Academic literature on the topic 'Semi linear equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semi linear equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semi linear equation"
Wang, Feizhi, and Yisheng Huang. "On a semi-linear Schrödinger equation in." Nonlinear Analysis: Theory, Methods & Applications 62, no. 5 (August 2005): 833–48. http://dx.doi.org/10.1016/j.na.2005.03.087.
Full textKrieger, J., and W. Schlag. "On the focusing critical semi-linear wave equation." American Journal of Mathematics 129, no. 3 (2007): 843–913. http://dx.doi.org/10.1353/ajm.2007.0021.
Full textBokanowski, Olivier, Athena Picarelli, and Christoph Reisinger. "Stability and convergence of second order backward differentiation schemes for parabolic Hamilton–Jacobi–Bellman equations." Numerische Mathematik 148, no. 1 (May 2021): 187–222. http://dx.doi.org/10.1007/s00211-021-01202-x.
Full textMahomed, F. M., A. Qadir, and A. Ramnarain. "Laplace-Type Semi-Invariants for a System of Two Linear Hyperbolic Equations by Complex Methods." Mathematical Problems in Engineering 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/202973.
Full textANH, CUNG THE, and TANG QUOC BAO. "PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMI-LINEAR DEGENERATE PARABOLIC EQUATION." Glasgow Mathematical Journal 52, no. 3 (August 25, 2010): 537–54. http://dx.doi.org/10.1017/s0017089510000418.
Full textYin, Zhongqi. "Lipschitz stability for a semi-linear inverse stochastic transport problem." Journal of Inverse and Ill-posed Problems 28, no. 2 (April 1, 2020): 185–93. http://dx.doi.org/10.1515/jiip-2018-0115.
Full textAvdonin, S. A., B. P. Belinskiy, and John V. Matthews. "Inverse problem on the semi-axis: local approach." Tamkang Journal of Mathematics 42, no. 3 (August 24, 2011): 275–93. http://dx.doi.org/10.5556/j.tkjm.42.2011.916.
Full textCastro, Hernán. "Oscillations in a semi-linear singular Sturm–Liouville equation." Asymptotic Analysis 94, no. 3-4 (September 16, 2015): 363–73. http://dx.doi.org/10.3233/asy-151318.
Full textOghre, E. O., and B. I. Olajuwon. "Fourier Transform Solution of the Semi-linear Parabolic Equation." Journal of Applied Sciences 5, no. 3 (February 15, 2005): 492–95. http://dx.doi.org/10.3923/jas.2005.492.495.
Full textV. Lê, Út. "Contraction-Galerkin method for a semi-linear wave equation." Communications on Pure & Applied Analysis 9, no. 1 (2010): 141–60. http://dx.doi.org/10.3934/cpaa.2010.9.141.
Full textDissertations / Theses on the topic "Semi linear equation"
Michalk, Linda [Verfasser]. "Semi-Analytical Semi-Lagrangian Discontinuous Galerkin Advection Scheme for the Compressible Linear Advection Equation / Linda Michalk." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1176707140/34.
Full textOswald, Luc. "Etude de problemes non lineaires avec singularites." Paris 6, 1987. http://www.theses.fr/1987PA066060.
Full textBouchitte, Guy. "Calcul des variations en cadre non reflexif : representation et relaxation de fonctionnelles integrales sur un espace de mesures, applications en plasticite et homogeneisation." Perpignan, 1987. http://www.theses.fr/1987PERP0033.
Full textBui, Tang Bao Ngoc. "Semi-linear waves with time-dependent speed and dissipation." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-147037.
Full textCherfils, Laurence. "Méthode de cheminement adaptative pour les problèmes semi-linéaires dépendant d'un paramètre." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10105.
Full textEslick, John. "A Dynamical Study of the Evolution of Pressure Waves Propagating through a Semi-Infinite Region of Homogeneous Gas Combustion Subject to a Time-Harmonic Signal at the Boundary." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1367.
Full textNascimento, Wanderley Nunes do. "Klein-Gordon models with non-effective time-dependent potential." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7453.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:35:27Z (GMT) No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:35:33Z (GMT) No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5)
Made available in DSpace on 2016-09-26T20:35:40Z (GMT). No. of bitstreams: 1 TeseWNN.pdf: 1247691 bytes, checksum: 63f743255181169a9bb4ca1dfd2312c2 (MD5) Previous issue date: 2016-02-19
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In this thesis we study the asymptotic properties for the solution of the Cauchy problem for the Klein-Gordon equation with non-effective time-dependent potential. The main goal was define a suitable energy related to the Cauchy problem and derive decay estimates for such energy. Strichartz’ estimates and results of scattering and modified scattering was established. The C m theory and the stabilization condition was applied to treat the case where the coefficient of the potential term has very fast oscillations. Moreover, we consider a semi-linear wave model scale-invariant time- dependent with mass and dissipation, in this step we used linear estimates related with the semi-linear model to prove global existence (in time) of energy solutions for small data and we show a blow-up result for a suitable choice of the coefficients.
Nesta tese estudamos as propriedades assintóticas para a solução do problema de Cauchy para a equação de Klein-Gordon com potencial não efetivo dependente do tempo. O principal objetivo foi definir uma energia adequada relacionada ao problema de Cauchy e derivar estimativas para tal energia. Estimativas de Strichartz e resultados de scatering e scatering modificados também foram estabelecidos. A teoria C m e a condição de estabilização foram aplicados para tratar o caso em que o coeficiente da massa oscila muito rápido. Além disso, consideramos um mod- elo de onda semi-linear scale-invariante com massa e dissipação dependentes do tempo, nesta etapa usamos as estimativas lineares de tal modelo para provar ex- istência global (no tempo) de solução de energia para dados iniciais suficientemente pequenos e demonstramos um resultado de blow-up para uma escolha adequada dos coeficientes.
Mtiraoui, Ahmed. "I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées." Thesis, Toulon, 2016. http://www.theses.fr/2016TOUL0010/document.
Full textIn this Phd thesis, we considers two parts. The first one establish the existence and the uniquness of the solutions of multidimensional backward doubly stochastic differential equations (BDSDEs in short) and the stochastic partial differential equations (SPDEs in short) in the superlinear growth generators. In the second part, we study the stochastic controls problems driven by a coupled Forward-Backward stochastic differentialequations (FBSDEs in short).• BDSDEs and SPDEs with a superlinear growth generators :We deal with multidimensional BDSDE with a superlinear growth generator and a square integrable terminal datum. We introduce new local conditions on the generator then we show that they ensure the existence and uniqueness as well as the stability of solutions. Our work go beyond the previous results on the subject. Although we are focused on multidimensional case, the uniqueness result we establish is new in one dimensional too. As application, we establish the existence and uniqueness of probabilistic solutions tosome semilinear SPDEs with superlinear growth generator. By probabilistic solution, we mean a solution which is representable throughout a BDSDEs.• Controlled coupled FBSDEs :We establish the existence of an optimal control for a system driven by a coupled FBDSE. The cost functional is defined as the initial value of the backward component of the solution. We construct a sequence of approximating controlled systems, for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we get the existence of a feedback optimal control. The convexity condition is used to ensure that the optimal control is strict. In this part, we study two cases of diffusions : degenerate and non-degenerate
Maach, Fatna. "Existence pour des systèmes de réaction-diffusion ou quasi linéaires avec loi de balance." Nancy 1, 1994. http://www.theses.fr/1994NAN10121.
Full textDavidson, Bryan Duncan. "Recursive projection for semi-linear partial differential equations." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294932.
Full textBooks on the topic "Semi linear equation"
Melrose, Richard B. Semi-linear diffraction of conormal waves. Paris: Société mathématique de France, 1996.
Find full textMelrose, Richard B. Semi-linear diffraction of conormal waves. Paris: Société Mathématique de France, 1996.
Find full textMelrose, Richard B. Semi-linear diffraction of conormal waves. Paris: Société Mathématique de France, 1996.
Find full textHaraux, Alain. Semi-linear hyperbolic problems in bounded domains. Chur: Harwood Academic Publishers, 1987.
Find full textZhao, Huaizhong. The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations. [s.l.]: typescript, 1994.
Find full textSmolarski, Dennis Chester. An optimum semi-iterative method for solving any linear set with a square matrix. Urbana, Ill. (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1985.
Find full textMeyer, J. C., and D. J. Needham. Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations. Cambridge University Press, 2015.
Find full textEngel, Klaus-Jochen, and Rainer Nagel. One-Parameter Semigroups for Linear Evolution Equations (Graduate Texts in Mathematics). Springer, 1999.
Find full textBook chapters on the topic "Semi linear equation"
Melliani, Said. "Semi-linear Equation with Fuzzy Parameters." In Lecture Notes in Computer Science, 271–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-540-48061-7_33.
Full textRasulov, Abdujabbor, Gulnora Raimova, and Matyokub Bakoev. "Monte Carlo Solution of Dirichlet Problem for Semi-linear Equation." In Finite Difference Methods. Theory and Applications, 443–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11539-5_51.
Full textBradji, Abdallah, and Moussa Ziggaf. "A Convergence Result of a Linear SUSHI Scheme Using Characteristics Method for a Semi-linear Parabolic Equation." In Advances in High Performance Computing, 452–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55347-0_38.
Full textDozzi, M., E. T. Kolkovska, and J. A. López-Mimbela. "Finite-Time Blowup and Existence of Global Positive Solutions of a Semi-linear Stochastic Partial Differential Equation with Fractional Noise." In Modern Stochastics and Applications, 95–108. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03512-3_6.
Full textTriebel, Hans. "Truncations and Semi-linear Equations." In The Structure of Functions, 355–402. Basel: Springer Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-0569-8_4.
Full textDiagana, Toka. "Semi-Group of Linear Operators." In Semilinear Evolution Equations and Their Applications, 45–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00449-1_3.
Full textAbbas, Saïd, and Mouffak Benchohra. "Impulsive Semi-linear Functional Differential Equations." In Developments in Mathematics, 191–259. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17768-7_9.
Full textTriebel, Hans. "Semi-linear Equations; the Q-method." In The Structure of Functions, 389–402. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8257-6_27.
Full textLantsman, M. H. "Power Order Growth Functions on the Positive Semi-Axis." In Asymptotics of Linear Differential Equations, 90–127. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9797-5_5.
Full textLantsman, M. H. "Linear Differential Equations in Singular Cases on the Positive Semi-Axis." In Asymptotics of Linear Differential Equations, 273–306. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9797-5_11.
Full textConference papers on the topic "Semi linear equation"
Barron-Romero, Carlos. "On the controllability of a Cubic Semi-Linear Wave Equation." In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2019. http://dx.doi.org/10.1109/codit.2019.8820332.
Full textRamirez, Lynnette E. S., and Carlos F. M. Coimbra. "A Constitutive Equation for Linear Viscoelastic Thermoset Materials Undergoing Compression." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34169.
Full textInsperger, Tamás, and Gábor Stépán. "Semi-Discretization of Delayed Dynamical Systems." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21446.
Full textAkkaya, Tugce, and Wim T. van Horssen. "On Boundary Damping for Semi-Infinite Strings and Beams." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50457.
Full textCai, Guang-Bin, Ling-Ling Lv, Hua-Feng He, and Tao Zhou. "Periodic Lyapunov equation based approach to semi-global almost disturbance decoupling of continuous-time periodic linear systems subject to input saturation." In 2015 34th Chinese Control Conference (CCC). IEEE, 2015. http://dx.doi.org/10.1109/chicc.2015.7259632.
Full textRai, K. N., and D. C. Rai. "A Finite Element Method for the Solution of Free Boundary Problem." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56777.
Full textWang, D. H., and W. H. Liao. "Semi-Active Suspension Systems for Railway Vehicles Based on Magnetorheological Fluid Dampers." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34776.
Full textVlahostergios, Zinon, and Kyros Yakinthos. "Modeling Separation-Induced Transition Using a Non-Linear Three Equation Turbulence Model and a Reynolds Stress Turbulence Model." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23331.
Full textRajaomazava, Tolotra Emerry, Mustapha Benaouicha, and Jacques-Andre´ Astolfi. "A Comparison Study of Coupling Algorithms for Fluid-Structure Interaction Problems." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57573.
Full textInsperger, Tama´s, Tony L. Schmitz, Timothy J. Burns, and Ga´bor Ste´pa´n. "Comparison of Analytical and Numerical Simulations for Variable Spindle Speed Turning." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41809.
Full textReports on the topic "Semi linear equation"
Chandrasekaran, S., P. DeWilde, M. Gu, T. Pals, A. van der Veen, and D. White. Fast Stable Solvers for Sequentially Semi-Seperable Linear Systems of Equations. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/15003389.
Full text