Academic literature on the topic 'Semi-classical quantization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semi-classical quantization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Semi-classical quantization"

1

Arsenović, D., A. O. Barut, Z. Marić, and M. Bozić. "Semi-classical quantization of the magnetic top." Il Nuovo Cimento B Series 11 110, no. 2 (1995): 163–75. http://dx.doi.org/10.1007/bf02741499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dasgupta, Arundhati. "Semi-classical quantization of spacetimes with apparent horizons." Classical and Quantum Gravity 23, no. 3 (2006): 635–71. http://dx.doi.org/10.1088/0264-9381/23/3/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Samsonov, Maxim. "Quantization of Semi-Classical Twists and Noncommutative Geometry." Letters in Mathematical Physics 75, no. 1 (2006): 63–77. http://dx.doi.org/10.1007/s11005-005-0038-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yabana, K., and H. Horiuchi. "Semi-Classical Quantization for Multi-Dimensional Coupled-Channel Equation." Progress of Theoretical Physics 77, no. 3 (1987): 517–47. http://dx.doi.org/10.1143/ptp.77.517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mickens, R. E. "Semi-classical quantization using the method of harmonic balance." Il Nuovo Cimento B 101, no. 3 (1988): 359–65. http://dx.doi.org/10.1007/bf02828714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Charles, L. "Semi-Classical Properties of Geometric Quantization with Metaplectic Correction." Communications in Mathematical Physics 270, no. 2 (2006): 445–80. http://dx.doi.org/10.1007/s00220-006-0155-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bechouche, Philippe. "Semi-classical Limit in a Semiconductor Superlattice." VLSI Design 9, no. 4 (1999): 315–23. http://dx.doi.org/10.1155/1999/26709.

Full text
Abstract:
In this paper, we perform a mathematical study of a semiconductor superlattice. Since the thickness of the layers is very small, quantization plays an important role. The modelling is therefore given by a Schrödinger equation with a periodic potential. The scaled lattice thickness is denoted by a small parameter ℇ which is of the same order of magnitude as the Planck constant. When this parameter tends to zero, i.e., the semi-classical limit, we obtain classical transport of the charge carriers described by a Vlasov equation.
APA, Harvard, Vancouver, ISO, and other styles
8

Stepanov, S. S., R. S. Tutik, A. P. Yaroshenko, and W. von Schlippe. "Semi-Classical quantization nonmanifestly using the method of harmonic balance." Il Nuovo Cimento B 106, no. 3 (1991): 329–32. http://dx.doi.org/10.1007/bf02759777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chakraborty, Sumanta, and Kinjalk Lochan. "Quantum leaps of black holes: Magnifying glasses of quantum gravity." International Journal of Modern Physics D 25, no. 12 (2016): 1644024. http://dx.doi.org/10.1142/s0218271816440247.

Full text
Abstract:
We show using simple arguments, that the conceptual triad of a classical black hole, semi-classical Hawking emission and geometry quantization is inherently, mutually incompatible. Presence of any two explicitly violates the third. We argue that geometry quantization, if realized in nature, magnifies the quantum gravity features hugely to catapult them into the realm of observational possibilities. We also explore a quantum route towards extremality of the black holes.
APA, Harvard, Vancouver, ISO, and other styles
10

Silver, Ari, and Karl Sohlberg. "Semi-Classical Quantization of the Shuttling Eigenstates in a [2]Rotaxane." Journal of Computational and Theoretical Nanoscience 3, no. 6 (2006): 982–88. http://dx.doi.org/10.1166/jctn.2006.3086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Semi-classical quantization"

1

Gunturk, Kamil Serkan. "Covariant Weyl quantization, symbolic calculus, and the product formula." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3963.

Full text
Abstract:
A covariant Wigner-Weyl quantization formalism on the manifold that uses pseudo-differential operators is proposed. The asymptotic product formula that leads to the symbol calculus in the presence of gauge and gravitational fields is presented. The new definition is used to get covariant differential operators from momentum polynomial symbols. A covariant Wigner function is defined and shown to give gauge-invariant results for the Landau problem. An example of the covariant Wigner function on the 2-sphere is also included.
APA, Harvard, Vancouver, ISO, and other styles
2

Louati, Hanen. "Règles de quantification semi-classique pour une orbite périodique de type hyberbolique." Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0004/document.

Full text
Abstract:
On étudie les résonances semi-excitées pour un Opérateur h-Pseudo-différentiel (h-PDO)H(x, hDx) sur L2(M) induites par une orbite périodique de type hyperbolique à l’énergie E = 0. Par exemple M = Rn et H(x, hDx; h) est l’opérateur de Schrödinger avec effet Stark, ouH(x, hDx; h) est le flot géodesique sur une variété axi-symétrique M, généralisant l’exemplede Poincaré de systèmes Lagrangiens à 2 degrés de liberté. On étend le formalisme de Gérard and Sjöstrand, au sens où on autorise des valeurs propres hyperboliques et elliptiques del’application de Poincaré, et où l’on considère des résonanc
APA, Harvard, Vancouver, ISO, and other styles
3

Ghaderi, Hazhar. "The Phase-Integral Method, The Bohr-Sommerfeld Condition and The Restricted Soap Bubble : with a proposition concerning the associated Legendre equation." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-169572.

Full text
Abstract:
After giving a brief background on the subject we introduce in section two the Phase-Integral Method of Fröman & Fröman in terms of the platform function of Yngve and Thidé. In section three we derive a different form of the radial Bohr-Sommerfeld condition in terms of the apsidal angle of the corresponding classical motion. Using the derived expression, we then show how easily one can calculate the exact energy eigenvalues of the hydrogen atom and the isotropic three-dimensional harmonic oscillator, we also derive an expression for higher order quantization condition. In section four we d
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Floch Yohann. "Théorie spectrale inverse pour les opérateurs de Toeplitz 1D." Phd thesis, Université Rennes 1, 2014. http://tel.archives-ouvertes.fr/tel-01065441.

Full text
Abstract:
Dans cette thèse, nous prouvons des résultats de théorie spectrale, directe et inverse, dans la limite semi-classique, pour les opérateurs de Toeplitz autoadjoints sur les surfaces. Pour les opérateurs pseudo-différentiels, les résultats en question sont déjà connus, et il est naturel de vouloir les étendre aux opérateurs de Toeplitz. Les conditions de Bohr-Sommerfeld usuelles, qui caractérisent les valeurs propres proches d'une valeur régulière du symbole principal, ont été obtenues il y a quelques années seulement pour les opérateurs de Toeplitz. Notre contribution consiste en l'extension de
APA, Harvard, Vancouver, ISO, and other styles
5

Kozoň, Marek. "Semiklasická energie eliptické Nambuovy-Gotovy struny." Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-392428.

Full text
Abstract:
Po zhrnutí potrebných teoretických základov a predošlého výskumu v ob- lasti, prezentujeme semi-klasickú kvantovaciu schému pre uzavretú Nambuovu- Gotovu strunu. Týmto zovšeobecňujeme predošlú prácu, ktorá bola vykonaná pre otvorenú strunu a uzavretú strunu kruhového tvaru. Pomocou metód kvan- tovej teórie po©a v zakrivených priestoročasoch počítame strednú hodnotu vo©- ného Hamiltoniánu struny rotujúcej v dvoch na seba kolmých priestorových rovinách v priestoročase všeobecnej dimenzie. Táto hodnota je priamo úmerná kvantovej korekcii k celkovej energii struny, ktorá má formu tzv. Reggeovho in
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Semi-classical quantization"

1

"Semi-classical quantization, adiabatic invariants and classical chaos." In Dynamical Chaos. Princeton University Press, 1989. http://dx.doi.org/10.1515/9781400860197.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zinn-Justin, Jean. "Multi-instantons in quantum mechanics (QM)." In Quantum Field Theory and Critical Phenomena. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0042.

Full text
Abstract:
In general, a linear combination of instanton solutions is not a solution of the imaginary-time equations of motion, because the equations not linear. Moreover, in quantum mechanics (QM), all solutions of the classical equations can depend only on one time collective coordinate (in this respect, in field theory, the situation is different). However, a linear combination of largely separated instantons (a multi-instanton configuration) renders the action almost stationary, because each instanton solution differs, at large distances, from a constant solution by only exponentially small corrections (in field theory this is only true if the theory is massive). A situation where multi-instantons play a role is provided by large order behaviour estimates of perturbation theory for potentials with degenerate minima. When one starts from a situation in which the minima are almost degenerate, one obtains, in the degenerate limit, a contribution of the superposition of two, infinitely separated, instantons, but with an infinite multiplicative coefficient. Indeed, in this limit, the fluctuations which tend to change the distance between the instanton and the anti-instanton induce a vanishingly small variation of the action. To correctly determine the limit, one has to introduce a second collective coordinate which describes these fluctuations. The determination, at leading order, of all many-instanton contributions has led to conjecture the exact form of the semi-classical expansion for potentials with degenerate minima, generalizing the exact Bohr-Sommerfeld quantization condition.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Semi-classical quantization"

1

Louati, Hanen, and Michel Rouleux. "Semi-classical quantization rules for a periodic orbit of hyperbolic type." In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Allen, T. J. "Analytic semi-classical quantization of a QCD string with light quarks." In THEORETICAL HIGH ENERGY PHYSICS: MRST 2001: A Tribute to Roger Migneron. AIP, 2001. http://dx.doi.org/10.1063/1.1435496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!