Dissertations / Theses on the topic 'Semi-automatic classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Semi-automatic classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
NUNES, BERNARDO PEREIRA. "AUTOMATIC CLASSIFICATION OF SEMI-STRUCTURED DATA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14382@1.
Full textO problema da classificação de dados remonta à criação de taxonomias visando cobrir áreas do conhecimento. Com o surgimento da Web, o volume de dados disponíveis aumentou várias ordens de magnitude, tornando praticamente impossível a organização de dados manualmente. Esta dissertação tem por objetivo organizar dados semi-estruturados, representados por frames, sem uma estrutura de classes prévia. A dissertação apresenta um algoritmo, baseado no K-Medóide, capaz de organizar um conjunto de frames em classes, estruturadas sob forma de uma hierarquia estrita. A classificação dos frames é feita a partir de um critério de proximidade que leva em conta os atributos e valores que cada frame possui.
The problem of data classification goes back to the definition of taxonomies covering knowledge areas. With the advent of the Web, the amount of data available has increased several orders of magnitude, making manual data classification impossible. This dissertation proposes a method to automatically classify semi-structured data, represented by frames, without any previous knowledge about structured classes. The dissertation introduces an algorithm, based on K-Medoid, capable of organizing a set of frames into classes, structured as a strict hierarchy. The classification of the frames is based on a closeness criterion that takes into account the attributes and their values in each frame.
Dos, santos Jefersson Alex. "Semi-automatic Classification of Remote Sensing Images." Phd thesis, Université de Cergy Pontoise, 2013. http://tel.archives-ouvertes.fr/tel-00878612.
Full textSantos, Jefersson Alex dos 1984. "Semi-automatic classification of remote sensing images = Classificação semi-automática de imagens de sensorimento remoto." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275630.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-23T15:18:27Z (GMT). No. of bitstreams: 1 Santos_JeferssonAlexdos_D.pdf: 18672412 bytes, checksum: 58ac60d8b5342ab705a78d5c82265ab8 (MD5) Previous issue date: 2013
Resumo: Um grande esforço tem sido feito para desenvolver sistemas de classificação de imagens capazes de criar mapas temáticos de alta qualidade e estabelecer inventários precisos sobre o uso do solo. As peculiaridades das imagens de sensoriamento remoto (ISR), combinados com os desafios tradicionais de classificação de imagens, tornam a classificação de ISRs uma tarefa difícil. Grande parte dos desafios de pesquisa estão relacionados à escala de representação dos dados e, ao mesmo tempo, à dimensão e à representatividade do conjunto de treinamento utilizado. O principal foco desse trabalho está nos problemas relacionados à representação dos dados e à extração de características. O objetivo é desenvolver soluções efetivas para classificação interativa de imagens de sensoriamento remoto. Esse objetivo foi alcançado a partir do desenvolvimento de quatro linhas de pesquisa. A primeira linha de pesquisa está relacionada ao fato de embora descritores de imagens propostos na literatura obterem bons resultados em várias aplicações, muitos deles nunca foram usados para classificação de imagens de sensoriamento remoto. Nessa tese, foram testados doze descritores que codificam propriedades espectrais e sete descritores de textura. Também foi proposta uma metodologia baseada no classificador K-Vizinhos mais Próximos (K-nearest neighbors - KNN) para avaliação de descritores no contexto de classificação. Os descritores Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID) e Quantized Compound Change Histogram (QCCH), apresentaram os melhores resultados experimentais na identificação de alvos de café e pastagem. A segunda linha de pesquisa se refere ao problema de seleção de escalas de segmentação para classificação de imagens de sensoriamento baseada em objetos. Métodos propostos recentemente exploram características extraídas de objetos segmentados para melhorar a classificação de imagens de alta resolução. Entretanto, definir uma escala de segmentação adequada é uma tarefa desafiadora. Nessa tese, foram propostas duas abordagens de classificação multiescala baseadas no algoritmo Adaboost. A primeira abordagem, Multiscale Classifier (MSC), constrói um classificador forte que combina características extraídas de múltiplas escalas de segmentação. A outra, Hierarchical Multiscale Classifier (HMSC), explora a relação hierárquica das regiões segmentadas para melhorar a eficiência sem reduzir a qualidade da classificação xi quando comparada à abordagem MSC. Os experimentos realizados mostram que é melhor usar múltiplas escalas do que utilizar apenas uma escala de segmentação. A correlação entre os descritores e as escalas de segmentação também é analisada e discutida. A terceira linha de pesquisa trata da seleção de amostras de treinamento e do refinamento dos resultados da classificação utilizando segmentação multiescala. Para isso, foi proposto um método interativo para classificação multiescala de imagens de sensoriamento remoto. Esse método utiliza uma estratégia baseada em aprendizado ativo que permite o refinamento dos resultados de classificação pelo usuário ao longo de interações. Os resultados experimentais mostraram que a combinação de escalas produzem melhores resultados do que a utilização de escalas isoladas em um processo de realimentação de relevância. Além disso, o método interativo obtém bons resultados com poucas interações. O método proposto necessita apenas de uma pequena porção do conjunto de treinamento para construir classificadores tão fortes quanto os gerados por um método supervisionado utilizando todo o conjunto de treinamento disponível. A quarta linha de pesquisa se refere à extração de características de uma hierarquia de regiões para classificação multiescala. Assim, foi proposta uma abordagem que explora as relações existentes entre as regiões da hierarquia. Essa abordagem, chamada BoW-Propagation, utiliza o modelo bag-of-visual-word para propagar características ao longo de múltiplas escalas. Essa ideia foi estendida para propagar descritores globais baseados em histogramas, a abordagem H-Propagation. As abordagens propostas aceleram o processo de extração e obtém bons resultados quando comparadas a descritores globais
Abstract: A huge effort has been made in the development of image classification systems with the objective of creating high-quality thematic maps and to establish precise inventories about land cover use. The peculiarities of Remote Sensing Images (RSIs) combined with the traditional image classification challenges make RSI classification a hard task. Many of the problems are related to the representation scale of the data, and to both the size and the representativeness of used training set. In this work, we addressed four research issues in order to develop effective solutions for interactive classification of remote sensing images. The first research issue concerns the fact that image descriptors proposed in the literature achieve good results in various applications, but many of them have never been used in remote sensing classification tasks. We have tested twelve descriptors that encode spectral/color properties and seven texture descriptors. We have also proposed a methodology based on the K-Nearest Neighbor (KNN) classifier for evaluation of descriptors in classification context. Experiments demonstrate that Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID), and Quantized Compound Change Histogram (QCCH) yield the best results in coffee and pasture recognition tasks. The second research issue refers to the problem of selecting the scale of segmentation for object-based remote sensing classification. Recently proposed methods exploit features extracted from segmented objects to improve high-resolution image classification. However, the definition of the scale of segmentation is a challenging task. We have proposed two multiscale classification approaches based on boosting of weak classifiers. The first approach, Multiscale Classifier (MSC), builds a strong classifier that combines features extracted from multiple scales of segmentation. The other, Hierarchical Multiscale Classifier (HMSC), exploits the hierarchical topology of segmented regions to improve training efficiency without accuracy loss when compared to the MSC. Experiments show that it is better to use multiple scales than use only one segmentation scale result. We have also analyzed and discussed about the correlation among the used descriptors and the scales of segmentation. The third research issue concerns the selection of training examples and the refinement of classification results through multiscale segmentation. We have proposed an approach for xix interactive multiscale classification of remote sensing images. It is an active learning strategy that allows the classification result refinement by the user along iterations. Experimental results show that the combination of scales produces better results than isolated scales in a relevance feedback process. Furthermore, the interactive method achieves good results with few user interactions. The proposed method needs only a small portion of the training set to build classifiers that are as strong as the ones generated by a supervised method that uses the whole available training set. The fourth research issue refers to the problem of extracting features of a hierarchy of regions for multiscale classification. We have proposed a strategy that exploits the existing relationships among regions in a hierarchy. This approach, called BoW-Propagation, exploits the bag-of-visual-word model to propagate features along multiple scales. We also extend this idea to propagate histogram-based global descriptors, the H-Propagation method. The proposed methods speed up the feature extraction process and yield good results when compared with global low-level extraction approaches
Doutorado
Ciência da Computação
Doutor em Ciência da Computação
Trias-Sanz, Roger. "Semi-automatic rural land cover classification from high resolution remote sensing images." Paris 5, 2006. http://www.theses.fr/2006PA05S005.
Full textThis thesis presents a complete image analisys system which, from high-resolution 3 or 4-channel digital images (50 cm, colour and optionally near infrared), and using the cadastre database, segments the images into agriculturally-homogeneous regions, (fields, forests, vines, and so on) and classifies these regions, tagging each classified region with a confidence measure which indicates the system's confidence in each classification. It includes a study of the value of texture features and transformed colour spaces for segmentation and classification, two methods for registering a graph onto an image, a novel probability model and associated per-region classification algorithms, and a high precision period and orientation estimator
Melo, Claudia de Oliveira. "Classificação semi-automática de componentes Java." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06042009-214829/.
Full textThe recent developments on components technologies have increased the number of components available to the market. These components are, however, distributed overall the world and not properly advertised to the research and development communities. Finding the appropriate components to solve a particular problem is not very straightforward and new techniques must be developed to effectively reuse components. One of the great challenges in reusing components is concerned with how to actually classify components \"properly\" in order to further retrieve them. Classifying components for effective retrieval depends on acquiring the appropriate information in classification to improve the precision and recall rates in retrieval; finding only the potentially reusable components and not missing potential solutions. At the same time, the classification and retrieval mechanisms must be easy enough to persuade developers to reuse components. This work studies the classification techniques of software components, repository and retrieval methods. Hereafter is presented a proposal of components classification model that considers not just its function, but business and quality attributes. It is proposed a semi-automatic classification mechanism of software information, allowing a cheaper classification. REUSE+ prototype was built to exemplify the use of model and method of semi-automatic classification, allowing the described proposal validation, highlighting at the end the mainly contributions of the work.
Duncan, Patricia. "The development of a method for semi-automatic classification of built-up areas from aerial imagery." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/4993.
Full textIncludes bibliographical references.
It is essential for geospatial and mapping organisations that changes to the landscapeare regularly detected and captured, so that map databases can be updated. The Chief Directorate of National Geospatial Information (CD: NGI), South Africa’s national mapping agency, currently relies on manual methods for digitizing features and detecting changes. These methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The objective of this research is to develop a process for semi-automatic classification of built-up areas from aerial imagery in South Africa. Built-up areas are important as they can grow and change rapidly. Since the South African landscape is varied and climatological conditions differ from one area to another, a general and robust method that can be applied across the country is needed. This project aims to find the best approach for classifying urban built-up areas from high-resolution aerial imagery by comparing various image classification methods, so that a method that is transferable and applicable in diverse South African scenes may be developed. Image classification methods were compared and it was found that pixel-based classifiers were unsatisfactory in classifying built-up areas, whereas object-based classifiers had better results. Image segmentation, the first step in an object-based classification, can considerably influence the results of the classification task. It is therefore essential that suitable image segments be generated before the segments are classified. The proposed The proposed methodology involves the use of cadastral data in the image segmentation process and texture measures in the classification of built-up areas within an object-based process. The method can be applied to diverse scenes across South Africa to find built-up areas. This is a generalised approach and can assist the CD: NGI in the process of updating their topographic database by reducing the time that operators spend on identifying and manually digitizing built-up areas.
Martinez-Alvarez, Miguel. "Knowledge-enhanced text classification : descriptive modelling and new approaches." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/27205.
Full textNUNES, RAFAEL DA SILVA. "THE CREATION OF A SEMI-AUTOMATIC CLASSIFICATION MODEL USING GEOGRAPHIC KNOWLEDGE: A CASE STUDY IN THE NORTHERN PORTION OF THE TIJUCA MASSIF - RJ." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34950@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Os processos de transformação da paisagem são resultantes da interação de elementos (bióticos e abióticos) que compõe a superfície da Terra. Baseia-se, a partir de uma perspectiva holística, no inter-relacionamento de uma série de ações e objetos que confluem para que a paisagem seja percebida como um momento sintético da confluência de inúmeras temporalidades. Desta maneira, as geotecnologias passam a se constituir como um importante aparato técnico-científico para a interpretação desta realidade ao possibilitar novas e diferentes formas do ser humano interpretar a paisagem. Um dos produtos gerados a partir desta interpretação é a classificação de uso e cobertura do solo e que se configura como um instrumento central para a análise das dinâmicas territoriais. Desta maneira, o objetivo do presente trabalho é elaboração de um modelo de classificação semi-automática baseada em conhecimento geográfico para o levantamento do padrão de uso e cobertura da paisagem a partir da utilização de imagens de satélite de alta resolução, tendo como recorte analítico uma área na porção setentrional no Maciço da Tijuca. O modelo baseado na análise de imagens baseadas em objetos, quando confrontados com a classificação visual, culminou em um valor acima de 80 por cento de correspondência tanto para imagens de 2010 e 2009, apresentando valores bastante elevados também na comparação classe a classe. A elaboração do presente modelo contribuiu diretamente para a otimização da produção dos dados elaborados contribuindo sobremaneira para a aceleração da interpretação das imagens analisadas, assim como para a minimização de erros ocasionados pela subjetividade atrelada ao próprio classificador.
The transformation processes of the landscape are results from the interaction of factors (biotic and abiotic) that makes up the Earth s surface. This interaction, from a holistic perspective, is then based on the inter-relationship of a series of actions and objects that converge so that landscape is perceived as a moment of confluence of numerous synthetic temporalities. Thus, the geotechnologies come to constitute an important technical and scientific apparatus for the interpretation of this reality by enabling new and different ways of interpreting the human landscape. One of the products that can be generated from this interpretation is the use classification and land cover and is configured as a central instrument for the analysis of territorial dynamics. Thus, the aim of this work is the development of a semi-automatic classification model based on geographic knowledge to survey the pattern of land use and cover the landscape from the use of satellite images of high resolution, with the analytical approach an area in the northern portion of the Tijuca Massif. The model built on an Object-Based Image Analysis, when confronted with the visual classification, culminated in a value above 80 percent match for 2010 and 2009, with very high values in the comparison class to class. The development of this model directly contributed to the optimization of the production of processed data contributing greatly to the acceleration of the interpretation of the images analyzed, as well as to minimize errors caused by the subjectivity linked to the classifier itself.
Colaninno, Nicola. "Semi-automatic land cover classification and urban modelling based on morphological features : remote sensing, geographical information systems, and urban morphology : defining models of land occupation along the Mediterranean side of Spain." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/396219.
Full textDesde un punto de vista global,como sostiene Levy (1999), la ciudad moderna ha experimentado cambios radicales en su forma física, ya sea en términos de expansión territorial, así como en términos de transformaci ones internas. Hoy en día, aproximadamente el 75% de la población europea vive en zonas urbanas, lo que hace del futuro urbano delcontinente, una causa importante de preocupación (Brasil, Cavalcanti, y Longo, 2014). De hecho, la demanda de suelo urbano, dentro y alrededor de las ciudades , es cada vez más aguda (Agencia Europea de Medio Ambiente,2006). Durante las últimas décadas, también España ha experimentado un importante proceso de crecimiento urbano que ha implicado el consumo de una gran cantidad de tierra, aunque la tasa de crecimiento de la población en general, sobre todo a lo largo de ciertas áreas geográficas específicas , se ha mantenido al menos sin cambios o incluso, en algunos casos, también ha disminuido. Este fenómeno ha sido muy evidente a lo largo de la vertiente mediterránea. Como sostiene Gaja (2008), el desarrollo urbano en España se ha visto fuertemente vinculado con el modelo de desarrollo económico, que se basa, desde su lanzamiento en la década de los 50,en tres factores principales, a saber: la emigración, la construcción y el turismo de masas. Hoy en día, en España, y sobre todo a lo largo de la vertiente mediterránea, varias zonas urbanas se enfrentan a fenómenos importantes de expansión urbana, también temidos por la Unión Europea. Al respecto,un requisito fundamental para mejorar la comprensión y el estudio de los modelos urbanos es obtener en eltiempo una información precisa sobre los patrones de cubiertas y uso de suelo. Actualmente, a pesar de la existencia de numerosos métodos para la clasificación de imágenes digitales a través de técnicas de teledetección, para ext raer información sobre cobertura/uso de suelo, este enfoque sigue siendo un reto apasionante (Weng, 2010). El creciente desarrollo de las tecnologías de RS y GIS, durante las últimas décadas, ha proporcionado nuevas capacidades para medir, analizar, comprender, y modelar las "expresiones físicas" de los fenómenos de crecimiento urbano, en términos de patrones y procesos (Bhatta, 2012), y con base en el mapeo y análisis de cambios de cobertura/uso de suelo a través el tiempo. Basándose en un enfoque tecnológico, el primero objetivo es establecer una metodología adecuada para la detección de clases de cobertura de la tierra generalizadas que encuentra su fundamento en una asistido automático (o semiautomático), enfoque basado en píxeles, calibradas en Landsat Thematic Mapper (TM) imágenes multiespectrales, a 30 metros de resolución espacial. Al lado, a través del uso del Sistema de Información Geográfica (SIG), es posible proveer un análisis espacial y la modelización de diferentes modelos urbanos, desde un punto de vista morfológico, con el fin de definir el patrón principal de la ocupación del suelo a escala municipal a lo largo de la vertiente mediterránea de España, en el año 2011. En particular no enfocamos en dos cuestiones principales. Por un lado, las técnicas de RS se han utilizado para establecer una metodología de clasificación semi-automático adecuada, basada en el uso de imágenes Landsat, capaz de manejar grandes zonas geográficas de forma rápida y eficiente. Este proceso, básicamente, va dirigido a detectar las áreas urbanas, en el año 2011, a lo largo de la vertiente mediterránea de España, según la división administrativa de las Comunidades Autónomas. Por otro lado, los patrones espaciales de asentamientos urbanos han sido analizados mediante el uso de una plataforma GIS para cuantificar un conjunto de métricas espaciales sobre la forma urbana. Finalmente, una vez obtenida la cuantificación de diferentes características morfológicas, se ha proporcionado una clasificación automática de los diferentes modelos morfológicos urbanos, basada en un enfoque estadístico, es decir, análisis factorial y clúster.
Teljstedt, Erik Christopher. "Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192656.
Full textDetta exjobb har undersökt problemet att detektera automatiserade Twitter-konton relaterade till Ukraina-konflikten genom att använda övervakade maskininlärningsmetoder. Ett slående problem med den insamlade datamängden var avsaknaden av träningsexempel. I övervakad maskininlärning brukar man traditionellt manuellt märka upp en träningsmängd. Detta medför dock långtråkigt arbete samt att det blir dyrt förstora och ständigt föränderliga datamängder. Vi presenterar en ny metod för att syntetiskt generera uppmärkt Twitter-data (klassifieringsetiketter) för detektering av automatiserade konton med en regel-baseradeklassificerare. Metoden medför en signifikant minskning av resurser och anstränging samt snabbar upp processen att anpassa klassificerare till förändringar i Twitter-domänen. En utvärdering av klassificerare utfördes på en manuellt uppmärkt testmängd bestående av 1,000 Twitter-konton. Resultaten visar att den regelbaserade klassificeraren på egen hand uppnår en precision på 94.6% och en recall på 52.9%. Vidare påvisar resultaten att klassificerare baserat på övervakad maskininlärning kunde lära sig från syntetiskt uppmärkt data. I bästa fall uppnår dessa maskininlärningsbaserade klassificerare en något lägre precision på 94.1%, jämfört med den regelbaserade klassificeraren, men med en betydligt bättre recall på 93.9%.
Díaz, Pinto Andrés Yesid. "Machine Learning for Glaucoma Assessment using Fundus Images." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/124351.
Full text[CAT] Les imatges de fons d'ull són molt utilitzades pels oftalmòlegs per a l'avaluació de la retina i la detecció de glaucoma. Aquesta patologia és la segona causa de ceguesa al món, segons estudis de l'Organització Mundial de la Salut (OMS). En aquesta tesi doctoral, s'estudien algoritmes d'aprenentatge automàtic (machine learning) per a l'avaluació automàtica del glaucoma usant imatges de fons d'ull. En primer lloc, es proposen dos mètodes per a la segmentació automàtica. El primer mètode utilitza la transformació Watershed Estocàstica per segmentar la copa òptica i després mesurar característiques clíniques com la relació Copa / Disc i la regla ISNT. El segon mètode és una arquitectura U-Net que s'usa específicament per a la segmentació del disc òptic i la copa òptica. A continuació, es presenten sistemes automàtics d'avaluació del glaucoma basats en xarxes neuronals convolucionals (CNN per les sigles en anglès). En aquest enfocament s'utilitzen diferents models entrenats en ImageNet com classificadors automàtics de glaucoma, usant fine-tuning. Aquesta nova tècnica permet detectar el glaucoma sense segmentació prèvia o extracció de característiques. A més, aquest enfocament presenta una millora considerable del rendiment comparat amb altres treballs de l'estat de l'art. En tercer lloc, donada la dificultat d'obtenir grans quantitats d'imatges etiquetades (glaucoma / no glaucoma), aquesta tesi també aborda el problema de la síntesi d'imatges de la retina. En concret es van analitzar dues arquitectures diferents per a la síntesi d'imatges, les arquitectures Variational Autoencoder (VAE) i la Generative adversarial Networks (GAN). Amb aquestes arquitectures es van generar imatges sintètiques que es van analitzar qualitativament i quantitativament, obtenint un rendiment similar a altres treballs a la literatura. Finalment, en aquesta tesi es planteja la utilització d'un tipus de GAN (DCGAN) com a alternativa als sistemes automàtics d'avaluació del glaucoma presentats anteriorment. Per assolir aquest objectiu es va implementar un algoritme d'aprenentatge semi-supervisat.
[EN] Fundus images are widely used by ophthalmologists to assess the retina and detect glaucoma, which is, according to studies from the World Health Organization (WHO), the second cause of blindness worldwide. In this thesis, machine learning algorithms for automatic glaucoma assessment using fundus images are studied. First, two methods for automatic segmentation are proposed. The first method uses the Stochastic Watershed transformation to segment the optic cup and measures clinical features such as the Cup/Disc ratio and ISNT rule. The second method is a U-Net architecture focused on the optic disc and optic cup segmentation task. Secondly, automated glaucoma assessment systems using convolutional neural networks (CNNs) are presented. In this approach, different ImageNet-trained models are fine-tuned and used as automatic glaucoma classifiers. These new techniques allow detecting glaucoma without previous segmentation or feature extraction. Moreover, it improves the performance of other state-of-art works. Thirdly, given the difficulty of getting large amounts of glaucoma-labelled images, this thesis addresses the problem of retinal image synthesis. Two different architectures for image synthesis, the Variational Autoencoder (VAE) and Generative Adversarial Networks (GAN) architectures, were analysed. Using these models, synthetic images that were qualitative and quantitative analysed, reporting state-of-the-art performance, were generated. Finally, an adversarial model is used to create an alternative automatic glaucoma assessment system. In this part, a semi-supervised learning algorithm was implemented to reach this goal.
The research derived from this doctoral thesis has been supported by the Generalitat Valenciana under the scholarship Santiago Grisolía [GRISOLIA/2015/027].
Díaz Pinto, AY. (2019). Machine Learning for Glaucoma Assessment using Fundus Images [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124351
TESIS
AVINA, CERVANTES Juan Gabriel. "Navigation visuelle d'un robot mobile dans un environnement d'extérieur semi-structuré." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2005. http://tel.archives-ouvertes.fr/tel-00010912.
Full textEscudeiro, Nuno Filipe Fonseca Vasconcelos. "Semi-automatic classification: using active learning for efficient class coverage." Tese, 2012. https://repositorio-aberto.up.pt/handle/10216/73245.
Full textEscudeiro, Nuno Filipe Fonseca Vasconcelos. "Semi-automatic classification: using active learning for efficient class coverage." Doctoral thesis, 2012. https://repositorio-aberto.up.pt/handle/10216/73245.
Full textPolowinski, Jan. "Semi-Automatic Mapping of Structured Data to Visual Variables." Master's thesis, 2007. https://tud.qucosa.de/id/qucosa%3A26756.
Full textWährend Semantic-Web-Daten maschinenverstehbar und hervorragend filterbar sind, sind sie — in ihrer Rohform — nicht leicht von Menschen verstehbar. Eine Visualisierung der Daten ist deshalb notwendig. Die Kernherausforderung dabei ist eine flexible Abbildung der strukturierten aber heterogenen Daten auf Visuelle Variablen. Diese Arbeit beschreibt eine hochflexible halbautomatische Lösung bei maximaler Unterstützung des Visualisierungsprozesses, welcher die Abbildungsmöglichkeiten, aus denen der Nutzer zu wählen hat, auf eine sinnvolle Teilmenge reduziert. Die Grundlage dafür sind einerseits Metriken und das Wissen über die Struktur der Daten und andererseits das Wissen über verfügbare Visualisierungsstrukturen, -plattformen und bekannte grafische Fakten, welche durch eine neuentwickelte Visualisierungsontologie bereitgestellt werden. Basierend auf Standards des Semantic Webs und der Model-getriebenen Architektur, wurde desweiteren ein deklaratives, plattformunabhängiges Visualisierungsvokabular und -framework entwickelt.:ABSTRACT S. x 1. INTRODUCTION S. 1 2. VISUALIZATION OF STRUCTURED DATA IN GENERAL S. 4 2.1. Global and Local Interfaces S. 4 2.2. Steps of the Visualization Process S. 4 2.3. Existing Visual Selection Mechanisms S. 6 2.4. Existing Visualizations of Structured Data S. 12 2.5. Categorizing SemVis S. 25 3. REQUIREMENTS FOR A FLEXIBLE VISUALIZATION S. 27 3.1. Actors S. 27 3.2. Use Cases S. 27 4. FRESNEL, A STANDARD DISPLAY VOCABULARY FOR RDF S. 31 4.1. Fresnel Lenses S. 31 4.2. Fresnel Formats S. 33 4.3. Fresnel Groups S. 33 4.4. Primaries (Starting Points) S. 33 4.5. Selectors and Inference S. 34 4.6. Application and Reusability S. 34 4.7. Implementation S. 35 5. A VISUALIZATION ONTOLOGY S. 37 5.1. Describing and Formalizing the Field of Visualization S. 37 5.2. Overview S. 37 5.3. VisualVariable S. 38 5.4. DiscreteVisualValue S. 39 5.5. VisualElement S. 41 5.6. VisualizationStructure S. 42 5.7. VisualizationPlatform S. 42 5.8. PresentationScenario S. 43 5.9. Facts S. 44 6. A NOVEL MAPPING VOCABULARY FOR SEMANTIC VISUALIZATION S. 45 6.1. Overview S. 45 6.2. Mapping S. 46 6.3. PropertyMapping S. 47 6.4. ImplicitMapping S. 48 6.5. ExplicitMapping S. 53 6.6. MixedMapping S. 54 6.7. ComplexMapping S. 55 6.8. Inference S. 58 6.9. Explicit Display of Relations S. 58 6.10. Limitations s. 59 7. A MODEL-DRIVEN ARCHITECTURE FOR FLEXIBLE VISUALIZATION S. 60 7.1. A Model-Driven Architecture S. 61 7.2. Applications of the MDA Pattern S. 62 7.3. Complete System Overview S. 71 7.4. Additional Knowledge of the System S. 72 7.5. Comparison to the Graphical Modelling Framework — GMF S. 77 8. VISUALIZATION PLATFORMS S. 80 8.1. Extensible 3D (X3D) S. 80 8.2. Scalable Vector Graphics (SVG) S. 81 8.3. XHTML + CSS S. 82 8.4. Text S. 82 9. OUTLOOK AND CONCLUSION S. 84 9.1. Advanced Mapping Vocabulary S. 84 9.2. Reusing Standardized Ontologies S. 84 9.3. Enabling Dynamic, Interaction and Animation S. 84 9.4. Implementation and Evaluation S. 85 9.5. Conclusion S. 85 GLOSSARY S. 86 BIBLIOGRAPHY S. 87 A. S. 90 A.1. Schemata S. 90
"Semi-automatic landslide detection using sentinel-2 imagery: case study in the Añasco River watershed, Puerto Rico." Tulane University, 2019.
Find full textArnold, Patrick. "The Basics of Complex Correspondences and Functions and their Implementation and Semi-automatic Detection in COMA++." 2011. https://ul.qucosa.de/id/qucosa%3A17223.
Full textLin, Yan-Liang. "Semi-automatic classification of tree species using a combination of RGB drone imagery and mask RCNN: case study of the Highveld region in Eswatini." Master's thesis, 2021. http://hdl.handle.net/10362/113903.
Full textTree species identification forms an integral part of biodiversity monitoring. Locating at-risk species and predicting their distribution is equally as important as tracing invasive alien plant species distributions. The high prevalence of the latter and their destructive impact on the environment is the focus for this thesis. In areas of the world where technology limitations are restrictive, an approach using low-cost, available RGB drone imagery is proposed to train advanced deep learning models to distinguish individual tree species; three dominant species (Pinus elliotti, Eucalyptus grandis and Syzygium cordatum) providing the bulk of sampling data, of which the first two are highly invasive in the region. This study explored the efficacy of utilizing Mask RCNN, an instance segmentation deep neural network, in identifying multiple classes of trees within the same image. In line with the low-cost approach, Google Colaboratory was utilized which drastically lowers the training time necessary and alleviates the need for high GPU systems. The model was trained on imagery from three study areas which were representative of three distinct landscapes: very dense forest, moderately dense forest with overlapping canopies, and open forest. The results indicate decent performance in open forest landscapes where overlapping tree crowns is infrequent with mean Average Precision of 0.71. On the contrary, in a dense forest landscape with many interlocking tree crowns, a mean Average Precision of 0.43 is highly indicative of the model’s poor performance in such environments. The trained network was also observed to have higher confidence scores of detected objects within the open forest study areas as opposed to dense forest.
Wächter, Thomas. "Semi-automated Ontology Generation for Biocuration and Semantic Search." Doctoral thesis, 2010. https://tud.qucosa.de/id/qucosa%3A25496.
Full text