Contents
Academic literature on the topic 'Semi-conducteurs type p'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semi-conducteurs type p.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Semi-conducteurs type p"
Renaud, Adèle. "Semi-conducteurs de type p pour une application en cellules solaires à colorant." Nantes, 2013. https://archive.bu.univ-nantes.fr/pollux/show/show?id=bc5d055e-878e-4b2d-af7c-44949293c4df.
Full textThese thesis works focused on the realization of p-type dye sensitized solar cells (DSSCp) with a photocathode using an alternative to NiO. The objective was to replace the p-type semiconductor by more transparent and conductive materials and displaying a lower valence band energy to enable the generation of higher open circuit voltages (Voc). In this context, CuGaO2, LaOCuS and ZnO:N compounds were synthesized in nanoparticles form, characterized by X-ray diffraction and their flat band potentials (Vfb) were determined by complex impedance spectroscopy. As a result CuGaO2, LaOCuS and ZnO:N have Vfb significantly higher (0. 49 V/SCE), similar (0. 36 V/SCE) and lower (0. 20 V/SCE) than that of NiO (0. 33 V/SCE). Thus, dye sensitized solar cells based on the delafossite material were made and tested with the PMI-NDI dyad as dye and a cobalt complex as redox mediator. A greater VOC than that observed for NiO under the same conditions is highlighted. This result is unfortunately altered by a lower short circuit current (Jsc). To try to overcome this drawback, CuGaO2:Mg materials with a higher specific surface area than that of CuGaO2 have been prepared and tested. Simultaneously, we have focused on the achievement of cells based on LaOCuS, more conductive material than NiO. In addition, the p-type conductivity of ZnO:N was further characterized
Koussi-Daoud, Sana. "Préparation électrochimique et caractérisation de couches nanostructurées de semi-conducteurs de type p pour cellules photovoltaïques hybrides." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066505/document.
Full textThe objective of this thesis was the electrochemical deposition (ECD) of p-type semiconductors forthe fabrication of p-Dye Sensitized Solar Cells (p-DSSCs). The electrodeposition method remained unexploredfor the p-DSSC applications. The best conditions for ECD of nickel oxide layers with a controlled thickness havebeen defined. Nickel oxide has been deposited in water medium, in ethanol, in dimethyl sulfoxide (DMSO)medium and in a mixture of DMSO/water solvent. The layers have been characterized by XRD, Ramanspectroscopy, SEM, optical measurements… then have been tested as a photocathode in p-DSSCs. The cuprousoxide (Cu2O) electrodeposition in an aqueous bath has also been investigated. The photovoltaic efficiency of thevarious prepared layers has been evaluated in p-DSSCs. We have also prepared inverse opal organized structureswith a perfectly defined macropore organization and size using a macrosphere polystyrene template. Finally, wehave explored the ECD of a copper delafossite CuFeO2 in DMSO medium
DAVID, MARIE-ANNE. "Synthese de precurseurs moleclaires de films semi-conducteurs de type me (m=ga ; e=n, p)." Rennes 1, 1993. http://www.theses.fr/1993REN10182.
Full textLe, Pleux Loïc. "Conception de cellules photovoltaïques à base de semi-conducteurs de type p sensibilisés par un colorant." Nantes, 2010. http://www.theses.fr/2010NANT2048.
Full textThis work deals with the sensitization of p-type semi-conductors for photovoltaic conversion. New organic dyes were synthetised and characterised, which allow us to enhance NiO sensitized solar cells photoconversion yield. Moreover, the first organometallic dyes for ptype semi-conductors sensitization were prepared, which gave us a way to identify an optimal anchoring group instead of a carboxylic acid group which is usually used. New redox mediators were alos studied, and a tandem dye solar cell with a Voc of 950 mV was built. Nickel oxide is by far the major semiconductor used for the fabrication of p-DSSCs. It enables the development of this new type of research field, but it possesses a too accessible valence band potential to permit the fabrication of solar cells delivering a high voltage. Therefore, the use of new p-SCs with deeper valence band potentials would be most certainly beneficial to develop p-DSSCs with much higher solar energy conversion efficiencies. Results which were obtained with CuGaO2 delafossite are very encouraging. Taking into account that we have barely started to explore this new research field and the number of adjustable parameters, there are certainly plenty of exciting discoveries to be made and we can anticipate that important progresses will be achieved in the near future
Polteau, Baptiste. "Étude de semi-conducteurs de type p nanostructurés à base de métaux de transition pour une application en DSSC-p." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S046/document.
Full textTo improve the performances of p-Dye Sensitized Solar Cell (p-DSSC), this thesis work focuses on the synthesis and the characterization of p-type semiconductors (p-SCs) nanomaterials. These p-SCs with some specifications (low energy valence band, high specific surface area, high conductivity and transparency) were thoroughly studied. In this context, a strategy was developed to improve the NiO nanoparticles properties (commonly used as a reference) with higher nickel non-stoichiometry and nitrogen doping to promote the stabilization of the Ni3+/Ni2+ mixed valence (origin of the p-typness). This study was initiated with a nanostructured mixed valent Ni3O2(OH)4 precursor. Its thermal decomposition in air and ammonia at low temperature (250 °C) allows the formation of nanostructured Ni1-xO with a large amount of Ni vacancies (VNi = 25 %), a high specific surface area (240 m2.g-1) and a nitrogen doping (NiO:N). Moreover, two non-oxides materials with delafossite structure type, namely - nickel carbodiimide (NiNCN) and manganese carbodiimide (MnNCN) - were prepared and characterized as new p-type semiconductors. Thus, the first p-DSSC with NiNCN material was built with success
Le, Thi Ly. "Preparation of transition metal oxide thin films used as solar absorbers." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30120/document.
Full textThe present thesis deals with the synthesis and structural characterization of transition metals doped cobalt and manganese based spinel oxides MxCo2-xMnO4 (with M = Ni, Cu, Zn and x = 0, 0.15, 0.30, 0.60), in relationships with their conduction and optical properties. These materials are good p-type semiconductors and light absorbers in the UV and visible regions, therefore interesting for photo-catalysis and photovoltaics. The first chapter is a brief overview of the energy context and nature of global warming, renewable energy resources and a literature review of materials used for solar cells including the newly studied system type based on all-oxide photovoltaics. Chapter two presents all the experimental methods and characterization techniques used for this research work. The inorganic polycondensation method optimized in our laboratory and used for synthesizing spinel oxide powders at low temperature (T < 120 °C) without complex organic agents is described. Then, the preparation of colloidal dispersions stabilized at room temperature using an azeotrope solution based on absolute ethanol and water only is described, in order to obtain homogenous oxide thin films by the dip-coating technique. The third chapter presents detailed results on the atomic and electronic structures of the materials under study performed by using a full density functional theory investigation thanks to a collaboration with the CEMES. First principles electronic structure calculations were performed for the first time to our knowledge over the whole spinel oxide solid solution range MnxCo3-xO4 (0 = x = 3), and compared with our experimental data. A small band gap of ~ 0.8 eV is calculated, due to metal-metal transitions in B sites. The experimental band gaps observed at 1.5 and 2.2 eV, which increase with the amount of manganese, would correspond to B-A and O-B transitions, respectively. The magnetic properties of these materials are also discussed. Chapter four shows the experimental details of the preparation and characterization of the spinel oxide powders, colloidal dispersions and thin films. All samples (Ni, Cu or Zn-doped Co2MnO4) are well crystallized with a single cubic spinel oxide phase. Nanoparticles are spherical and their diameters vary from 20 to 50 nm, doping with Zn, Ni to Cu, mainly due to steric effects. Homogenous oxide thin films were deposited on quartz, alumina, titanium nitride and platinum in order to measure their optical and electrical properties, and to increase the film compactness (thus electrical conductivity and light absorbance) after thermal treatment. Thin films are well preserved up to 900 °C in air and can handle higher temperatures (up to 1000 ºC) on platinum without reaction with the substrate. Chapter five deals with the optical and electrical properties of thin films before and after sintering. The optical properties were measured over a wide range of wavelengths (UV-VIS). The optical properties of spinel oxide thin films show two strong absorption band gaps for each composition at the UV front and close to 700 nm in wavelength. These band gaps are direct and mostly lower than 2 eV for the first band. Both band gaps increase with further doping and decrease after annealing. Thin film resistivity is about 105 .cm at room temperature and decreases with increasing temperature (a few tens of 20cm at 300 ºC). In parallel to the soft chemistry method and dip-coating technique used to prepare our spinel oxide thin layers, Pulsed Laser Deposition technique was used to prepare pure Co2MnO4 and Cu2O dense thin films. Their structural and optical main features are discussed
Chavillon, Benoît. "Synthèse et caractérisation d'oxydes transparents conducteurs de type p pour application en cellules solaires à colorant." Nantes, 2011. http://www.theses.fr/2011NANT2024.
Full textThe objective of the thesis was clearly identified as the synthesis of nanostructured p-type semi-conductors for the fabrication of p-Dye Sensitized Solar Cells (p-DSSCs). In that framework, our studies concerned first the preparation of crack free homogeneous films of NiO with control of their thickness by an hydrothermal method. Then, a low fraction of metallic nickel was systematically detected which could explain in part the good photovoltaic performances of solar cell with NiO as photocathode. However, to achieve higher yield, NiO must be replaced by an other p-type semiconductor to deliver higher Voc. In that context, the synthesis of CuGaO2 nanoparticles by an hydrothermal method was undertaken with ethylene glycol as reducing agent. P-DSSC was set up with this material and exhibits interesting photovoltaic performance. In parallel, synthesis of nanoparticles of LaOCuS was carried out. Unfortunately, this compound has not been tested in dye sensitized solar cell because of a lack of an appropriate redox mediator. Finally, the stabilization of p-type ZnO:N was performed by nitridation of zinc peroxide ZnO2. This compound crystallizes with a wurtzite structure which accommodates the presence of peroxide groups, nitride anions and zinc vacancies