Academic literature on the topic 'Semi-autoencoder'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semi-autoencoder.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semi-autoencoder"
Zemouri, Ryad. "Semi-Supervised Adversarial Variational Autoencoder." Machine Learning and Knowledge Extraction 2, no. 3 (2020): 361–78. http://dx.doi.org/10.3390/make2030020.
Full textLai, Jie, Xiaodan Wang, Qian Xiang, Wen Quan, and Yafei Song. "A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks." Entropy 25, no. 9 (2023): 1274. http://dx.doi.org/10.3390/e25091274.
Full textYao, Shihong, Chuli Hu, Tao Wang, and Xinyou Cui. "Autoencoder-like semi-NMF multiple clustering." Information Sciences 572 (September 2021): 331–42. http://dx.doi.org/10.1016/j.ins.2021.04.080.
Full textAhed, Mleih Al-Sbou, and Hafhizah Abd Rahim Noor. "An improved hybrid semi-stacked autoencoder for itemfeatures of recommendation system (iHSARS)." An improved hybrid semi-stacked autoencoder for itemfeatures of recommendation system (iHSARS) 30, no. 1 (2023): 481–90. https://doi.org/10.11591/ijeecs.v30.i1.pp481-490.
Full textFu, Hongliang, Peizhi Lei, Huawei Tao, Li Zhao, and Jing Yang. "Improved semi-supervised autoencoder for deception detection." PLOS ONE 14, no. 10 (2019): e0223361. http://dx.doi.org/10.1371/journal.pone.0223361.
Full textLiu, Xingye, Bin Li, Jingye Li, Xiaohong Chen, Qingchun Li, and Yangkang Chen. "Semi‐supervised deep autoencoder for seismic facies classification." Geophysical Prospecting 69, no. 6 (2021): 1295–315. http://dx.doi.org/10.1111/1365-2478.13106.
Full textYin, Wutao, Longhai Li, and Fang-Xiang Wu. "A semi-supervised autoencoder for autism disease diagnosis." Neurocomputing 483 (April 2022): 140–47. http://dx.doi.org/10.1016/j.neucom.2022.02.017.
Full textDeng, Yang, Wang Zhou, Amin Ul Haq, Sultan Ahmad, and Alia Tabassum. "Differentially private recommender framework with Dual semi-Autoencoder." Expert Systems with Applications 260 (January 2025): 125447. http://dx.doi.org/10.1016/j.eswa.2024.125447.
Full textWu, Chuhan, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu, and Yongfeng Huang. "Semi-supervised dimensional sentiment analysis with variational autoencoder." Knowledge-Based Systems 165 (February 2019): 30–39. http://dx.doi.org/10.1016/j.knosys.2018.11.018.
Full textLi, Ivy, Aarón Higuera, Shixiao Liang, Juehang Qin, and Christopher Tunnell. "Energy Reconstruction with Semi-Supervised Autoencoders for Dual-Phase Time Projection Chambers." EPJ Web of Conferences 295 (2024): 09022. http://dx.doi.org/10.1051/epjconf/202429509022.
Full textDissertations / Theses on the topic "Semi-autoencoder"
Schembri, Massimo. "Anomaly Prediction in Production Supercomputer with Convolution and Semi-supervised autoencoder." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22379/.
Full textDabiri, Sina. "Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using GPS Trajectory Data." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/86845.
Full textGolshan, Arman. "A contemporary machine learning approach to detect transportation mode - A case study of Borlänge, Sweden." Thesis, Högskolan Dalarna, Mikrodataanalys, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-35966.
Full textBook chapters on the topic "Semi-autoencoder"
Gogna, Anupriya, and Angshul Majumdar. "Semi Supervised Autoencoder." In Neural Information Processing. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46672-9_10.
Full textZhang, Shuai, Lina Yao, Xiwei Xu, Sen Wang, and Liming Zhu. "Hybrid Collaborative Recommendation via Semi-AutoEncoder." In Neural Information Processing. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70087-8_20.
Full textPálsson, Sveinn, Stefano Cerri, Andrea Dittadi, and Koen Van Leemput. "Semi-supervised Variational Autoencoder for Survival Prediction." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46643-5_12.
Full textKang, Mingeun, Kiwon Lee, Yong H. Lee, and Changho Suh. "Autoencoder-Based Graph Construction for Semi-supervised Learning." In Computer Vision – ECCV 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58586-0_30.
Full textLiu, Jingquan, Xiaoyong Du, Yuanzhe Li, and Weidong Hu. "Hypergraph Variational Autoencoder for Multimodal Semi-supervised Representation Learning." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-15937-4_33.
Full textVengalil, Sunil Kumar, and Neelam Sinha. "Semi-supervised Learning Using Variational Autoencoder - A Cluster Based Approach." In Lecture Notes in Computer Science. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-12700-7_54.
Full textXiao, Hui, Donghai Guan, Rui Zhao, Weiwei Yuan, Yaofeng Tu, and Asad Masood Khattak. "Semi-supervised Time Series Anomaly Detection Model Based on LSTM Autoencoder." In Communications in Computer and Information Science. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3150-4_4.
Full textMendes, Andre, Julian Togelius, and Leandro dos Santos Coelho. "Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process." In Advances in Knowledge Discovery and Data Mining. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47436-2_1.
Full textTorres-Calderon, Rosa, Bernardo Gonzalez-Torres, and Ricardo Menchaca-Mendez. "Generating Universum Instances from Variational Autoencoder Latent Space for Semi-supervised Learning." In Communications in Computer and Information Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-77293-1_8.
Full textSedai, Suman, Dwarikanath Mahapatra, Sajini Hewavitharanage, Stefan Maetschke, and Rahil Garnavi. "Semi-supervised Segmentation of Optic Cup in Retinal Fundus Images Using Variational Autoencoder." In Lecture Notes in Computer Science. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66185-8_9.
Full textConference papers on the topic "Semi-autoencoder"
Dana, Soven K., Jitender Kumar, and Rahul Modanwal. "Autoencoder Aided Semi-supervised Incremental Learning of Handwritten Characters." In 2024 IEEE Region 10 Symposium (TENSYMP). IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752210.
Full textSandarenu, Piumi, Julia Chen, Iveta Slapetova, et al. "Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images." In 2024 IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635107.
Full textLiu, Pengyu, Fangyi Wan, Yaohui Xie, and Yudong Qiang. "A Semi-Supervised Fault Diagnosis Method for Gearbox Based on Convolutional Autoencoder." In 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing). IEEE, 2024. https://doi.org/10.1109/phm-beijing63284.2024.10874561.
Full textWang, Chundong, and Weijie Yang. "Semi-Supervised Blockchain Anomaly Transaction Detection Based on Deep AutoEncoder and Multi-Layer Perceptron." In 2024 4th International Conference on Digital Society and Intelligent Systems (DSInS). IEEE, 2024. https://doi.org/10.1109/dsins64146.2024.10992069.
Full textZhu, Mingda, Du Nguyen, Peihua Han, Khang Huynh, and Jing Zhou. "A Semi-Supervised Variational Autoencoder for Fault Detection of Low-Severity Inter-Turn Short-Circuit in PMSMs." In 2025 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). IEEE, 2025. https://doi.org/10.1109/wemdcd61816.2025.11014178.
Full textAbbasnejad, M. Ehsan, Anthony Dick, and Anton van den Hengel. "Infinite Variational Autoencoder for Semi-Supervised Learning." In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.90.
Full textChidlovskii, Boris, and Leonid Antsfeld. "Semi-supervised Variational Autoencoder for WiFi Indoor Localization." In 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2019. http://dx.doi.org/10.1109/ipin.2019.8911825.
Full textZhang, Xiao, Yong Jiang, Hao Peng, Kewei Tu, and Dan Goldwasser. "Semi-supervised Structured Prediction with Neural CRF Autoencoder." In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/d17-1179.
Full textKamimura, Ryotaro, and Haruhiko Takeuchi. "Supervised semi-autoencoder learning for multi-layered neural networks." In 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, 2017. http://dx.doi.org/10.1109/ifsa-scis.2017.8023324.
Full textWang, Jindong, Fan Wang, and Dong Yin. "Feature Decoupled Autoencoder: Semi-Supervised Learning for Image Dehazing." In 2022 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2022. http://dx.doi.org/10.1109/icme52920.2022.9859652.
Full text