Journal articles on the topic 'Semi-autoencoder'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Semi-autoencoder.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zemouri, Ryad. "Semi-Supervised Adversarial Variational Autoencoder." Machine Learning and Knowledge Extraction 2, no. 3 (2020): 361–78. http://dx.doi.org/10.3390/make2030020.
Full textLai, Jie, Xiaodan Wang, Qian Xiang, Wen Quan, and Yafei Song. "A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks." Entropy 25, no. 9 (2023): 1274. http://dx.doi.org/10.3390/e25091274.
Full textYao, Shihong, Chuli Hu, Tao Wang, and Xinyou Cui. "Autoencoder-like semi-NMF multiple clustering." Information Sciences 572 (September 2021): 331–42. http://dx.doi.org/10.1016/j.ins.2021.04.080.
Full textAhed, Mleih Al-Sbou, and Hafhizah Abd Rahim Noor. "An improved hybrid semi-stacked autoencoder for itemfeatures of recommendation system (iHSARS)." An improved hybrid semi-stacked autoencoder for itemfeatures of recommendation system (iHSARS) 30, no. 1 (2023): 481–90. https://doi.org/10.11591/ijeecs.v30.i1.pp481-490.
Full textFu, Hongliang, Peizhi Lei, Huawei Tao, Li Zhao, and Jing Yang. "Improved semi-supervised autoencoder for deception detection." PLOS ONE 14, no. 10 (2019): e0223361. http://dx.doi.org/10.1371/journal.pone.0223361.
Full textLiu, Xingye, Bin Li, Jingye Li, Xiaohong Chen, Qingchun Li, and Yangkang Chen. "Semi‐supervised deep autoencoder for seismic facies classification." Geophysical Prospecting 69, no. 6 (2021): 1295–315. http://dx.doi.org/10.1111/1365-2478.13106.
Full textYin, Wutao, Longhai Li, and Fang-Xiang Wu. "A semi-supervised autoencoder for autism disease diagnosis." Neurocomputing 483 (April 2022): 140–47. http://dx.doi.org/10.1016/j.neucom.2022.02.017.
Full textDeng, Yang, Wang Zhou, Amin Ul Haq, Sultan Ahmad, and Alia Tabassum. "Differentially private recommender framework with Dual semi-Autoencoder." Expert Systems with Applications 260 (January 2025): 125447. http://dx.doi.org/10.1016/j.eswa.2024.125447.
Full textWu, Chuhan, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu, and Yongfeng Huang. "Semi-supervised dimensional sentiment analysis with variational autoencoder." Knowledge-Based Systems 165 (February 2019): 30–39. http://dx.doi.org/10.1016/j.knosys.2018.11.018.
Full textLi, Ivy, Aarón Higuera, Shixiao Liang, Juehang Qin, and Christopher Tunnell. "Energy Reconstruction with Semi-Supervised Autoencoders for Dual-Phase Time Projection Chambers." EPJ Web of Conferences 295 (2024): 09022. http://dx.doi.org/10.1051/epjconf/202429509022.
Full textGeng, Yishuai, Yi Zhu, Yun Li, Xiaobing Sun, and Bin Li. "Multi-Feature Extension via Semi-Autoencoder for Personalized Recommendation." Applied Sciences 12, no. 23 (2022): 12408. http://dx.doi.org/10.3390/app122312408.
Full textJang, Hee-Deok, Seokjoon Kwon, Hyunwoo Nam, and Dong Eui Chang. "Semi-Supervised Autoencoder for Chemical Gas Classification with FTIR Spectrum." Sensors 24, no. 11 (2024): 3601. http://dx.doi.org/10.3390/s24113601.
Full textZhu, Tianyi, Lina Liu, Yibo Sun, et al. "Semi-supervised noise-resilient anomaly detection with feature autoencoder." Knowledge-Based Systems 304 (November 2024): 112445. http://dx.doi.org/10.1016/j.knosys.2024.112445.
Full textZhou, Cangqi, Hao Ban, Jing Zhang, Qianmu Li, and Yinghua Zhang. "Gaussian Mixture Variational Autoencoder for Semi-Supervised Topic Modeling." IEEE Access 8 (2020): 106843–54. http://dx.doi.org/10.1109/access.2020.3001184.
Full textGu, Xiang, Qiwei Huang, and Jie Yang. "Overlapping Community Detection in Vehicular Social Networks Based on Graph Attention Autoencoder." Sensors 25, no. 8 (2025): 2601. https://doi.org/10.3390/s25082601.
Full textMleih Al-Sbou, Ahed, and Noor Hafhizah Abd Rahim. "An improved hybrid semi-stacked autoencoder for item-features of recommendation system (iHSARS)." Indonesian Journal of Electrical Engineering and Computer Science 30, no. 1 (2023): 481. http://dx.doi.org/10.11591/ijeecs.v30.i1.pp481-490.
Full textJeon, Yongjae, Kyumin Kim, Yelim Lee, Byeong Kwon Kang, and Sang Won Lee. "Development of Fault Diagnosis Model based on Semi-supervised Autoencoder." PHM Society European Conference 8, no. 1 (2024): 7. http://dx.doi.org/10.36001/phme.2024.v8i1.4023.
Full textLei, Ke, Zhongsheng Tan, Xiuying Wang, and Zhenliang Zhou. "Semi-Symmetrical, Fully Convolutional Masked Autoencoder for TBM Muck Image Segmentation." Symmetry 16, no. 2 (2024): 222. http://dx.doi.org/10.3390/sym16020222.
Full textSae-ang, Bee-ing, Wuttipong Kumwilaisak, and Pakorn Kaewtrakulpong. "Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module." Sensors 22, no. 8 (2022): 2915. http://dx.doi.org/10.3390/s22082915.
Full textKozmin, Artem, Oleg Kalashev, Alexey Chernenko, and Alexey Redyuk. "Semi-Supervised Learned Autoencoder for Classification of Events in Distributed Fibre Acoustic Sensors." Sensors 25, no. 12 (2025): 3730. https://doi.org/10.3390/s25123730.
Full textAziz, Fayeem, Aaron S. W. Wong, and Stephan Chalup. "Semi-Supervised Manifold Alignment Using Parallel Deep Autoencoders." Algorithms 12, no. 9 (2019): 186. http://dx.doi.org/10.3390/a12090186.
Full textRosa, Tiago Gaspar da, Arthur Henrique de Andrade Melani, Fabio Henrique Pereira, Fabio Norikazu Kashiwagi, Gilberto Francisco Martha de Souza, and Gisele Maria De Oliveira Salles. "Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis." Sensors 22, no. 24 (2022): 9738. http://dx.doi.org/10.3390/s22249738.
Full textHarilal, Abhirami, Kyungmin Park, and Manfred Paulini. "Anomaly Detection Based on Machine Learning for the CMS Electromagnetic Calorimeter Online Data Quality Monitoring." EPJ Web of Conferences 320 (2025): 00048. https://doi.org/10.1051/epjconf/202532000048.
Full textCui, Jun, Longkun Bai, Guangxu Li, Zhigui Lin, and Penggao Zeng. "Semi-2DCAE: a semi-supervision 2D-CNN AutoEncoder model for feature representation and classification of encrypted traffic." PeerJ Computer Science 9 (November 9, 2023): e1635. http://dx.doi.org/10.7717/peerj-cs.1635.
Full textYosefpor, Mohammad, Mohammad Reza Mostaan, and Sadegh Raeisi. "Finding semi-optimal measurements for entanglement detection using autoencoder neural networks." Quantum Science and Technology 5, no. 4 (2020): 045006. http://dx.doi.org/10.1088/2058-9565/aba34c.
Full textLei, Z., Z. Yi, L. Peng, and S. X. Hui. "Semi-supervised classification of hyperspectral images based on two branch autoencoder." IOP Conference Series: Earth and Environmental Science 502 (June 2, 2020): 012014. http://dx.doi.org/10.1088/1755-1315/502/1/012014.
Full textFu, Xianghua, Yanzhi Wei, Fan Xu, et al. "Semi-supervised Aspect-level Sentiment Classification Model based on Variational Autoencoder." Knowledge-Based Systems 171 (May 2019): 81–92. http://dx.doi.org/10.1016/j.knosys.2019.02.008.
Full textCsiszárik, Adrián, Melinda F. Kiss, Balázs Maga, Ákos Matszangosz, and Dániel Varga. "Global sinkhorn autoencoder - optimal transport on the latent representation of the full dataset." Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio computatorica 57 (2024): 101–15. https://doi.org/10.71352/ac.57.101.
Full textWang, Haoran, Zhongze Han, Xiaoshuang Xiong, Xuewei Song, and Chen Shen. "Enhancing Yarn Quality Wavelength Spectrogram Analysis: A Semi-Supervised Anomaly Detection Approach with Convolutional Autoencoder." Machines 12, no. 5 (2024): 309. http://dx.doi.org/10.3390/machines12050309.
Full textGhinea, Liliana Maria, Mihaela Miron, and Marian Barbu. "Semi-Supervised Anomaly Detection of Dissolved Oxygen Sensor in Wastewater Treatment Plants." Sensors 23, no. 19 (2023): 8022. http://dx.doi.org/10.3390/s23198022.
Full textCosta, Nahuel, Luciano Sanchez, and Ines Couso. "Semi-Supervised Recurrent Variational Autoencoder Approach for Visual Diagnosis of Atrial Fibrillation." IEEE Access 9 (2021): 40227–39. http://dx.doi.org/10.1109/access.2021.3064854.
Full textHou, Liang, Xiao-yi Luo, Zi-yang Wang, and Jun Liang. "Representation learning via a semi-supervised stacked distance autoencoder for image classification." Frontiers of Information Technology & Electronic Engineering 21, no. 7 (2020): 1005–18. http://dx.doi.org/10.1631/fitee.1900116.
Full textHe, Chaobo, Yulong Zheng, Junwei Cheng, Yong Tang, Guohua Chen, and Hai Liu. "Semi-supervised overlapping community detection in attributed graph with graph convolutional autoencoder." Information Sciences 608 (August 2022): 1464–79. http://dx.doi.org/10.1016/j.ins.2022.07.036.
Full textZhang, Xiaoxi, Yuan Gao, Xin Wang, Jun Feng, and Yan Shi. "GeoSDVA: A Semi-Supervised Dirichlet Variational Autoencoder Model for Transportation Mode Identification." ISPRS International Journal of Geo-Information 11, no. 5 (2022): 290. http://dx.doi.org/10.3390/ijgi11050290.
Full textChen, Jiahong, Jing Wang, Tongxin Shu, and Clarence W. de Silva. "WSN optimization for sampling-based signal estimation using semi-binarized variational autoencoder." Information Sciences 587 (March 2022): 188–205. http://dx.doi.org/10.1016/j.ins.2021.12.022.
Full textPastor-Serrano, Oscar, Danny Lathouwers, and Zoltán Perkó. "A semi-supervised autoencoder framework for joint generation and classification of breathing." Computer Methods and Programs in Biomedicine 209 (September 2021): 106312. http://dx.doi.org/10.1016/j.cmpb.2021.106312.
Full textZhang, Shuyuan, and Tong Qiu. "Semi-supervised LSTM ladder autoencoder for chemical process fault diagnosis and localization." Chemical Engineering Science 251 (April 2022): 117467. http://dx.doi.org/10.1016/j.ces.2022.117467.
Full textWu, Xinya, Yan Zhang, Changming Cheng, and Zhike Peng. "A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery." Mechanical Systems and Signal Processing 149 (February 2021): 107327. http://dx.doi.org/10.1016/j.ymssp.2020.107327.
Full textLiu, Jie, Kechen Song, Mingzheng Feng, Yunhui Yan, Zhibiao Tu, and Liu Zhu. "Semi-supervised anomaly detection with dual prototypes autoencoder for industrial surface inspection." Optics and Lasers in Engineering 136 (January 2021): 106324. http://dx.doi.org/10.1016/j.optlaseng.2020.106324.
Full textSoumaya, Zaghbani, Boujneh Nouredine, and Salim Bouhlel Med. "Semi-supervised auto-encoder for facial attributes recognition." TELKOMNIKA Telecommunication, Computing, Electronics and Control 18, no. 4 (2020): 2169–76. https://doi.org/10.12928/TELKOMNIKA.v18i4.14836.
Full textEsmaeili, Fatemeh, Erica Cassie, Hong Phan T. Nguyen, Natalie O. V. Plank, Charles P. Unsworth, and Alan Wang. "Anomaly Detection for Sensor Signals Utilizing Deep Learning Autoencoder-Based Neural Networks." Bioengineering 10, no. 4 (2023): 405. http://dx.doi.org/10.3390/bioengineering10040405.
Full textZeng, Mengjie, Shunming Li, Ranran Li, et al. "A Hierarchical Sparse Discriminant Autoencoder for Bearing Fault Diagnosis." Applied Sciences 12, no. 2 (2022): 818. http://dx.doi.org/10.3390/app12020818.
Full textAouedi, Ons, Kandaraj Piamrat, and Dhruvjyoti Bagadthey. "Handling partially labeled network data: A semi-supervised approach using stacked sparse autoencoder." Computer Networks 207 (April 2022): 108742. http://dx.doi.org/10.1016/j.comnet.2021.108742.
Full textGogna, Anupriya, Angshul Majumdar, and Rabab Ward. "Semi-supervised Stacked Label Consistent Autoencoder for Reconstruction and Analysis of Biomedical Signals." IEEE Transactions on Biomedical Engineering 64, no. 9 (2017): 2196–205. http://dx.doi.org/10.1109/tbme.2016.2631620.
Full textWang, Jian, Jiale Zhao, and Ting Cheng. "SGAAE-AC: A Semi-Supervised Graph Attention Autoencoder for Electroencephalography (EEG) Age Clustering." Applied Sciences 14, no. 13 (2024): 5392. http://dx.doi.org/10.3390/app14135392.
Full textHua, Chengcheng, Hong Wang, Hong Wang, Shaowen Lu, Chong Liu, and Syed Madiha Khalid. "A Novel Method of Building Functional Brain Network Using Deep Learning Algorithm with Application in Proficiency Detection." International Journal of Neural Systems 29, no. 01 (2019): 1850015. http://dx.doi.org/10.1142/s0129065718500156.
Full textLiang, Jun, Daoguang Liu, Yinxiao Zhan, and Jiayu Fan. "Nonlinear Dynamic Process Monitoring Based on Discriminative Denoising Autoencoder and Canonical Variate Analysis." Actuators 13, no. 11 (2024): 440. http://dx.doi.org/10.3390/act13110440.
Full textXue, Hansheng, Jiajie Peng, and Xuequn Shang. "Towards Gene Function Prediction via Multi-Networks Representation Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 10069–70. http://dx.doi.org/10.1609/aaai.v33i01.330110069.
Full textOoi, Sai Kit, Dave Tanny, Junghui Chen, and Kai Wang. "Developing semi-supervised variational autoencoder-generative adversarial network models to enhance quality prediction performance." Chemometrics and Intelligent Laboratory Systems 217 (October 2021): 104385. http://dx.doi.org/10.1016/j.chemolab.2021.104385.
Full textTong, Li, Hang Wu, and May D. Wang. "CAESNet: Convolutional AutoEncoder based Semi-supervised Network for improving multiclass classification of endomicroscopic images." Journal of the American Medical Informatics Association 26, no. 11 (2019): 1286–96. http://dx.doi.org/10.1093/jamia/ocz089.
Full text