Academic literature on the topic 'Semiconductive polymers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semiconductive polymers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semiconductive polymers"
Liu, Jian-Jun, Yong Chen, Mei-Jin Lin, Chang-Cang Huang, and Wen-Xin Dai. "Two-semiconductive-component hybrid coordination polymers with controllable photo-induced electron-transfer properties." Dalton Transactions 45, no. 15 (2016): 6339–42. http://dx.doi.org/10.1039/c6dt00455e.
Full textLu, Ping, Haiquan Zhang, Yan Zheng, Yuguang Ma, Guo Zhang, Xinfang Chen, and Jiacong Shen. "New ultraviolet emissive wide-bandgap semiconductive polymers." Synthetic Metals 135-136 (April 2003): 205–6. http://dx.doi.org/10.1016/s0379-6779(02)00576-3.
Full textMousavi, Hamze, Samira Jalilvand, Jabbar Khodadadi, and Mohadese Yousefvand. "Tight-binding description of semiconductive conjugated polymers." Computational and Theoretical Chemistry 1199 (May 2021): 113190. http://dx.doi.org/10.1016/j.comptc.2021.113190.
Full textYan, Wei, Han Hao, and Hegen Zheng. "Four coordination polymers derived from a one-pot reaction and their controlled synthesis." Dalton Transactions 45, no. 15 (2016): 6418–23. http://dx.doi.org/10.1039/c6dt00349d.
Full textHassanein, Khaled, Chiara Cappuccino, Pilar Amo-Ochoa, Jesús López-Molina, Lucia Maini, Elisa Bandini, and Barbara Ventura. "Multifunctional coordination polymers based on copper(i) and mercaptonicotinic ligands: synthesis, and structural, optical and electrical characterization." Dalton Transactions 49, no. 30 (2020): 10545–53. http://dx.doi.org/10.1039/d0dt01127d.
Full textDadvar, Elahe, Roshanak Rezaei Kalantary, Homayon Ahmad Panahi, and Majid Peyravi. "Efficiency of Polymeric Membrane Graphene Oxide-TiO2for Removal of Azo Dye." Journal of Chemistry 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/6217987.
Full textQian, Kun, Rui Qiao, Sheng Chen, Hang Luo, and Dou Zhang. "Enhanced permittivity in polymer blends via tailoring the orderliness of semiconductive liquid crystalline polymers and intermolecular interactions." Journal of Materials Chemistry C 8, no. 25 (2020): 8440–50. http://dx.doi.org/10.1039/d0tc00766h.
Full textCan-Ortiz, Alejandro, Lionel Laudebat, Zarel Valdez-Nava, and Sombel Diaham. "Nonlinear Electrical Conduction in Polymer Composites for Field Grading in High-Voltage Applications: A Review." Polymers 13, no. 9 (April 22, 2021): 1370. http://dx.doi.org/10.3390/polym13091370.
Full textAbu-Ayana, Y. M., R. M. Mohsen, and A. Ghoneim. "Synthesis and Evaluation of Semiconductive Polymer Compositions." Polymer-Plastics Technology and Engineering 45, no. 6 (July 2006): 699–705. http://dx.doi.org/10.1080/03602550600609614.
Full textShen, Jian, Iori Sugimoto, Takuya Matsumoto, Shohei Horike, Yasuko Koshiba, Kenji Ishida, Atsunori Mori, and Takashi Nishino. "Fabrication and characterization of elastomeric semiconductive thiophene polymers by peroxide crosslinking." Polymer Journal 51, no. 2 (October 17, 2018): 257–63. http://dx.doi.org/10.1038/s41428-018-0137-4.
Full textDissertations / Theses on the topic "Semiconductive polymers"
Kawase, Takeo. "Device structures made with semiconductive conjugated polymers." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246551.
Full textHarris, Natalie K. "Gas detection using semiconducting polymers." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262652.
Full textRoot, Samuel E. "Mechanical Properties of Semiconducting Polymers." Thesis, University of California, San Diego, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10745535.
Full textMechanical softness and deformability underpin most of the advantages offered by semiconducting polymers. A detailed understanding of the mechanical properties of these materials is crucial for the design and manufacturing of robust, thin-film devices such as solar cells, displays, and sensors. The mechanical behavior of polymers is a complex function of many interrelated factors that span multiple scales, ranging from molecular structure, to microstructural morphology, and device geometry. This thesis builds a comprehensive understanding of the thermomechanical properties of polymeric semiconductors through the development and experimental-validation of computational methods for mechanical simulation. A predictive computational methodology is designed and encapsulated into open-sourced software for automating molecular dynamics simulations on modern supercomputing hardware. These simulations are used to explore the role of molecular structure/weight and processing conditions on solid-state morphology and thermomechanical behavior. Experimental characterization is employed to test these predictions—including the development of simple, new techniques for rigorously characterizing thermal transitions and fracture mechanics of thin films.
Mills, Christopher Alan. "Investigations into low band-gap, semiconducting polymers." Thesis, Bangor University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340950.
Full textGomes, Henrique Leonel. "Fabrication and characterization of electronic devices based on poly(3-methlythiophene)." Thesis, Bangor University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358622.
Full textVongsaysy, Uyxing. "Studies on processing additives introduced to increase the efficiency of organic solar cells : selection and mechanistic effects." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0230/document.
Full textPolymeric bulk heterojunction (BHJ) organic solar cells (OSCs) have attracted significant interest as a low cost and renewable technology to harvest solar energy. However, their generally low efficiencies are a barrier for their movement into commercial application. Controlling the BHJ morphology is a key step in the pursuit of higher OSC efficiencies. Processing additives have emerged as effective components for optimizing the BHJ morphology. This thesis provides a comprehensive study on the introduction of additives in the formulation of semiconductors. The semiconductor system studied is based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61 BM). First, a method was developed to guide the selection of additives from a large range of solvents. This method employs the Hansen solubility parameters of the semiconductors and was successfully applied to the P3HT/PC61 BMsystem. It resulted in the identification of three new efficient additives. Next, the mechanistic role of additives in influencing the BHJ morphology is investigated by performing structural, electrical and optical characterizations. Also, the effect of additives on OSC performance was found to depend on the type of the OSC architecture. Such differences were correlated to the variations in charge carrier mobilities caused by the additive. Furthermore, photo-stability tests, performed on different types of OSCs, showed that processing additives can improve the photo-stability. The origin of such improvement is investigated. Finally, the scope of this study is extended to two other donor semiconducting polymers
Montenegro, Rivelino V. D. "Crystallization, biomimetics and semiconducting polymers in confined systems." Phd thesis, Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2005/76/.
Full textKristallisation, Biomimetik und halbleitende Polymere in räumlich begrenzten Systemen:
Öl und Wasser mischen sich nicht, man kann aber aus beiden Flüssigkeiten Emulsionen herstellen, bei denen Tröpfchen der einen Flüssigkeit in der anderen Flüssigkeit vorliegen. Das heißt, es können entweder Öltröpfchen in Wasser oder Wassertröpfchen in Öl erzeugt werden. Aus täglichen Erfahrungen, z.B. beim Kochen weiß man jedoch, dass sich eine Emulsion durch Schütteln oder Rühren herstellen lässt, diese jedoch nicht besonders stabil ist. Mit Hilfe von hohen Scherenergien kann man nun sehr kleine, in ihrer Größe sehr einheitliche und außerdem sehr stabile Tröpfchen von 1/10000 mm erhalten. Eine solche Emulsion wird Miniemulsion genannt.
In der Dissertation wurden nun z.B. Miniemulsionen untersucht, die aus kleinen Wassertröpfchen in einem Öl bestehen. Es konnte gezeigt werden, dass das Wasser in diesen Tröpfchen, also in den räumlich begrenzten Systemen, nicht bei 0 °C, sondern bei -22 °C kristallisierte. Wie lässt sich das erklären? Wenn man einen Eimer Wasser hat, dann bildet sich normalerweise bei 0 °C Eis, da nämlich in dem Wasser einige (manchmal ganz wenige) Keime (z.B. Schutzteilchen, ein Fussel etc.) vorhanden sind, an denen sich die ersten Kristalle bilden. Wenn sich dann einmal ein Kristall gebildet hat, kann das Wasser im gesamten Eimer schnell zu Eis werden. Ultrareines Wasser würde bei -22 °C kristallisieren. Wenn man jetzt die Menge Wasser aus dem Eimer in kleine Tröpfchen bringt, dann hat man eine sehr, sehr große Zahl, nämlich 1017 Tröpfchen, in einem Liter Emulsion vorliegen. Die wenigen Schmutzpartikel verteilen auf sehr wenige Tröpfchen, die anderen Tröpfchen sind ultrarein. Daher kristallisieren sie erst bei -22 °C.
Im Rahmen der Arbeit konnte auch gezeigt werden, dass die Miniemulsionen genutzt werden können, um kleine Gelatine-Partikel, also Nanogummibärchen, herzustellen. Diese Nanogummibärchen quellen bei Erhöhung der Temperatur auf ca. 38 °C an. Das kann ausgenutzt werden, um zum Beispiel Medikamente zunächst in den Partikeln im menschlichen Körper zu transportieren, die Medikamente werden dann an einer gewünschten Stelle freigelassen. In der Arbeit wurde auch gezeigt, dass die Gelatine-Partikel genutzt werden können, um die Natur nachzuahnen (Biomimetik). Innerhalb der Partikel kann nämlich gezielt Knochenmaterial aufgebaut werden kann. Die Gelatine-Knochen-Partikel können dazu genutzt werden, um schwer heilende oder komplizierte Knochenbrüche zu beheben. Gelatine wird nämlich nach einigen Tagen abgebaut, das Knochenmaterial kann in den Knochen eingebaut werden.
LEDs werden heute bereits vielfältig verwendet. LEDs bestehen aus Halbleitern, wie z.B. Silizium. Neuerdings werden dazu auch halbleitende Polymere eingesetzt. Das große Problem bei diesen Materialien ist, dass sie aus Lösungsmitteln aufgebracht werden. Im Rahmen der Doktorarbeit wurde gezeigt, dass der Prozess der Miniemulsionen genutzt werden kann, um umweltfreundlich diese LEDs herzustellen. Man stellt dazu nun wässrige Dispersionen mit den Polymerpartikeln her. Damit hat man nicht nur das Lösungsmittel vermieden, das hat nun noch einen weiteren Vorteil: man kann nämlich diese Dispersion auf sehr einfache Art verdrucken, im einfachsten Fall verwendet man einfach einen handelsüblichen Tintenstrahldrucker.
The colloidal systems are present everywhere in many varieties such as emulsions (liquid droplets dispersed in liquid), aerosols (liquid dispersed in gas), foam (gas in liquid), etc. Among several new methods for the preparation of colloids, the so-called miniemulsion technique has been shown to be one of the most promising. Miniemulsions are defined as stable emulsions consisting of droplets with a size of 50-500 nm by shearing a system containing oil, water, a surfactant, and a highly water insoluble compound, the so-called hydrophobe
1. In the first part of this work, dynamic crystallization and melting experiments are described which were performed in small, stable and narrowly distributed nanodroplets (confined systems) of miniemulsions. Both regular and inverse systems were examined, characterizing, first, the crystallization of hexadecane, secondly, the crystallization of ice. It was shown for both cases that the temperature of crystallization in such droplets is significantly decreased (or the required undercooling is increased) as compared to the bulk material. This was attributed to a very effective suppression of heterogeneous nucleation. It was also found that the required undercooling depends on the nanodroplet size: with decreasing droplet size the undercooling increases.
2. It is shown that the temperature of crystallization of other n-alkanes in nanodroplets is also significantly decreased as compared to the bulk material due to a very effective suppression of heterogeneous nucleation. A very different behavior was detected between odd and even alkanes. In even alkanes, the confinement in small droplets changes the crystal structure from a triclinic (as seen in bulk) to an orthorhombic structure, which is attributed to finite size effects inside the droplets. An intermediate metastable rotator phase is of less relevance for the miniemulsion droplets than in the bulk. For odd alkanes, only a strong temperature shift compared to the bulk system is observed, but no structure change. A triclinic structure is formed both in bulk and in miniemulsion droplets.
3. In the next part of the thesis it is shown how miniemulsions could be successfully applied in the development of materials with potential application in pharmaceutical and medical fields. The production of cross-linked gelatin nanoparticles is feasible. Starting from an inverse miniemulsion, the softness of the particles can be controlled by varying the initial concentration, amount of cross-link agent, time of cross-linking, among other parameters. Such particles show a thermo-reversible effect, e.g. the particles swell in water above 37 °C and shrink below this temperature. Above 37 °C the chains loose the physical cross-linking, however the particles do not loose their integrity, because of the chemical cross-linking. Those particles have potential use as drug carriers, since gelatin is a natural polymer derived from collagen.
4. The cross-linked gelatin nanoparticles have been used for the biomineralization of hydroxyapatite (HAP), a biomineral, which is the major constituent of our bones. The biomineralization of HAP crystals within the gelatin nanoparticles results in a hybrid material, which has potential use as a bone repair material.
5. In the last part of this work we have shown that layers of conjugated semiconducting polymers can be deposited from aqueous dispersion prepared by the miniemulsion process. Dispersions of particles of different conjugated semiconducting polymers such as a ladder-type poly(para-phenylene) and several soluble derivatives of polyfluorene could be prepared with well-controlled particle sizes ranging between 70 - 250 nm. Layers of polymer blends were prepared with controlled lateral dimensions of phase separation on sub-micrometer scales, utilizing either a mixture of single component nanoparticles or nanoparticles containing two polymers. From the results of energy transfer it is demonstrated that blending two polymers in the same particle leads to a higher efficiency due to the better contact between the polymers. Such an effect is of great interest for the fabrication of opto-electronic devices such as light emitting diodes with nanometer size emitting points and solar cells comprising of blends of electron donating and electron accepting polymers.
Linshöft, Julian [Verfasser]. "Main Group Heterocycles for Semiconducting Polymers / Julian Linshöft." Kiel : Universitätsbibliothek Kiel, 2014. http://d-nb.info/106294786X/34.
Full textBartlett, Jon G. "Automated gas and odour sensing using semiconducting polymers." Thesis, University of Manchester, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284116.
Full textHon, Sherman Siu-Man. "Calcium vapour deposition on semiconducting polymers studied by adsorption calorimetry and visible light absorption." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/863.
Full textBooks on the topic "Semiconductive polymers"
Luscombe, Christine, ed. Semiconducting Polymers. Cambridge: Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782624004.
Full textHsieh, Bing R., and Yen Wei, eds. Semiconducting Polymers. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-1999-0735.
Full textSerdar, Sariciftci Niyazi, and Namdas Ebinazar B, eds. Semiconducting and metallic polymers. Oxford: Oxford University Press, 2010.
Find full textYang, Xiaoniu, ed. Semiconducting Polymer Composites. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527648689.
Full textBartlett, J. G. Automated gas and odour sensing using semiconducting polymers. Manchester: UMIST, 1990.
Find full textHadziioannou, G., and P. F. van Hutten, eds. Semiconducting Polymers. Wiley, 1999. http://dx.doi.org/10.1002/3527602186.
Full textSemiconducting Polymers: Controlled Synthesis and Microstructure. Royal Society of Chemistry, The, 2016.
Find full textGeorges, Hadziioannou, and Hutten Paul F. van, eds. Semiconducting polymers: Chemistry, physics, and engineering. Weinheim: Wiley-VCH, 2000.
Find full textGeorges, Hadziioannou, and Malliaras George G, eds. Semiconducting polymers: Chemistry, physics and engineering. 2nd ed. Weinheim: Wiley-VCH, 2007.
Find full textBook chapters on the topic "Semiconductive polymers"
Epstein, Arthur J., John M. Ginder, Alan F. Richter, and Alan G. MacDiarmid. "Are Semiconducting Polymers Polymeric Semiconductors?: Polyaniline as an Example of “Conducting Polymers”." In Conducting Polymers, 121–40. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3907-3_10.
Full textMcNeill, Christopher R. "Conjugated Polymer Blends: Toward All-Polymer Solar Cells." In Semiconducting Polymer Composites, 399–425. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch14.
Full textWei, Yen, Meixiang Wan, Ten-Chin Wen, Tang-Kuei Chang, Gaoquan Shi, Hongxu Qi, Lei Tao, Ester Segal, and Moshe Narkis. "Nanostructured Conducting Polymers for Sensor Development." In Semiconducting Polymer Composites, 489–521. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch17.
Full textKrueger, Michael, Michael Eck, Yunfei Zhou, and Frank-Stefan Riehle. "Semiconducting Nanocrystal/Conjugated Polymer Composites for Applications in Hybrid Polymer Solar Cells." In Semiconducting Polymer Composites, 361–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch13.
Full textMa, Wanli. "Fullerene/Conjugated Polymer Composite for the State-of-the-Art Polymer Solar Cells." In Semiconducting Polymer Composites, 331–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch12.
Full textMachui, Florian, and Christoph J. Brabec. "Solubility, Miscibility, and the Impact on Solid-State Morphology." In Semiconducting Polymer Composites, 1–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch1.
Full textLi, Yingping, and Xianhong Wang. "Intrinsically Conducting Polymers and Their Composites for Anticorrosion and Antistatic Applications." In Semiconducting Polymer Composites, 269–98. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch10.
Full textHaynes, Dahlia, Mihaela C. Stefan, and Richard D. McCullough. "Conjugated-Insulating Block Copolymers: Synthesis, Morphology, and Electronic Properties." In Semiconducting Polymer Composites, 299–330. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch11.
Full textNguyen, Thien Phap, and Pascale Jolinat. "Conjugated Polymer Composites and Copolymers for Light-Emitting Diodes and Laser." In Semiconducting Polymer Composites, 427–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch15.
Full textPiliego, Claudia, Krisztina Szendrei, and Maria Antonietta Loi. "Semiconducting Polymer Composite Based Bipolar Transistors." In Semiconducting Polymer Composites, 457–87. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch16.
Full textConference papers on the topic "Semiconductive polymers"
Oral, Imran, and Ulku Soydal. "Determining the elastic properties of epoxy / semiconductive glass composites by ultrasonic method." In TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876773.
Full textSoydal, Ulku, Gulnare Ahmetli, and Suheyla Kocaman. "The influence of semiconductive binary Sb2S3–Yb3S4 system on electrical conductivity property of epoxy composites." In TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876775.
Full textHo, Peter, Nir Tessler, and Richard H. Friend. "Semiconducting-polymer photonic devices." In International Symposium on Photonics and Applications, edited by Marek Osinski, Soo-Jin Chua, and Akira Ishibashi. SPIE, 2001. http://dx.doi.org/10.1117/12.446565.
Full textGoosens, M., G. Heliotis, G. A. Turnbull, A. Ruseckas, J. R. Lawrence, R. Xia, D. D. C. Bradley, and Ifor D. W. Samuel. "Semiconducting polymer optical amplifiers." In Optics & Photonics 2005, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2005. http://dx.doi.org/10.1117/12.624672.
Full textSchuelzgen, Alex, Christine Spiegelberg, Michael M. Morrell, Sergio B. Mendes, Pierre-Marc Allemand, Yutaka Kawabe, Makoto Kuwata-Gonokami, et al. "Semiconducting conjugated polymers: light amplification and lasing." In Optoelectronics and High-Power Lasers & Applications, edited by Bernard Kippelen and Donal D. C. Bradley. SPIE, 1998. http://dx.doi.org/10.1117/12.305421.
Full textShaw, P. E., A. J. Lewis, A. Ruseckas, and I. D. W. Samuel. "Exciton annihilation and diffusion in semiconducting polymers." In SPIE Optics + Photonics, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2006. http://dx.doi.org/10.1117/12.681573.
Full textCao, Weilou, Min Du, Hongye Liang, Younggu Kim, Warren N. Herman, and Chi H. Lee. "Photoinduced Transients in a Semiconducting Polymer." In Frontiers in Optics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/fio.2005.jtuc70.
Full textGong, Xiong, Daniel Moses, and Alan J. Heeger. "White electrophosphorescence from semiconducting polymer blends." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2004. http://dx.doi.org/10.1117/12.559072.
Full textList, Emil J. W., Caitriona Creely, Guenther Leising, N. Schulte, A. D. Schlueter, Ullrich Scherf, Klaus Muellen, and Wilhelm Graupner. "Excitation energy migration in highly emissive semiconducting polymers." In International Symposium on Optical Science and Technology, edited by Zakya H. Kafafi. SPIE, 2001. http://dx.doi.org/10.1117/12.416924.
Full textTran, Helen, Vivian R. Feig, Kathy Liu, and Zhenan Bao. "Fully degradable and stretchable semiconducting polymers for transient electronics." In Physical Chemistry of Semiconductor Materials and Interfaces IX, edited by Daniel Congreve, Christian Nielsen, and Andrew J. Musser. SPIE, 2020. http://dx.doi.org/10.1117/12.2567584.
Full textReports on the topic "Semiconductive polymers"
Heeger, Alan J. Nonlinear Optical Properties of Semiconducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada241001.
Full textHeeger, Alan J. Nonlinear Optical Properties of Semiconducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada240753.
Full textChen, X. L., and Samson A. Jenekhe. Quantum Confinement Effects in Self-Assembled Multicomponent Semiconducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada314618.
Full textYu, Luping. Development of N- and P- Types of Semiconducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada615267.
Full textJenekhe, Samson A., Xuejun Zhang, X. L. Chen, Vi-En Choong, and Yongli Gao. WITHDRAWN: Finite Size Effects on Electroluminescence of Nanoscale Semiconducting Polymer Heterojunctions. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada314623.
Full textMatnishyan, Hakob A. Synthesis of New Organic Semiconducting Polymer Materials Having High Radiowave Absorption Rate. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada494519.
Full textResearchers Demonstrate Microstructure and Charge Yield in Semiconducting Polymers (Fact Sheet), NREL Highlights, Science. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1035397.
Full text