicon in the task of the automatic acquisition of lexical information." Doctoral thesis, Universitat Pompeu Fabra, 2015. http://hdl.handle.net/10803/325420.
Full textLa información de clase semántica de los nombres es fundamental para una amplia variedad de tareas del procesamiento del lenguaje natural (PLN), como la traducción automática, la discriminación de referentes en tareas como la detección y el seguimiento de eventos, la búsqueda de respuestas, el reconocimiento y la clasificación de nombres de entidades, la construcción y ampliación automática de ontologías, la inferencia textual, etc. Una aproximación para resolver la construcción y el mantenimiento de los léxicos de gran cobertura que alimentan los sistemas de PNL, una tarea muy costosa y lenta, es la adquisición automática de información léxica, que consiste en la inducción de una clase semántica relacionada con una palabra en concreto a partir de datos de su distribución obtenidos de un corpus. Precisamente, por esta razón, se espera que la investigación actual sobre los métodos para la producción automática de léxicos de alta calidad, con gran cantidad de información y con anotación de clase como el trabajo que aquí presentamos, tenga un gran impacto en el rendimiento de la mayoría de las aplicaciones de PNL. En esta tesis, tratamos la adquisición automática de información léxica como un problema de clasificación. Con este propósito, adoptamos métodos de aprendizaje automático para generar un modelo que represente los datos de distribución vectorial que, basados en ejemplos conocidos, permitan hacer predicciones de otras palabras desconocidas. Las principales preguntas de investigación que planteamos en esta tesis son: (i) si los datos de corpus proporcionan suficiente información para construir representaciones de palabras de forma eficiente y que resulten en decisiones de clasificación precisas y sólidas, y (ii) si la adquisición automática puede gestionar, también, los nombres polisémicos. Para hacer frente a estos problemas, realizamos una serie de validaciones empíricas sobre nombres en inglés. Nuestros resultados confirman que la información obtenida a partir de la distribución de los datos de corpus es suficiente para adquirir automáticamente clases semánticas, como lo demuestra un valor-F global promedio de 0,80 aproximadamente utilizando varios modelos de recuento de contextos y en datos de corpus de distintos tamaños. No obstante, tanto el estado de la cuestión como los experimentos que realizamos destacaron una serie de retos para este tipo de modelos, que son reducir la escasez de datos del vector y dar cuenta de la polisemia nominal en las representaciones distribucionales de las palabras. En este contexto, los modelos de word embedding (WE) mantienen la “semántica” subyacente en las ocurrencias de un nombre en los datos de corpus asignándole un vector. Con esta elección, hemos sido capaces de superar el problema de la escasez de datos, como lo demuestra un valor-F general promedio de 0,91 para las clases semánticas de nombres de sentido único, a través de una combinación de la reducción de la dimensionalidad y de números reales. Además, las representaciones de WE obtuvieron un rendimiento superior en la gestión de las ocurrencias asimétricas de cada sentido de los nombres de tipo complejo polisémicos regulares en datos de corpus. Como resultado, hemos podido clasificar directamente esos nombres en su propia clase semántica con un valor-F global promedio de 0,85. La principal aportación de esta tesis consiste en una validación empírica de diferentes representaciones de distribución utilizadas para la clasificación semántica de nombres junto con una posterior expansión del trabajo anterior, lo que se traduce en recursos léxicos y conjuntos de datos innovadores que están disponibles de forma gratuita para su descarga y uso.
Lexical semantic class information for nouns is critical for a broad variety of Natural Language Processing (NLP) tasks including, but not limited to, machine translation, discrimination of referents in tasks such as event detection and tracking, question answering, named entity recognition and classification, automatic construction and extension of ontologies, textual inference, etc. One approach to solve the costly and time-consuming manual construction and maintenance of large-coverage lexica to feed NLP systems is the Automatic Acquisition of Lexical Information, which involves the induction of a semantic class related to a particular word from distributional data gathered within a corpus. This is precisely why current research on methods for the automatic production of high- quality information-rich class-annotated lexica, such as the work presented here, is expected to have a high impact on the performance of most NLP applications. In this thesis, we address the automatic acquisition of lexical information as a classification problem. For this reason, we adopt machine learning methods to generate a model representing vectorial distributional data which, grounded on known examples, allows for the predictions of other unknown words. The main research questions we investigate in this thesis are: (i) whether corpus data provides sufficient distributional information to build efficient word representations that result in accurate and robust classification decisions and (ii) whether automatic acquisition can handle also polysemous nouns. To tackle these problems, we conducted a number of empirical validations on English nouns. Our results confirmed that the distributional information obtained from corpus data is indeed sufficient to automatically acquire lexical semantic classes, demonstrated by an average overall F1-Score of almost 0.80 using diverse count-context models and on different sized corpus data. Nonetheless, both the State of the Art and the experiments we conducted highlighted a number of challenges of this type of model such as reducing vector sparsity and accounting for nominal polysemy in distributional word representations. In this context, Word Embeddings (WE) models maintain the “semantics” underlying the occurrences of a noun in corpus data by mapping it to a feature vector. With this choice, we were able to overcome the sparse data problem, demonstrated by an average overall F1-Score of 0.91 for single-sense lexical semantic noun classes, through a combination of reduced dimensionality and “real” numbers. In addition, the WE representations obtained a higher performance in handling the asymmetrical occurrences of each sense of regular polysemous complex-type nouns in corpus data. As a result, we were able to directly classify such nouns into their own lexical-semantic class with an average overall F1-Score of 0.85. The main contribution of this dissertation consists of an empirical validation of different distributional representations used for nominal lexical semantic classification along with a subsequent expansion of previous work, which results in novel lexical resources and data sets that have been made freely available for download and use.
Koivisto-Alanko, Päivi. "Abstract words in abstract worlds : directionality and prototypical structure in the semantic change in English nouns of cognition /." Helsinki : Société néophilologique, 2000. http://catalogue.bnf.fr/ark:/12148/cb392874530.
Full textBooks on the topic "Semantic classification of nouns"
Sappan, Raphael. The rhetorical-logical classification of semantic changes. Braunton: Merlin, 1987.
Find full textEmotive signs in language and semantic functioning of derived nouns in Russian. Amsterdam: J. Benjamins, 1987.
Find full textMadhav, Deshpande, ed. The meaning of nouns: Semantic theory in classical and medieval India : Nāmārtha-nirṇaya of Kauṇḍabhaṭṭa. New Delhi: D.K. Printworld, 2007.
Find full textKauṇḍabhaṭṭa. The meaning of nouns: Semantic theory in classical and medieval India = Nāmārtha-nirṇaya of Kauṇḍabhaṭṭa. Dordrecht: Kluwer Academic Publishers, 1992.
Find full textA classification of semantic case-relations in the Pauline Epistles. New York: P. Lang, 1997.
Find full textRundblad, Gabriella. Shallow brooks and rivers wide: A study of lexical and semantic change in English nouns denoting 'watercourse'. Stockholm, Sweden: Almqvist & Wiksell, 1998.
Find full textOppentocht, Anna Linnea. Lexical semantic classification of Dutch verbs: Towards constructing NLP and human-friendly definitions. Utrecht: LEd, 1999.
Find full textKoivisto-Alanko, Päivi. abstract words Abstract words in abstract worlds: Directionality and prototypical structure in the semantic change in English nouns of cognition. Helsinki: Société Néophilologique, 2000.
Find full textLaffling, John. Machine disambiguation and translation of polysemous nouns: A lexicon-driven model for text-semantic analysis and parallel text-dependent transfer in German-English translation of party political texts. Wolverhampton: Wolverhampton Polytechnic, School of Languages and European Studies, 1990.
Find full textBook chapters on the topic "Semantic classification of nouns"
Dakin, Karen. "Animals and vegetables, Uto-Aztecan noun derivation, semantic classification, and cultural history." In Historical Linguistics 1999, 105–17. Amsterdam: John Benjamins Publishing Company, 2001. http://dx.doi.org/10.1075/cilt.215.09dak.
Full textSeifart, Frank. "The semantic reduction of the noun universe and the diachrony of nominal classification." In Current Issues in Linguistic Theory, 9–32. Amsterdam: John Benjamins Publishing Company, 2018. http://dx.doi.org/10.1075/cilt.342.02sei.
Full textRakhilina, Ekaterina V. "Aspectual classification of nouns." In Studies in Language Companion Series, 341. Amsterdam: John Benjamins Publishing Company, 1999. http://dx.doi.org/10.1075/slcs.50.23rak.
Full textWu, Kejia, and Volker Haarslev. "Parallel OWL Reasoning: Merge Classification." In Semantic Technology, 211–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14122-0_17.
Full textWu, Kejia, and Volker Haarslev. "Parallel OWL Reasoning: Merge Classification." In Semantic Technology, 211–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06826-8_17.
Full textWang, Shan, and Chu-Ren Huang. "The semantic type system of event nouns." In Studies in Chinese Language and Discourse, 205–22. Amsterdam: John Benjamins Publishing Company, 2013. http://dx.doi.org/10.1075/scld.2.10wan.
Full textBarzegar, Siamak, Andre Freitas, Siegfried Handschuh, and Brian Davis. "Composite Semantic Relation Classification." In Natural Language Processing and Information Systems, 406–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59569-6_49.
Full textPiatrik, Tomas, and Ebroul Izquierdo. "Image Classification Using an Ant Colony Optimization Approach." In Semantic Multimedia, 159–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11930334_13.
Full textDashdorj, Zolzaya, Muhammad Tahir Khan, Loris Bozzato, and SangKeun Lee. "Classification of News by Topic Using Location Data." In Semantic Technology, 305–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50112-3_23.
Full textKoivisto-Alanko, Päivi. "Mechanisms of Semantic Change in Nouns of Cognition." In Lexicology, Semantics and Lexicography, 35. Amsterdam: John Benjamins Publishing Company, 2000. http://dx.doi.org/10.1075/cilt.194.06koi.
Full textConference papers on the topic "Semantic classification of nouns"
Chen, Keh-Jiann, and Chao-jan Chen. "Automatic semantic classification for Chinese unknown compound nouns." In the 18th conference. Morristown, NJ, USA: Association for Computational Linguistics, 2000. http://dx.doi.org/10.3115/990820.990846.
Full textKanzaki, Kyoko, Qing Ma, Masaki Murata, and Hitoshi Isahara. "Classification of adjectival and non-adjectival nouns based on their semantic behavior by using a self-organizing semantic map." In COLING-02. Morristown, NJ, USA: Association for Computational Linguistics, 2002. http://dx.doi.org/10.3115/1118735.1118742.
Full textMoldovan, Dan, Adriana Badulescu, Marta Tatu, Daniel Antohe, and Roxana Girju. "Models for the semantic classification of noun phrases." In the HLT-NAACL Workshop. Morristown, NJ, USA: Association for Computational Linguistics, 2004. http://dx.doi.org/10.3115/1596431.1596440.
Full textSiu, Amy, and Gerhard Weikum. "Semantic Type Classification of Common Words in Biomedical Noun Phrases." In Proceedings of BioNLP 15. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/w15-3811.
Full textNulty, Paul. "Semantic classification of noun phrases using web counts and learning algorithms." In the 45th Annual Meeting of the ACL: Student Research Workshop. Morristown, NJ, USA: Association for Computational Linguistics, 2007. http://dx.doi.org/10.3115/1557835.1557853.
Full textGirju, Roxana, Ana-Maria Giuglea, Marian Olteanu, Ovidiu Fortu, Orest Bolohan, and Dan Moldovan. "Support vector machines applied to the classification of semantic relations in nominalized noun phrases." In the HLT-NAACL Workshop. Morristown, NJ, USA: Association for Computational Linguistics, 2004. http://dx.doi.org/10.3115/1596431.1596441.
Full textLirong Qiu, Xiaobing Zhao, Jie Yuan, and Guosheng yang. "Measuring semantic nouns in Tibetan language." In 2011 International Conference on Computer Science and Service System (CSSS). IEEE, 2011. http://dx.doi.org/10.1109/csss.2011.5972041.
Full textCurran, James R. "Supersense tagging of unknown nouns using semantic similarity." In the 43rd Annual Meeting. Morristown, NJ, USA: Association for Computational Linguistics, 2005. http://dx.doi.org/10.3115/1219840.1219844.
Full textQian, Ting, Benjamin Van Durme, and Lenhart Schubert. "Building a semantic lexicon of English nouns via bootstrapping." In Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Student Research Workshop and Doctoral Consortium. Morristown, NJ, USA: Association for Computational Linguistics, 2009. http://dx.doi.org/10.3115/1620932.1620939.
Full textIlina, Ekaterina G., and Ekaterina M. Vishnevskaya. "SEMANTIC ANALYSIS OF THE SYNONYMS PAIN / HURT / ACHE." In Люди речисты - 2021. Ulyanovsk State Pedagogical University named after I. N. Ulyanov, 2021. http://dx.doi.org/10.33065/978-5-907216-49-5-2021-41-46.
Full textReports on the topic "Semantic classification of nouns"
Kasper, Robert T., and Eduard H. Hovy. Performing Integrated Syntactic and Semantic Parsing Using Classification. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada460334.
Full textMadani, Farshad. Opportunity Identification for New Product Planning: Ontological Semantic Patent Classification. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6116.
Full textKud, A. A. Figures and Tables. Reprinted from “Comprehensive сlassification of virtual assets”, A. A. Kud, 2021, International Journal of Education and Science, 4(1), 52–75. KRPOCH, 2021. http://dx.doi.org/10.26697/reprint.ijes.2021.1.6.a.kud.
Full textTabinskyy, Yaroslav. VISUAL CONCEPTS OF PHOTO IN THE MEDIA (ON THE EXAMPLE OF «UKRAINER» AND «REPORTERS»). Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11099.
Full text