Dissertations / Theses on the topic 'Semantic classification of nouns'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Semantic classification of nouns.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
DINIZ, PAULA SANTOS. "THE SEMANTIC CLASSIFICATION OF TECHNICAL COMPOUND NOUNS AND THEIR TRANSLATION TO PORTUGUESE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30060@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Este trabalho propõe uma classificação semântica dos compostos nominais técnicos em língua inglesa e a análise sintática e semântica das traduções para o português. Para tanto, faz-se um panorama da literatura sobre as relações semânticas dos compostos nominais em língua inglesa. A tipologia aqui proposta é, portanto, baseada em estudos clássicos sobre a semântica dos compostos nominais (Levi, 1978; Warren, 1978) e em pesquisas mais recentes — inseridas no escopo da Linguística Computacional e ou influenciadas pela Teoria do Léxico Gerativo, de Pustejovsky (1995) —, e adaptada para a natureza dos compostos nominais selecionados. A presente dissertação também analisa as traduções dos compostos nominais técnicos para o português, bem como a função das preposições nas estruturas com sintagmas preposicionados. O corpus foi retirado de um livro técnico da área de engenharia elétrica/eletrônica traduzido pela autora. Além da classificação semântica dos compostos nominais técnicos, propõe-se a criação de ontologias que contemplem os compostos com os mesmos núcleos ou modificadores, de modo a observar se núcleos ou modificadores iguais implicam a mesma categorização, e se é respeitada a relação de hiperonímia e hiponímia entre os compostos nominais inseridos na mesma ontologia.
The major purpose of this thesis is to suggest a semantic categorization of English technical noun compounds, as well as to analyze the semantics and syntax of the Portuguese renderings. First, the literature on semantic relations in English compound nouns is reviewed. The classification here suggested is therefore based on classic studies on the semantics of compound nouns (Levi, 1978; Warren, 1978) and on more recent research within the scope of Computational Linguistics, which are influenced by the Generative Lexicon Theory (Pustejovsky, 1995). The semantic categorization is also adapted to the data collected in this work. This thesis also analyzes the Portuguese translation of the English compound nouns, as well as the role of the prepositions in prepositional phrases. The data was taken from an electrical/electronics engineering book which was translated by the author. In addition to the semantic classification, the technical compound nouns are grouped together according to the head or modifiers of the structure, and assembled into ontologies. Compound nouns sharing a common head or modifier are grouped together, so as to investigate if there is a hypernym-hyponym relation among the compounds assembled in the same ontology.
Watson, Rachel. "Kujireray : morphosyntax, noun classification and verbal nouns." Thesis, SOAS, University of London, 2015. http://eprints.soas.ac.uk/22829/.
Full textKauṇḍabhaṭṭa, Deshpande Madhav. "The meaning of nouns : semantic theory in classical and medieval India /." Dordrecht ; Boston ; London : Kluwer academic publishers, 1992. http://catalogue.bnf.fr/ark:/12148/cb37062128q.
Full textCobbinah, Alexander Yao. "Nominal classification and verbal nouns in Baïnounk Gubëeher." Thesis, SOAS, University of London, 2013. http://eprints.soas.ac.uk/17370/.
Full textSudre, Gustavo. "Characterizing the Spatiotemporal Neural Representation of Concrete Nouns Across Paradigms." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/315.
Full textMichalkova, Marcela. "Gender Asymmetries in Slovak Personal Nouns." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1262189760.
Full textHartung, Matthias [Verfasser], and Anette [Akademischer Betreuer] Frank. "Distributional Semantic Models of Attribute Meaning in Adjectives and Nouns / Matthias Hartung ; Betreuer: Anette Frank." Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180609360/34.
Full textFallgren, Per. "Thoughts don't have Colour, do they? : Finding Semantic Categories of Nouns and Adjectives in Text Through Automatic Language Processing." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138641.
Full textRomeo, Lauren Michele. "The Structure of the lexicon in the task of the automatic acquisition of lexical information." Doctoral thesis, Universitat Pompeu Fabra, 2015. http://hdl.handle.net/10803/325420.
Full textLa información de clase semántica de los nombres es fundamental para una amplia variedad de tareas del procesamiento del lenguaje natural (PLN), como la traducción automática, la discriminación de referentes en tareas como la detección y el seguimiento de eventos, la búsqueda de respuestas, el reconocimiento y la clasificación de nombres de entidades, la construcción y ampliación automática de ontologías, la inferencia textual, etc. Una aproximación para resolver la construcción y el mantenimiento de los léxicos de gran cobertura que alimentan los sistemas de PNL, una tarea muy costosa y lenta, es la adquisición automática de información léxica, que consiste en la inducción de una clase semántica relacionada con una palabra en concreto a partir de datos de su distribución obtenidos de un corpus. Precisamente, por esta razón, se espera que la investigación actual sobre los métodos para la producción automática de léxicos de alta calidad, con gran cantidad de información y con anotación de clase como el trabajo que aquí presentamos, tenga un gran impacto en el rendimiento de la mayoría de las aplicaciones de PNL. En esta tesis, tratamos la adquisición automática de información léxica como un problema de clasificación. Con este propósito, adoptamos métodos de aprendizaje automático para generar un modelo que represente los datos de distribución vectorial que, basados en ejemplos conocidos, permitan hacer predicciones de otras palabras desconocidas. Las principales preguntas de investigación que planteamos en esta tesis son: (i) si los datos de corpus proporcionan suficiente información para construir representaciones de palabras de forma eficiente y que resulten en decisiones de clasificación precisas y sólidas, y (ii) si la adquisición automática puede gestionar, también, los nombres polisémicos. Para hacer frente a estos problemas, realizamos una serie de validaciones empíricas sobre nombres en inglés. Nuestros resultados confirman que la información obtenida a partir de la distribución de los datos de corpus es suficiente para adquirir automáticamente clases semánticas, como lo demuestra un valor-F global promedio de 0,80 aproximadamente utilizando varios modelos de recuento de contextos y en datos de corpus de distintos tamaños. No obstante, tanto el estado de la cuestión como los experimentos que realizamos destacaron una serie de retos para este tipo de modelos, que son reducir la escasez de datos del vector y dar cuenta de la polisemia nominal en las representaciones distribucionales de las palabras. En este contexto, los modelos de word embedding (WE) mantienen la “semántica” subyacente en las ocurrencias de un nombre en los datos de corpus asignándole un vector. Con esta elección, hemos sido capaces de superar el problema de la escasez de datos, como lo demuestra un valor-F general promedio de 0,91 para las clases semánticas de nombres de sentido único, a través de una combinación de la reducción de la dimensionalidad y de números reales. Además, las representaciones de WE obtuvieron un rendimiento superior en la gestión de las ocurrencias asimétricas de cada sentido de los nombres de tipo complejo polisémicos regulares en datos de corpus. Como resultado, hemos podido clasificar directamente esos nombres en su propia clase semántica con un valor-F global promedio de 0,85. La principal aportación de esta tesis consiste en una validación empírica de diferentes representaciones de distribución utilizadas para la clasificación semántica de nombres junto con una posterior expansión del trabajo anterior, lo que se traduce en recursos léxicos y conjuntos de datos innovadores que están disponibles de forma gratuita para su descarga y uso.
Lexical semantic class information for nouns is critical for a broad variety of Natural Language Processing (NLP) tasks including, but not limited to, machine translation, discrimination of referents in tasks such as event detection and tracking, question answering, named entity recognition and classification, automatic construction and extension of ontologies, textual inference, etc. One approach to solve the costly and time-consuming manual construction and maintenance of large-coverage lexica to feed NLP systems is the Automatic Acquisition of Lexical Information, which involves the induction of a semantic class related to a particular word from distributional data gathered within a corpus. This is precisely why current research on methods for the automatic production of high- quality information-rich class-annotated lexica, such as the work presented here, is expected to have a high impact on the performance of most NLP applications. In this thesis, we address the automatic acquisition of lexical information as a classification problem. For this reason, we adopt machine learning methods to generate a model representing vectorial distributional data which, grounded on known examples, allows for the predictions of other unknown words. The main research questions we investigate in this thesis are: (i) whether corpus data provides sufficient distributional information to build efficient word representations that result in accurate and robust classification decisions and (ii) whether automatic acquisition can handle also polysemous nouns. To tackle these problems, we conducted a number of empirical validations on English nouns. Our results confirmed that the distributional information obtained from corpus data is indeed sufficient to automatically acquire lexical semantic classes, demonstrated by an average overall F1-Score of almost 0.80 using diverse count-context models and on different sized corpus data. Nonetheless, both the State of the Art and the experiments we conducted highlighted a number of challenges of this type of model such as reducing vector sparsity and accounting for nominal polysemy in distributional word representations. In this context, Word Embeddings (WE) models maintain the “semantics” underlying the occurrences of a noun in corpus data by mapping it to a feature vector. With this choice, we were able to overcome the sparse data problem, demonstrated by an average overall F1-Score of 0.91 for single-sense lexical semantic noun classes, through a combination of reduced dimensionality and “real” numbers. In addition, the WE representations obtained a higher performance in handling the asymmetrical occurrences of each sense of regular polysemous complex-type nouns in corpus data. As a result, we were able to directly classify such nouns into their own lexical-semantic class with an average overall F1-Score of 0.85. The main contribution of this dissertation consists of an empirical validation of different distributional representations used for nominal lexical semantic classification along with a subsequent expansion of previous work, which results in novel lexical resources and data sets that have been made freely available for download and use.
Koivisto-Alanko, Päivi. "Abstract words in abstract worlds : directionality and prototypical structure in the semantic change in English nouns of cognition /." Helsinki : Société néophilologique, 2000. http://catalogue.bnf.fr/ark:/12148/cb392874530.
Full textDeng, Feng. "Web service matching based on semantic classification." Thesis, Högskolan Kristianstad, Sektionen för hälsa och samhälle, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-9750.
Full textOzgencil, Necati Ercan. "Cluster based classification for semantic role labeling." Related electronic resource:, 2007. http://proquest.umi.com/pqdweb?did=1342747481&sid=3&Fmt=2&clientId=3739&RQT=309&VName=PQD.
Full textBall, Stephen Wayne. "Semantic web service generation for text classification." Thesis, University of Southampton, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430674.
Full textBaker, Simon. "Semantic text classification for cancer text mining." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275838.
Full textLotz, Max. "Depth Inclusion for Classification and Semantic Segmentation." Thesis, KTH, Robotik, perception och lärande, RPL, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233371.
Full textMajoriteten av algoritmerna för datorseende använder bara färginformation för att dra sultsatser om hur världen ser ut. Med ökande tillgänglighet av RGB-D-kameror är det viktigt att undersöka sätt att effektivt kombinera färg- med djupinformation. I denna uppsats undersöks hur djup kan kombineras med färg i CNN:er för att öka presentandan i både klassificering och semantisk segmentering, så väl som att undersöka hur djupet kodas mest effektivt före dess inkludering i nätverket. Att lägga till djupet som en fjärde färgkanal och modifiera en förtränad CNN utreds inledningsvis. Sedan studeras att istället skapa en separat kopia av nätverket för att träna djup och sedan kombinera utdata från båda nätverken. Resultatet visar att det är ineffektivt att lägga till djup som en fjärde färgkanal då nätverket begränsas av den sämsta informationen från djup och färg. Fusion från två separata nätverk med färg och djup ökar prestanda bortom det som färg och djup erbjuder separat. Resultatet visar också att metoder så som HHA-kodning, är överlägsna jämfört med enklare transformationer så som HSV. Värt att notera är att detta endast gäller då djupbilderna är normaliserade över alla bilders maxdjup och inte i varje enskild bilds för sig. Motsatsen är sann för enklare transformationer.
Rahgozar, Arya. "Automatic Poetry Classification and Chronological Semantic Analysis." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40516.
Full textSani, Sadiq. "Role of semantic indexing for text classification." Thesis, Robert Gordon University, 2014. http://hdl.handle.net/10059/1133.
Full textGareis, Heather A. "The Effects of Treating Verbs and Nouns Using a Modified Semantic Feature Approach to Improve Word-finding in Aphasia." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10784915.
Full textSemantic approaches, including semantic feature analysis (SFA), are commonly used to treat individuals with anomia (word-finding difficulties) due to nondegenerative chronic aphasia. Research has traditionally targeted nouns, with relatively few published studies targeting verbs in isolation or in comparison to nouns. Yet, verbs are essential for higher-level communications, and some evidence suggests that treating higher-level word types may have crossover benefits. Generalization to untrained words and discourse have also varied across studies.
Thus, the aim of this study was to determine if a modified SFA treatment could be effective for both nouns and verbs, to assess generalization, and to investigate potential crossover benefits. Results revealed that the treatment did improve spontaneous production of trained nouns and verbs as well as semantic retrieval of untrained words, with an unexpected result of untrained verbs achieving a higher level of spontaneous production than untrained nouns. Implications and avenues for future studies are also discussed.
Okuyucu, Cigdem. "Semantic Classification And Retrieval System For Environmental Sounds." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615114/index.pdf.
Full textGarzone, Mark Arthur. "Automated classification of citations using linguistic semantic grammars." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq28570.pdf.
Full textGad, Soumyashree Shrikant Gad. "Semantic Analysis of Ladder Logic." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1502740043946349.
Full textNecker, Heike, and Liana Tronci. "From proper names to common nouns Italian ‑ismo/‑ista and Ancient Greek ‑ismós/‑istḗs formations." Deutsche Gesellschaft für Namenforschung, 2019. https://ul.qucosa.de/id/qucosa%3A71037.
Full textAlmomen, Randa. "Context classification for improved semantic understanding of mathematical formulae." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8611/.
Full textJonsson, Erik. "Semantic word classification and temporaldependency detection on cooking recipes." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122966.
Full textOpuszko, Marek. "Using Semantic Web Technologies for Classification Analysis in Social Networks." Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-84016.
Full textOpuszko, Marek. "Using Semantic Web Technologies for Classification Analysis in Social Networks." Forschungsberichte des Instituts für Wirtschaftsinformatik der Universität Leipzig Heft 8/15. Interuniversitäres Doktorandenseminar Wirtschaftsinformatik der Universitäten Chemnitz, Dresden, Freiberg, Halle-Wittenberg, Jena und Leipzig, 2011. https://ul.qucosa.de/id/qucosa%3A11354.
Full textMadani, Farshad. "Opportunity Identification for New Product Planning: Ontological Semantic Patent Classification." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4232.
Full textSampaio, de Rezende Rafael. "New methods for image classification, image retrieval and semantic correspondence." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE068/document.
Full textThe problem of image representation is at the heart of computer vision. The choice of feature extracted of an image changes according to the task we want to study. Large image retrieval databases demand a compressed global vector representing each image, whereas a semantic segmentation problem requires a clustering map of its pixels. The techniques of machine learning are the main tool used for the construction of these representations. In this manuscript, we address the learning of visual features for three distinct problems: Image retrieval, semantic correspondence and image classification. First, we study the dependency of a Fisher vector representation on the Gaussian mixture model used as its codewords. We introduce the use of multiple Gaussian mixture models for different backgrounds, e.g. different scene categories, and analyze the performance of these representations for object classification and the impact of scene category as a latent variable. Our second approach proposes an extension to the exemplar SVM feature encoding pipeline. We first show that, by replacing the hinge loss by the square loss in the ESVM cost function, similar results in image retrieval can be obtained at a fraction of the computational cost. We call this model square-loss exemplar machine, or SLEM. Secondly, we introduce a kernelized SLEM variant which benefits from the same computational advantages but displays improved performance. We present experiments that establish the performance and efficiency of our methods using a large array of base feature representations and standard image retrieval datasets. Finally, we propose a deep neural network for the problem of establishing semantic correspondence. We employ object proposal boxes as elements for matching and construct an architecture that simultaneously learns the appearance representation and geometric consistency. We propose new geometrical consistency scores tailored to the neural network’s architecture. Our model is trained on image pairs obtained from keypoints of a benchmark dataset and evaluated on several standard datasets, outperforming both recent deep learning architectures and previous methods based on hand-crafted features. We conclude the thesis by highlighting our contributions and suggesting possible future research directions
Batet, Sanromà Montserrat. "Ontology based semantic clustering." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/31913.
Full textClustering algorithms have focused on the management of numerical and categorical data. However, in the last years, textual information has grown in importance. Proper processing of this kind of information within data mining methods requires an interpretation of their meaning at a semantic level. In this work, a clustering method aimed to interpret, in an integrated manner, numerical, categorical and textual data is presented. Textual data will be interpreted by means of semantic similarity measures. These measures calculate the alikeness between words by exploiting one or several knowledge sources. In this work we also propose two new ways of compute semantic similarity based on 1) the exploitation of the taxonomical knowledge available on one or several ontologies and 2) the estimation of the information distribution of terms in the Web. Results show that a proper interpretation of textual data at a semantic level improves clustering results and eases the interpretability of the classifications
Bannour, Hichem. "Building and Using Knowledge Models for Semantic Image Annotation." Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-00905953.
Full textThames, John Lane. "Advancing cyber security with a semantic path merger packet classification algorithm." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45872.
Full textPasolini, Roberto <1986>. "Learning Methods and Algorithms for Semantic Text Classification across Multiple Domains." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/7058/.
Full textSalinas, Claudine. "Les prédicats de sentiment dans Les Verbes français de Jean Dubois et Françoise Dubois-Charlier : analyse et prolongement." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE2133.
Full textThe starting point of this work is “P” class (“verbes psychologiques”) of Les Verbes françaisof J. Dubois and F. Dubois-Charlier's electronic dictionary. It deals, more precisely, with feeling verbs.Because of the classification's criterions which are not that explicit, our main target is to try tounderstand their syntactic and semantic parameters, then to refine it in order to make small classes,but sharing in common the feeling expressed. Nouns and / or adjectives, morphologically connectedto verbs, and sharing the same syntactic and semantic properties, will be integrated to them. Ouranalysis, based on a large attested Corpus, lead to predicates characterization of “nostalgia”, “regret”,“annoyance” and “astonishment”
Lin, Chi-San Althon. "Syntax-driven argument identification and multi-argument classification for semantic role labeling." The University of Waikato, 2007. http://hdl.handle.net/10289/2602.
Full textSpomer, Judith E. "Latent semantic analysis and classification modeling in applications for social movement theory /." Abstract Full Text (HTML) Full Text (PDF), 2008. http://eprints.ccsu.edu/archive/00000552/02/1996FT.htm.
Full textThesis advisor: Roger Bilisoly. "... in partial fulfillment of the requirements for the degree of Master of Science in Data Mining." Includes bibliographical references (leaves 122-127). Also available via the World Wide Web.
Romero, Simone Aparecida Pinto. "A framework for event classification in Tweets based on hybrid semantic enrichment." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/156642.
Full textSocial Media platforms have become key as a means of spreading information, opinions or awareness about real-world events. Twitter stands out due to the huge volume of messages about all sorts of topics posted every day. Such messages are an important source of useful information about events, presenting many useful applications (e.g. the detection of breaking news, real-time awareness, updates about events). However, text classification on Twitter is by no means a trivial task that can be handled by conventional Natural Language Processing techniques. In addition, there is no consensus about the definition of which kind of tasks are executed in the Event Identification and Classification in tweets, since existing approaches often focus on specific types of events, based on specific assumptions, which makes it difficult to reproduce and compare these approaches in events of distinct natures. In this work, we aim at building a unifying framework that is suitable for the classification of events of distinct natures. The framework has as key elements: a) external enrichment using related web pages for extending the conceptual features contained within the tweets; b) semantic enrichment using the Linked Open Data cloud to add related semantic features; and c) a pruning technique that selects the semantic features with discriminative potential We evaluated our proposed framework using a broad experimental setting, that includes: a) seven target events of different natures; b) different combinations of the conceptual features proposed (i.e. entities, vocabulary and their combination); c) distinct feature extraction strategies (i.e. from tweet text and web related documents); d) different methods for selecting the discriminative semantic features (i.e. pruning, feature selection, and their combination); and e) two classification algorithms. We also compared the proposed framework against another kind of contextual enrichment based on word embeddings. The results showed the advantages of using the proposed framework, and that our solution is a feasible and generalizable method to support the classification of distinct event types.
Tarasti, Eero. "Do Semantic Aspects of Music Have a Notation?" Bärenreiter Verlag, 2012. https://slub.qucosa.de/id/qucosa%3A71846.
Full textAleksandrova, Angelina. "Noms humains de phase : problèmes de classifications ontologiques et linguistiques." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00842220.
Full textYe, Meng. "VISUAL AND SEMANTIC KNOWLEDGE TRANSFER FOR NOVEL TASKS." Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/583037.
Full textPh.D.
Data is a critical component in a supervised machine learning system. Many successful applications of learning systems on various tasks are based on a large amount of labeled data. For example, deep convolutional neural networks have surpassed human performance on ImageNet classification, which consists of millions of labeled images. However, one challenge in conventional supervised learning systems is their generalization ability. Once a model is trained on a specific dataset, it can only perform the task on those \emph{seen} classes and cannot be used for novel \emph{unseen} classes. In order to make the model work on new classes, one has to collect and label new data and then re-train the model. However, collecting data and labeling them is labor-intensive and costly, in some cases, it is even impossible. Also, there is an enormous amount of different tasks in the real world. It is not applicable to create a dataset for each of them. These problems raise the need for Transfer Learning, which is aimed at using data from the \emph{source} domain to improve the performance of a model on the \emph{target} domain, and these two domains have different data or different tasks. One specific case of transfer learning is Zero-Shot Learning. It deals with the situation where \emph{source} domain and \emph{target} domain have the same data distribution but do not have the same set of classes. For example, a model is given animal images of `cat' and `dog' for training and will be tested on classifying 'tiger' and 'wolf' images, which it has never seen. Different from conventional supervised learning, Zero-Shot Learning does not require training data in the \emph{target} domain to perform classification. This property gives ZSL the potential to be broadly applied in various applications where a system is expected to tackle unexpected situations. In this dissertation, we develop algorithms that can help a model effectively transfer visual and semantic knowledge learned from \emph{source} task to \emph{target} task. More specifically, first we develop a model that learns a uniform visual representation of semantic attributes, which help alleviate the domain shift problem in Zero-Shot Learning. Second, we develop an ensemble network architecture with a progressive training scheme, which transfers \emph{source} domain knowledge to the \emph{target} domain in an end-to-end manner. Lastly, we move a step beyond ZSL and explore Label-less Classification, which transfers knowledge from pre-trained object detectors into scene classification tasks. Our label-less classification takes advantage of word embeddings trained from unorganized online text, thus eliminating the need for expert-defined semantic attributes for each class. Through comprehensive experiments, we show that the proposed methods can effectively transfer visual and semantic knowledge between tasks, and achieve state-of-the-art performances on standard datasets.
Temple University--Theses
Franjieh, Michael James. "Possessive classifiers in North Ambrym, a language of Vanuatu : explorations in semantic classification." Thesis, SOAS, University of London, 2012. http://eprints.soas.ac.uk/16808/.
Full textWestell, Jesper. "Multi-Task Learning using Road Surface Condition Classification and Road Scene Semantic Segmentation." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157403.
Full textSagna, Serge. "Formal and semantic properties of the Gújjolaay Eegimaa (a.k.a Banjal) nominal classification system." Thesis, SOAS, University of London, 2008. http://eprints.soas.ac.uk/28825/.
Full textCzerwinski, Silvia. "Bibliotheken als Akteure im Semantic Web." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-39083.
Full textLaffling, John D. "Machine disambiguation and translation of polysemous nouns : a lexicon-driven model for text-semantic analysis and parallel text-dependent transfer in German-English translation of party political texts." Thesis, University of Wolverhampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254466.
Full textYaprakkaya, Gokhan. "Face Identification, Gender And Age Groups Classifications For Semantic Annotation Of Videos." Thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612848/index.pdf.
Full textGao, Jizhou. "VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS." UKnowledge, 2013. http://uknowledge.uky.edu/cs_etds/14.
Full textThornton, Freda J. "A classification of the semantic field good and evil in the vocabulary of English." Thesis, University of Glasgow, 1988. http://theses.gla.ac.uk/1032/.
Full textStiff, Adam. "Mitigation of Data Scarcity Issues for Semantic Classification in a Virtual Patient Dialogue Agent." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1591007163243306.
Full textNurmikko-Fuller, Terhi, Daniel Bangert, Alan Dix, David Weigl, and Kevin Page. "Building Prototypes Aggregating Musicological Datasets on the Semantic Web." De Gruyter, 2018. https://slub.qucosa.de/id/qucosa%3A36380.
Full textSemantische Web-Technologien wie RDF, OWL und SPARQL ermöglichen die Verknüpfung von komplementären musikwissenschaftlichen Daten. In diesem Artikel beschreiben, vergleichen und bewerten wir die Datensätze und Workflows, die zur Erstellung zweier solcher Aggregationsprojekte verwendet wurden: In Collaboration with In Concert und JazzCats, die jeweils Sammlungen kleinerer Projekte mit Konzert- und Performance-Metadaten zusammenführen.
El, Cherif Widade. "Vers une classification sémantique fine des noms d’agent en français." 2011. http://hdl.handle.net/10222/14343.
Full textLe présent travail porte sur une classification sémantique détaillée de ce qu’on appelle traditionnellement les noms d’agent [= S1] en français. Notre classification a été élaborée à partir de 1573 noms d’agent extraits du Nouveau Petit Robert. Les définitions de plusieurs noms d’agent dans le Nouveau Petit Robert représentent des reformulations paraphrastiques suffisamment proches, ce qui permet de repartir ces noms en sous-ensembles sémantiquement plus spécifiques. Nous avons identifié 22 sous-classes de noms d’agent ; ces classes et les lexies correspondantes ont été décrites au moyen du formalisme des fonctions lexicales proposé par la théorie linguistique Sens Texte. Nous avons également élaboré des définitions lexicographiques généralisées pour les lexies de chaque sous-classe, ainsi que leurs schémas de régime (? cadres de sous-catégorisations) généralisés. L’intérêt de notre travail réside dans le fait que la classification proposée mène vers une description globale plus uniforme et plus cohérente des noms d’agent.