Journal articles on the topic 'Semi linear equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Semi linear equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Feizhi, and Yisheng Huang. "On a semi-linear Schrödinger equation in." Nonlinear Analysis: Theory, Methods & Applications 62, no. 5 (August 2005): 833–48. http://dx.doi.org/10.1016/j.na.2005.03.087.
Full textKrieger, J., and W. Schlag. "On the focusing critical semi-linear wave equation." American Journal of Mathematics 129, no. 3 (2007): 843–913. http://dx.doi.org/10.1353/ajm.2007.0021.
Full textBokanowski, Olivier, Athena Picarelli, and Christoph Reisinger. "Stability and convergence of second order backward differentiation schemes for parabolic Hamilton–Jacobi–Bellman equations." Numerische Mathematik 148, no. 1 (May 2021): 187–222. http://dx.doi.org/10.1007/s00211-021-01202-x.
Full textMahomed, F. M., A. Qadir, and A. Ramnarain. "Laplace-Type Semi-Invariants for a System of Two Linear Hyperbolic Equations by Complex Methods." Mathematical Problems in Engineering 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/202973.
Full textANH, CUNG THE, and TANG QUOC BAO. "PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMI-LINEAR DEGENERATE PARABOLIC EQUATION." Glasgow Mathematical Journal 52, no. 3 (August 25, 2010): 537–54. http://dx.doi.org/10.1017/s0017089510000418.
Full textYin, Zhongqi. "Lipschitz stability for a semi-linear inverse stochastic transport problem." Journal of Inverse and Ill-posed Problems 28, no. 2 (April 1, 2020): 185–93. http://dx.doi.org/10.1515/jiip-2018-0115.
Full textAvdonin, S. A., B. P. Belinskiy, and John V. Matthews. "Inverse problem on the semi-axis: local approach." Tamkang Journal of Mathematics 42, no. 3 (August 24, 2011): 275–93. http://dx.doi.org/10.5556/j.tkjm.42.2011.916.
Full textCastro, Hernán. "Oscillations in a semi-linear singular Sturm–Liouville equation." Asymptotic Analysis 94, no. 3-4 (September 16, 2015): 363–73. http://dx.doi.org/10.3233/asy-151318.
Full textOghre, E. O., and B. I. Olajuwon. "Fourier Transform Solution of the Semi-linear Parabolic Equation." Journal of Applied Sciences 5, no. 3 (February 15, 2005): 492–95. http://dx.doi.org/10.3923/jas.2005.492.495.
Full textV. Lê, Út. "Contraction-Galerkin method for a semi-linear wave equation." Communications on Pure & Applied Analysis 9, no. 1 (2010): 141–60. http://dx.doi.org/10.3934/cpaa.2010.9.141.
Full textQi-guang, Wu, and Li Ji-chun. "Numerical solutions for singularly perturbed semi-linear parabolic equation." Applied Mathematics and Mechanics 14, no. 9 (September 1993): 793–801. http://dx.doi.org/10.1007/bf02457474.
Full textLiu, Can, Xinming Zhang, and Boying Wu. "Quasilinearized Semi-Orthogonal B-Spline Wavelet Method for Solving Multi-Term Non-Linear Fractional Order Equations." Mathematics 8, no. 9 (September 10, 2020): 1549. http://dx.doi.org/10.3390/math8091549.
Full textTalay Akyildiz, F., and K. Vajravelu. "Galerkin-Chebyshev Pseudo Spectral Method and a Split Step New Approach for a Class of Two dimensional Semi-linear Parabolic Equations of Second Order." Applied Mathematics and Nonlinear Sciences 3, no. 1 (June 8, 2018): 255–64. http://dx.doi.org/10.21042/amns.2018.1.00019.
Full textBlömker, Dirk, Giuseppe Cannizzaro, and Marco Romito. "Random initial conditions for semi-linear PDEs." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, no. 3 (January 29, 2019): 1533–65. http://dx.doi.org/10.1017/prm.2018.157.
Full textBUCKWAR, E., M. G. RIEDLER, and P. E. KLOEDEN. "THE NUMERICAL STABILITY OF STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE." Stochastics and Dynamics 11, no. 02n03 (September 2011): 265–81. http://dx.doi.org/10.1142/s0219493711003279.
Full textPereira, D. C., and C. A. Raposo. "Asymptotic behavior for semi-linear wave equation with weak damping." International Journal of Mathematical Analysis 7 (2013): 713–18. http://dx.doi.org/10.12988/ijma.2013.13068.
Full textTucsnak, Marius. "Semi-internal Stabilization for a Non-linear Bernoulli-Euler Equation." Mathematical Methods in the Applied Sciences 19, no. 11 (July 25, 1996): 897–907. http://dx.doi.org/10.1002/(sici)1099-1476(19960725)19:11<897::aid-mma801>3.0.co;2-#.
Full textShen, Ruipeng. "A semi-linear energy critical wave equation with an application." Journal of Differential Equations 261, no. 11 (December 2016): 6437–84. http://dx.doi.org/10.1016/j.jde.2016.08.043.
Full textCastro, Rodrigo, and Patricio L. Felmer. "Semi-Classical Limit for Radial Non-Linear Schr�dinger Equation." Communications in Mathematical Physics 256, no. 2 (March 15, 2005): 411–35. http://dx.doi.org/10.1007/s00220-005-1320-y.
Full textAngenent, S. B. "The Morse-Smale property for a semi-linear parabolic equation." Journal of Differential Equations 62, no. 3 (May 1986): 427–42. http://dx.doi.org/10.1016/0022-0396(86)90093-8.
Full textD'AVENIA, PIETRO, EUGENIO MONTEFUSCO, and MARCO SQUASSINA. "ON THE LOGARITHMIC SCHRÖDINGER EQUATION." Communications in Contemporary Mathematics 16, no. 02 (April 2014): 1350032. http://dx.doi.org/10.1142/s0219199713500326.
Full textZhang, Rongpei, Xijun Yu, Mingjun Li, and Zhen Wang. "A semi-implicit integration factor discontinuous Galerkin method for the non-linear heat equation." Thermal Science 23, no. 3 Part A (2019): 1623–28. http://dx.doi.org/10.2298/tsci180921232z.
Full textLissy, Pierre, Yannick Privat, and Yacouba Simporé. "Insensitizing control for linear and semi-linear heat equations with partially unknown domain." ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 50. http://dx.doi.org/10.1051/cocv/2018035.
Full textHuang, Chen. "A variant of Clark’s theorem and its applications for nonsmooth functionals without the global symmetric condition." Advances in Nonlinear Analysis 11, no. 1 (July 29, 2021): 285–303. http://dx.doi.org/10.1515/anona-2020-0197.
Full textFilimonova, I. V., and T. S. Khachlaev. "ON ASYMPTOTIC PROPERTIES OF SOLUTIONS, DEFINED ON THE HALF OF AXIS OF ONE SEMILINEAR ODE." Vestnik of Samara University. Natural Science Series 21, no. 6 (May 17, 2017): 130–34. http://dx.doi.org/10.18287/2541-7525-2015-21-6-130-134.
Full textTumolo, Giovanni. "A mass conservative TR-BDF2 semi-implicit semi-Lagrangian DG discretization of the shallow water equations on general structured meshes of quadrilaterals." Communications in Applied and Industrial Mathematics 7, no. 3 (September 1, 2016): 165–90. http://dx.doi.org/10.1515/caim-2016-0026.
Full textDehghan, Mehdi. "Determination of an unknown parameter in a semi-linear parabolic equation." Mathematical Problems in Engineering 8, no. 2 (2002): 111–22. http://dx.doi.org/10.1080/10241230212906.
Full textKosmatov, Nickolai. "A coincidence problem for a second-order semi-linear differential equation." Electronic Journal of Qualitative Theory of Differential Equations, no. 82 (2020): 1–12. http://dx.doi.org/10.14232/ejqtde.2020.1.82.
Full textNahas, J., and G. Ponce. "On the Persistent Properties of Solutions to Semi-Linear Schrödinger Equation." Communications in Partial Differential Equations 34, no. 10 (September 30, 2009): 1208–27. http://dx.doi.org/10.1080/03605300903129044.
Full textSUGITANI, YOUSUKE, and SHUICHI KAWASHIMA. "DECAY ESTIMATES OF SOLUTIONS TO A SEMI-LINEAR DISSIPATIVE PLATE EQUATION." Journal of Hyperbolic Differential Equations 07, no. 03 (September 2010): 471–501. http://dx.doi.org/10.1142/s0219891610002207.
Full textPan, Xingbin. "Existence of singular solutions of semi-linear elliptic equation in Rn." Journal of Differential Equations 94, no. 1 (November 1991): 191–203. http://dx.doi.org/10.1016/0022-0396(91)90108-l.
Full textDu, Qiang, Lili Ju, Xiao Li, and Zhonghua Qiao. "Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation." Journal of Computational Physics 363 (June 2018): 39–54. http://dx.doi.org/10.1016/j.jcp.2018.02.023.
Full textKosmatov, Nickolai. "A coincidence problem for a second-order semi-linear differential equation." Electronic Journal of Qualitative Theory of Differential Equations, no. 82 (2020): 1–12. http://dx.doi.org/10.14232/ejqtde.2020.1.82.
Full textLi, Yuan, and Jiang Qin. "Infinitely many Solutions of Semi-Linear Elliptic Equation with a Logarithmic Nonlinear Term." Applied Mechanics and Materials 496-500 (January 2014): 2216–19. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.2216.
Full textZhang, Yinnan, and Weian Zheng. "Discretizing a backward stochastic differential equation." International Journal of Mathematics and Mathematical Sciences 32, no. 2 (2002): 103–16. http://dx.doi.org/10.1155/s0161171202110234.
Full textNaito, Yūki. "An ODE approach to the multiplicity of self-similar solutions for semi-linear heat equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 136, no. 4 (August 2006): 807–35. http://dx.doi.org/10.1017/s0308210500004741.
Full textZhou, Jun. "Numerical simulations of the energy-stable scheme for Swift-Hohenberg equation." Thermal Science 23, Suppl. 3 (2019): 669–76. http://dx.doi.org/10.2298/tsci180515080z.
Full textMatus, P. P., and H. T. K. Anh. "Compact difference schemes for Klein-Gordon equation." Doklady of the National Academy of Sciences of Belarus 64, no. 5 (November 5, 2020): 526–33. http://dx.doi.org/10.29235/1561-8323-2020-64-5-526-533.
Full textDiblík, Josef, Irada Dzhalladova, Mária Michalková, and Miroslava Růžičková. "Moment Equations in Modeling a Stable Foreign Currency Exchange Market in Conditions of Uncertainty." Abstract and Applied Analysis 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/172847.
Full textXue, Chun Fang. "Method of Lines to Solve the Linear Temperature Field of LENS." Advanced Materials Research 1120-1121 (July 2015): 1441–45. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.1441.
Full textLiang, Chuangchuang, and Pengchao Wang. "BLOW-UP RATE FOR THE SEMI-LINEAR WAVE EQUATION IN BOUNDED DOMAIN." Bulletin of the Korean Mathematical Society 52, no. 1 (January 31, 2015): 173–82. http://dx.doi.org/10.4134/bkms.2015.52.1.173.
Full textLiu, Yongqin. "The point-wise estimates of solutions for semi-linear dissipative wave equation." Communications on Pure and Applied Analysis 12, no. 1 (September 2012): 237–52. http://dx.doi.org/10.3934/cpaa.2013.12.237.
Full textPokrovskii, A., and O. Rasskazov. "A symmetric solution of a semi-linear Duffing equation with Preisach nonlinearity." Physica B: Condensed Matter 372, no. 1-2 (February 2006): 30–32. http://dx.doi.org/10.1016/j.physb.2005.10.120.
Full textFila, Marek, John R. King, Michael Winkler, and Eiji Yanagida. "Very slow grow-up of solutions of a semi-linear parabolic equation." Proceedings of the Edinburgh Mathematical Society 54, no. 2 (March 30, 2011): 381–400. http://dx.doi.org/10.1017/s0013091509001497.
Full textVaredi, S. M., M. J. Hosseini, M. Rahimi, and D. D. Ganji. "He's variational iteration method for solving a semi-linear inverse parabolic equation." Physics Letters A 370, no. 3-4 (October 2007): 275–80. http://dx.doi.org/10.1016/j.physleta.2007.05.100.
Full textMabrouk, Mongi. "A variational approach for a semi-linear parabolic equation with measure data." Annales de la faculté des sciences de Toulouse Mathématiques 9, no. 1 (2000): 91–112. http://dx.doi.org/10.5802/afst.955.
Full textDao, Tuan Anh, and Ahmad Z. Fino. "Critical exponent for semi‐linear structurally damped wave equation of derivative type." Mathematical Methods in the Applied Sciences 43, no. 17 (June 25, 2020): 9766–75. http://dx.doi.org/10.1002/mma.6649.
Full textFeizmohammadi, Ali, and Lauri Oksanen. "An inverse problem for a semi-linear elliptic equation in Riemannian geometries." Journal of Differential Equations 269, no. 6 (September 2020): 4683–719. http://dx.doi.org/10.1016/j.jde.2020.03.037.
Full textGanji, D. D. "A semi-Analytical technique for non-linear settling particle equation of Motion." Journal of Hydro-environment Research 6, no. 4 (December 2012): 323–27. http://dx.doi.org/10.1016/j.jher.2012.04.002.
Full textAng, Dang Dinh, and A. Pham Ngoc Dinh. "Mixed problem for some semi-linear wave equation with a nonhomogeneous condition." Nonlinear Analysis: Theory, Methods & Applications 12, no. 6 (June 1988): 581–92. http://dx.doi.org/10.1016/0362-546x(88)90016-8.
Full text